首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Suzuki H  Nishino T  Nakayama T 《Phytochemistry》2007,68(15):2035-2042
A cDNA from soybean (Glycine max (L.) Merr.), GmIF7MaT, encoding malonyl-CoA:isoflavone 7-O-glucoside-6'-O-malonyltransferase, was cloned and characterized. Soybeans produce large amounts of isoflavones, which primarily accumulate in the form of their 7-O-(6'-O-malonyl-beta-D-glucosides). The cDNA was obtained by a homology-based strategy for the cDNA cloning of some flavonoid glucoside-specific malonyltransferases of the BAHD family. The expressed gene product, GmIF7MaT, efficiently catalyzed specific malonyl transfer reactions from malonyl-CoA to isoflavone 7-O-beta-D-glucosides yielding the corresponding isoflavone 7-O-(6'-O-malonyl-beta-D-glucosides) (IF7MaT activity). The k(cat) values of GmIF7MaT were much greater than those of other flavonoid glucoside-specific malonyltransferases with their preferred substrates, while the K(m) values were at comparable levels. GmIF7MaT was expressed in the roots of G. max seedlings more abundantly than in hypocotyl and cotyledon. Native IF7MaT activity was also observed in the roots, suggesting that GmIF7MaT is involved in the biosynthesis from isoflavone 7-O-beta-D-glucosides to the corresponding isoflavone 7-O-(6'-O-malonyl-beta-D-glucosides) in G. max. This protein is a member of flavonoid glucoside-specific acyltransferases in the BAHD family.  相似文献   

3.
A cDNA encoding UDP-glucose: formononetin 7-O-glucosyltransferase, designated UGT73F1, was cloned from yeast extract-treated Glycyrrhiza echinata L. cell-suspension cultures using probes from Scutellaria baicalensis UDP-glucose: flavonoid 7-O-glucosyltransferase. The open reading frame of the UGT73F1 cDNA encodes a 441-amino-acid protein with a predicted molecular mass of 48.7 kDa. The deduced amino acid sequence showed that the protein is related to the stress-inducible glucosyltransferases. UGT73F1 mRNA was not detected in untreated G. echinata cultures but was transiently induced by treatment with yeast extract. Recombinant UGT73F1 was expressed as a histidine-tag fusion protein in Escherichia coli and purified to near homogeneity by nickel chelate chromatography. The purified recombinant enzyme was selective for isoflavonoid, formononetin and daidzein as substrates, while flavonoids and various tested non-flavonoid compounds were poor substrates.Abbreviations GT UDP-glycosyltransferase - rUGT73F1 recombinant UGT73F1 - UBGT: UDP-glucose: baicalein 7-O-glucosyltransferase The nucleotide sequence data reported in this paper will appear in the DDBJ/EMBL/GenBank nucleotide sequence databases with the accession number AB098614.  相似文献   

4.
The plant glycosyltransferase UGT71G1 from the model legume barrel medic (Medicago truncatula) glycosylates flavonoids, isoflavonoids, and triterpenes. It can transfer glucose to each of the five hydroxyl groups of the flavonol quercetin, with the 3'-O-glucoside as the major product, and to the A-ring 7-hydroxyl of the isoflavone genistein. The sugar donor and acceptor binding pockets are located in the N and C termini, respectively, of the recently determined crystal structure of UGT71G1. The residues forming the binding pockets of UGT71G1 were systematically altered by site-directed mutagenesis. Mutation of Phe148 to Val, or Tyr202 to Ala, drastically changed the regioselectivity for quercetin glycosylation from predominantly the 3'-O-position of the B-ring to the 3-O-position of the C ring. The Y202A mutant exhibited comparable catalytic efficiency with quercetin to the wild-type enzyme, whereas efficiency was reduced 3-4-fold in the F148V mutant. The Y202A mutant gained the ability to glycosylate the 5-hydroxyl of genistein. Additional mutations affected the relative specificities for the sugar donors UDP-galactose and UDP-glucuronic acid, although UDP-glucose was always preferred. The results are discussed in relation to the design of novel biocatalysts for production of therapeutic flavonoids.  相似文献   

