首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
After the addition to soil of large numbers of a cowpea Rhizobium strain, the population declined steadily until the numbers reached about 107/g, and the protozoa rose to about 104/g. When indigenous protozoa were suppressed by the addition of actidione to the soil, the density of the test rhizobium did not fall initially, but its abundance declined to about 107/g when actidione-resistant protozoa arose in significant numbers. The addition to actidione-treated soil of an antibiotic-resistant strain of Paramecium led to a rapid decrease in the population of the rhizobium, the density reaching essentially the same value as in soil receiving neither the drug nor the paramecia. The same changes occurred with Xanthomonas campestris as test prey except that its numbers fell to about 105/g of soil. These data provide further evidence for the key role of protozoa in controlling the abundance of populations of certain bacteria introduced into soil.  相似文献   

2.
Representatives of several categories of bacteria were added to soil to determine which of them might elicit responses from the soil protozoa. The various categories were nonobligate bacterial predators of bacteria, prey bacteria for these predators, indigenous bacteria that are normally present in high numbers in soil, and non-native bacteria that often find their way in large numbers into soil. The soil was incubated and the responses of the indigenous protozoa were determined by most-probable-number estimations of total numbers of protozoa. Although each soil was incubated with only one species of added bacteria, the protozoan response for the soil was evaluated by using most-probable-number estimations of several species of bacteria. The protozoa did not respond to incubation of the soil with either Cupriavidus necator, a potent bacterial predator, or one of its prey species, Micrococcus luteus. C. necator also had no effect on the protozoa. Therefore, in this case, bacterial and protozoan predators did not interact, except for possible competition for bacterial prey cells. The soil protozoa did not respond to the addition of Arthrobacter globiformis or Bacillus thuringiensis. Therefore, the autochthonous state of Arthrobacter species in soil and the survival of B. thuringiensis were possibly enhanced by the resistance of these species to protozoa. The addition of Bacillus mycoides and Escherichia coli cells caused specific responses by soil protozoa. The protozoa that responded to E. coli did not respond to B. mycoides or any other bacteria, and vice versa. Therefore, addition to soil of a nonsoil bacterium, such as E. coli, did not cause a general increase in numbers of protozoa or in protozoan control of the activities of other bacteria in the soil.  相似文献   

3.
It has been demonstrated that for a nonpathogenic, leaf-associated bacterium, effectiveness in the control of bacterial speck of tomato is correlated with the similarity in the nutritional needs of the nonpathogenic bacterium and the pathogen Pseudomonas syringae pv. tomato. This relationship was investigated further in this study by using the pathogen Xanthomonas campestris pv. vesicatoria, the causal agent of bacterial spot of tomato, and a collection of nonpathogenic bacteria isolated from tomato foliage. The effects of inoculation of tomato plants with one of 34 nonpathogenic bacteria prior to inoculation with the pathogen X. campestris pv. vesicatoria were quantified by