5.
Soybeans (Glycine max (L.) Merr.) and certain other legumes excrete isoflavones from their roots, which participate in plantmicrobe interactions such as symbiosis and as a defense against infections by pathogens. In G. max, the release of free isoflavones from their conjugates, the latent forms, is mediated by an isoflavone conjugate-hydrolyzing beta-glucosidase. Here we report on the purification and cDNA cloning of this important beta-glucosidase from the roots of G. max seedlings as well as related phylogenetic and cellular localization studies. The purified enzyme, isoflavone conjugate-hydrolyzing beta-glucosidase from roots of G. max seedling (GmICHG), is a homodimeric glycoprotein with a subunit molecular mass of 58 kDa and is capable of directly hydrolyzing genistein 7-O-(6 '-O-malonyl-beta-d-glucoside) to produce free genistein (k(cat), 98 s(-1); K(m), 25 microM at 30 degrees C, pH 7.0). GmICHG cDNA was isolated based on the amino acid sequence of the purified enzyme. GmICHG cDNA was abundantly expressed in the roots of G. max seedlings but only negligibly in the hypocotyl and cotyledon. An immunocytochemical analysis using anti-GmICHG antibodies, along with green fluorescent protein imaging analyses of Arabidopsis cultured cells transformed by the GmICHG:GFP fusion gene, revealed that the enzyme is exclusively localized in the cell wall and intercellular space of seedling roots, particularly in the cell wall of root hairs. A phylogenetic analysis revealed that GmICHG is a member of glycoside hydrolase family 1 and can be co-clustered with many other leguminous beta-glucosidases, the majority of which may also be involved in flavonoid-mediated interactions of legumes with microbes.  相似文献   

6.
Plants produce a plethora of structurally diverse natural products. The final step in their biosynthesis is often a glycosylation step catalyzed by a family 1 glycosyltransferase (GT). In biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor, the UDP-glucosyltransferase UGT85B1 catalyzes the conversion of p-hydroxymandelonitrile into dhurrin. A structural model of UGT85B1 was built based on hydrophobic cluster analysis and the crystal structures of two bacterial GTs, GtfA and GtfB, which each showed approximately 15% overall amino acid sequence identity to UGT85B1. The model enabled predictions about amino acid residues important for catalysis and sugar donor specificity. p-Hydroxymandelonitrile and UDP-glucose (Glc) were predicted to be positioned within hydrogen-bonding distance to a glutamic acid residue in position 410 facilitating sugar transfer. The acceptor was packed within van der Waals distance to histidine H23. Serine S391 and arginine R201 form hydrogen bonds to the pyrophosphate part of UDP-Glc and hence stabilize binding of the sugar donor. Docking of UDP sugars predicted that UDP-Glc would serve as the sole donor sugar in UGT85B1. This was substantiated by biochemical analyses. The predictive power of the model was validated by site-directed mutagenesis of selected residues and using enzyme assays. The modeling approach has provided a tool to design GTs with new desired substrate specificities for use in biotechnological applications. The modeling identified a hypervariable loop (amino acid residues 156-188) that contained a hydrophobic patch. The involvement of this loop in mediating binding of UGT85B1 to cytochromes P450, CYP79A1, and CYP71E1 within a dhurrin metabolon is discussed.  相似文献   

7.
Flavonol glycosides constitute one of the most prominent plant natural product classes that accumulate in the model plant Arabidopsis thaliana. To date there are no reports of functionally characterized flavonoid glycosyltransferases in Arabidopsis, despite intensive research efforts aimed at both flavonoids and Arabidopsis. In this study, flavonol glycosyltransferases were considered in a functional genomics approach aimed at revealing genes involved in determining the flavonol-glycoside profile. Candidate glycosyltransferase-encoding genes were selected based on homology to other known flavonoid glycosyltransferases and two T-DNA knockout lines lacking flavonol-3-O-rhamnoside-7-O-rhamnosides (ugt78D1) and quercetin-3-O-rhamnoside-7-O-glucoside (ugt73C6 and ugt78D1) were identified. To confirm the in planta results, cDNAs encoding both UGT78D1 and UGT73C6 were expressed in vitro and analyzed for their qualitative substrate specificity. UGT78D1 catalyzed the transfer of rhamnose from UDP-rhamnose to the 3-OH position of quercetin and kaempferol, whereas UGT73C6 catalyzed the transfer of glucose from UDP-glucose to the 7-OH position of kaempferol-3-O-rhamnoside and quercetin-3-O-rhamnoside, respectively. The present results suggest that UGT78D1 and UGT73C6 should be classified as UDP-rhamnose:flavonol-3-Orhamnosyltransferase and UDP-glucose:flavonol-3-O-glycoside-7-O-glucosyltransferase, respectively.  相似文献   

8.
Shao H  He X  Achnine L  Blount JW  Dixon RA  Wang X 《The Plant cell》2005,17(11):3141-3154
Glycosylation is a ubiquitous reaction controlling the bioactivity and storage of plant natural products. Glycosylation of small molecules is catalyzed by a superfamily of glycosyltransferases (GTs) in most plant species studied to date. We present crystal structures of the UDP flavonoid/triterpene GT UGT71G1 from Medicago truncatula bound to UDP or UDP-glucose. The structures reveal the key residues involved in the recognition of donor substrate and, by comparison with other GT structures, suggest His-22 as the catalytic base and Asp-121 as a key residue that may assist deprotonation of the acceptor by forming an electron transfer chain with the catalytic base. Mutagenesis confirmed the roles of these key residues in donor substrate binding and enzyme activity. Our results provide an initial structural basis for understanding the complex substrate specificity and regiospecificity underlying the glycosylation of plant natural products and other small molecules. This information will direct future attempts to engineer bioactive compounds in crop plants to improve plant, animal, and human health and to facilitate the rational design of GTs to improve the storage and stability of novel engineered bioactive compounds.  相似文献   

9.
Anthocyanins are major color pigments in plants. Their biosynthetic pathways are well established, and the majority of these biosynthetic enzymes have been identified in model plants such asArabidopsis, maize, and petunia. One exception inArabidopsis is UDP-glucose:flavonoid 3-O-glucosyltransferase (UF3GT). This enzyme is known as Bronze-1 (Bz1 ) in maize, where it converts anthocyanidins to anthocyanins. Phylogenetic sequence analysis of theArabidopsis thaliana UDP-glycosyltransferase (UGT) family previously indicated that UGT78D1, UGT78D2, and UGT78D3 cluster together with UF3GTs from other species. Here, we report thatUGT78D2 encodes a cytosolic UGT that is functionally consistent with maize Bz-1. Biochemically, UGT78D2 catalyzes the glucosylation of both flavonols and anthocyanidins at the 3-OH position. A T-DNA-insertedugt78d2 mutant accumulates very little anthocyanin and lacks 3-O-glucosylated quercetin. Expression analysis indicated thatUGT78D2, in opposite toBANYULS, is highly expressed in anthocyanin-accumulating seedlings but repressed in condensed tannin-accumulating seed coats. This suggests that the reciprocal regulation of these two genes is important in directing the metabolic flux to either anthocyanins or condensed tannins. Consistent with this, the ectopic expression of UGT78D2 produces purple-colored seed coats due to the accumulation of anthocyanins. Taken together, our data indicate thatUGT78D2 encodes an enzyme equivalent to maize Bz1, and that the reciprocal regulation of UGT78D2 and BANYULS is critical for the regulation of metabolic flux of anthocyanidins inArabidopsis.  相似文献   

10.
This work used an approach of enzyme engineering towards the improved production of baicalin as well as alteration of acceptor and donor substrate preferences in UGT73A16. The 3D model of Withania somnifera family-1 glycosyltransferase (UGT73A16) was constructed based on the known crystal structures of plant UGTs. Structural and functional properties of UGT73A16 were investigated using docking and mutagenesis. The docking studies were performed to understand the key residues involved in substrate recognition. In the molecular model of UGT73A16, substrates binding pockets are located between N- and C-terminal domains. Modeled UGT73A16 was docked with UDP-glucose, UDP-glucuronic acid (UDPGA), kaempferol, isorhamnetin, 3-hydroxy flavones, naringenin, genistein and baicalein. The protein–ligand interactions showed that His 16, Asp 246, Lys 255, Ala 337, Gln 339, Val 340, Asn 358 and Glu 362 amino acid residues may be important for catalytic activity. The kinetic parameters indicated that mutants A337C and Q339A exhibited 2–3 fold and 6–7 fold more catalytic efficiency, respectively than wild type, and shifted the sugar donor specificity from UDP-glucose to UDPGA. The mutant Q379H displayed large loss of activity with UDP-glucose and UDPGA strongly suggested that last amino acid residue of PSPG box is important for glucuronosylation and glucosylation and highly specific to sugar binding sites. The information obtained from docking and mutational studies could be beneficial in future to engineer this biocatalyst for development of better ones.  相似文献   

11.
Glycosylation is a key modification for most molecules including plant natural products, for example, flavonoids and isoflavonoids, and can enhance the bioactivity and bioavailability of the natural products. The crystal structure of plant rhamnosyltransferase UGT89C1 from Arabidopsis thaliana was determined, and the structures of UGT89C1 in complexes with UDP‐β‐l ‐rhamnose and acceptor quercetin revealed the detailed interactions between the enzyme and its substrates. Structural and mutational analysis indicated that Asp356, His357, Pro147 and Ile148 are key residues for sugar donor recognition and specificity for UDP‐β‐l ‐rhamnose. The mutant H357Q exhibited activity with both UDP‐β‐l ‐rhamnose and UDP‐glucose. Structural comparison and mutagenesis confirmed that His21 is a key residue as the catalytic base and the only catalytic residue involved in catalysis independently as UGT89C1 lacks the other catalytic Asp that is highly conserved in other reported UGTs and forms a hydrogen bond with the catalytic base His. Ser124 is located in the corresponding position of the catalytic Asp in other UGTs and is not able to form a hydrogen bond with His21. Mutagenesis further showed that Ser124 may not be important in its catalysis, suggesting that His21 and acceptor may form an acceptor‐His dyad and UGT89C1 utilizes a catalytic dyad in catalysis instead of catalytic triad. The information of structure and mutagenesis provides structural insights into rhamnosyltransferase substrate specificity and rhamnosylation mechanism.  相似文献   

12.
In livingstone daisy (Dorotheanthus bellidiformis), betanidin 5-O-glucosyltransferase (UGT73A5) is involved in the regiospecific glucosylation of betanidin and various flavonols. Based on sequence alignments several amino acid candidates which might be essential for catalysis were identified. The selected amino acids of the functionally expressed protein, suggested to be involved in substrate binding and turnover, were substituted via site-directed mutagenesis. The substitution of two highly conserved amino acids, Glu378, located in the proposed UDP-glucose binding site, and His22, located close to the N-terminus, led to the complete loss of enzyme activity. A 3D model of this regiospecific betanidin and flavonoid glucosyltransferase was constructed and the active site modelled. This model was based on the crystallographic structure of a bacterial UDP-glucose-dependent glucosyltransferase from Amycolatopsis orientalis used as a template and the generated null mutations. To explain the observed inversion in the configuration of the bound sugar, semiempirical calculations favour an SN-1 reaction, as one plausible alternative to the generally proposed SN-2 mechanism discussed for plant natural product glucosyltransferases. The calculated structural data do not only explain the abstraction of a proton from the acceptor betanidin, but further imply that the reaction mechanism might also involve a catalytic triad, with similarities described for the serine protease family.  相似文献   

13.
The fructose-1,6-bisphosphate aldolase gene from the thermophilic bacterium, Anoxybacillus gonensis G2, was cloned and sequenced. Nucleotide sequence analysis revealed an open reading frame coding for a 30.9 kDa protein of 286 amino acids. The amino acid sequence shared approximately 80-90% similarity to the Bacillus sp. class II aldolases. The motifs that are responsible for the binding of a divalent metal ion and catalytic activity completely conserved. The gene encoding aldolase was overexpressed under T7 promoter control in Escherichia coli and the recombinant protein purified by nickel affinity chromatography. Kinetic characterization of the enzyme was performed at 60 degrees C, and K(m) and V(max) were found to be 576 microM and 2.4 microM min(-1) mg protein(-1), respectively. Enzyme exhibits maximal activity at pH 8.5. The activity of enzyme was completely inhibited by EDTA.  相似文献   

14.
M. Teusch  G. Forkmann  W. Seyffert 《Planta》1986,168(4):586-591
In flower extracts of defined genotypes of Matthiola incana, an enzyme was demonstrated which catalyzes the transfer of the glucosyl moiety of uridine 5-diphosphoglucose (UDPGlc) to the 5-hydroxyl group of pelargonidin and cyanidin 3-glycosides and acylated derivatives. The best substrate for 5-glucosylation is the 3-xylosylglucoside acylated with p-coumarate, followed by the 3-xylosylglucoside and by the acylated (p-coumarate) 3-glucoside. The 3-glucoside itself is a very poor substrate. Besides UDPGlc, thymine 5-diphosphoglucose is a suitable glucosyl-donor, but with a reduced reaction rate (42%). The anthocyanin 5-O-glucosyltransferase exhibits a pH optimum at 7.5 and is generally inhibited by divalent ions and by ethylenediaminetetraacetic acid and p-chloromercuribenzoate. Investigations on different genotypes showed that the 5-O-glucosyltransferase activity is clearly controlled by the gene l. In confirmation of earlier chemogenetic work, enzyme activity is only present in lines with the wild-type allele l+. The anthocyanin 5-O-glucosyltransferase activity is strictly correlated with the formation of 5-glucosylated anthocyanins during bud development.Abbreviations Cg 3,5-T-cyanidin 3-sambubioside-5-glucoside - EDTA ethylene diaminetetraacetic acid - 5GT UDP-glucose: anthocyanin 5-O-glucosyltransferase - 3GT UDP-glucose: anthocyanidin/flavonol 3-O-glucosyltransferase - HPLC high-performance liquid chromatography - TLC thin-layer chromatography - UDPGlc uridine 5-diphospho-glucose  相似文献   

15.
M C Hsieh  T L Graham 《Phytochemistry》2001,58(7):995-1005
A beta-glucosidase with high specific activity towards isoflavone conjugates was purified from soybean [Glycine max] roots by high salt extraction from a low speed centrifugal pellet and subsequent anion and cation exchange chromatography. Purification required stabilization throughout fractionation in 10% glycerol. The enzyme is most likely a dimer (approximate M(r) 165 kDa) with potential subunits of M(r) 80 and/or 75 kDa. The pH and temperature optima are pH 6 and 30 degrees C, respectively. The enzyme was highly heat-stable. Of the various potential effectors examined, silver and mercury ions were the most inhibitory. The IC(50) of silver ions was increased from 140 microM to 14 mM in the presence of 250 microM beta-mercaptoethanol. Glucono-delta-lactone was not strongly inhibitory (IC(50) 24 mM). The activity was highly active against isoflavone conjugates, with a specificity constant 160-1000 fold higher for isoflavone conjugates over the generic chromogenic substrate, p-nitrophenyl beta-glucoside. The enzyme was inactive against the flavonol glycosides tested. The partially purified enzyme had similar K(m) and k(cat) towards 7-O-glucosyl- and 7-O-glucosyl-6"-malonyl-isoflavones, suggesting that it may be able to cleave the esterified glucosyl conjugate. We hypothesize that the enzyme is involved in the release of daidzein and genistein, both of which play central roles in soybean defense.  相似文献   

16.
A UDP-glucuronosyltransferase (GT) enzyme was isolated from ethanol-induced male New Zealand white rabbit hepatic protein. The animals were pretreated for 2 weeks with 10% ethanol in their drinking water. The GT enzyme was purified by anion-exchange and affinity chromatography and was shown to be homogeneous by sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis. The molecular mass of the ethanol-induced UDP-glucuronosyltransferase was determined to be 57,000 Da. Tryptic digests of the ethanol-induced GT and a similarly purified GT from control rabbit liver appeared to be different by HPLC analysis, even though the molecular masses of the enzymes were indistinguishable. Amino acid compositions of the two proteins were different for six amino acids. The apparent Km values for the ethanol-induced GT enzyme for 1-naphthol and morphine as substrates were 43 and 109 microM, respectively. The apparent Vmax values for the ethanol-induced GT enzyme for these substrates were 83 and 4.6 nmol/min/mg protein. The increases in catalytic efficiencies, apparent Vmax/Km for 1-naphthol and for morphine, for the ethanol-induced isozyme compared to the control isozyme activities were 2.0- and 2.4-fold. A polyclonal antibody raised in sheep to the rabbit ethanol-induced GT demonstrated a 520-fold selectivity for precipitation of the ethanol-induced protein rather than the control protein. These results demonstrate the production of an unique isozyme of UDP-glucuronosyltransferase that is produced in rabbits as a result of chronic ethanol exposure.  相似文献   

17.
The ugpGgene, which codes for a UDP-glucose pyrophosphorylase (UGP) (or glucose-1-phosphate uridylyltransferase; EC 2.7.7.9) in Sphingomonas paucimobilis ATCC 31461, was cloned and sequenced. This industrial strain produces the exopolysaccharide gellan, a new commercial gelling agent, and the ugpG gene may convert glucose-1-phosphate into UDP-glucose in the gellan biosynthetic pathway. The ugpG gene is capable of restoring the capacity of an Escherichia coli galU mutant to grow on galactose by functional complementation of its deficiency for UDP-glucose pyrophosphorylase activity. As expected, the predicted gene product shows strong homology to UDP-glucose pyrophosphorylases from several bacterial species. The N-terminal region of UgpG exhibits the motif GXGTRXLPXTK, which is highly conserved among bacterial XDP-sugar pyrophosphorylases, and a lysine residue (K(192)) is located within a VEKP motif predicted to be essential for substrate binding or catalysis. UgpG was purified to homogeneity as a heterologous fusion protein from crude cell extracts prepared from IPTG-induced cells of E. coli, using affinity chromatography. Under denaturing conditions, the fusion protein S-UgpG-His(6) migrated with an estimated molecular mass of 36 kDa [corresponding to the predicted molecular mass of native UgpG (31.2 kDa) plus 5 kDa for the S and histidine tags). Kinetic analysis of UgpG in the reverse reaction (pyrophosphorolysis) showed a typical Michaelis-Menten substrate saturation pattern. The apparent K(m) and V(max) values estimated for UDP-glucose were 7.5 microM and 1275 micromol/min/g.  相似文献   

18.
Tetrahydrobiopterin (BH4)-glucoside was identified from Synechococcus sp. PCC 7942 by HPLC analysis and the enzymatic activity of a glycosyltransferase producing the compound from UDP-glucose and BH4. The novel enzyme, named UDP-glucose:BH4 glucosyltransferase, has been purified 846-fold from the cytosolic fraction of Synechococcus sp. PCC 7942 to apparent homogeneity on SDS-PAGE. The native enzyme exists as a monomer having a molecular mass of 39.2 kDa on SDS-PAGE. The enzyme was active over a broad range of pH from 6.5 to 10.5 but most active at pH 10.0. The enzyme required Mn(2+) for maximal activity. Optimum temperature was 42 degrees C. Apparent K(m) values for BH4 and UDP-glucose were determined as 4.3 microM and 188 microM, respectively, and V(max) values were 16.1 and 15.1 pmol min(-1) mg(-1), respectively. The N-terminal amino acid sequence was Thr-Ala-His-Arg-Phe-Lys-Phe-Val-Ser-Thr-Pro-Val-Gly-, sharing high homology with the predicted N-terminal sequence of an unidentified open reading frame slr1166 determined in the genome of Synechocystis sp. PCC 6803, which is known to produce a pteridine glycoside cyanopterin.  相似文献   

19.
A gene encoding a UDP-glucose dehydrogenase homologue was identified in the hyperthermophilic archaeon, Pyrobaculum islandicum. This gene was expressed in Escherichia coli, and the product was purified and characterized. The expressed enzyme is the most thermostable UDP-glucose dehydrogenase so far described, with a half-life of 10 min at 90 °C. The enzyme retained its full activity after incubating in a pH range of 5.0-10.0 for 10 min at 80 °C. The temperature dependence of the kinetic parameters for this enzyme was examined at 37-70 °C. A decrease in K(m)s for UDP-glucose and NAD was observed with decreasing temperature. This resulted in the enzyme still retaining high catalytic efficiency (V(max)/K(m)) for the substrate and cofactor, even at 37 °C. These characteristics make the enzyme potentially useful for its application at a much lower temperature such as 37 °C than the optimum growth temperature of 100 °C for P. islandicum.  相似文献   

20.
Sterol glucosides, typical membrane-bound lipids of many eukaryotes, are biosynthesized by a UDP-glucose:sterol glucosyltransferase (EC 2. 4.1.173). We cloned genes from three different yeasts and from Dictyostelium discoideum, the deduced amino acid sequences of which all showed similarities with plant sterol glucosyltransferases (Ugt80A1, Ugt80A2). These genes from Saccharomyces cerevisiae (UGT51 = YLR189C), Pichia pastoris (UGT51B1), Candida albicans (UGT51C1), and Dictyostelium discoideum (ugt52) were expressed in Escherichia coli. In vitro enzyme assays with cell-free extracts of the transgenic E. coli strains showed that the genes encode UDP-glucose:sterol glucosyltransferases which can use different sterols such as cholesterol, sitosterol, and ergosterol as sugar acceptors. An S. cerevisiae null mutant of UGT51 had lost its ability to synthesize sterol glucoside but exhibited normal growth under various culture conditions. Expression of either UGT51 or UGT51B1 in this null mutant under the control of a galactose-induced promoter restored sterol glucoside synthesis in vitro. Lipid extracts of these cells contained a novel glycolipid. This lipid was purified and identified as ergosterol-beta-D-glucopyranoside by nuclear magnetic resonance spectroscopy. These data prove that the cloned genes encode sterol-beta-D-glucosyltransferases and that sterol glucoside synthesis is an inherent feature of eukaryotic microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号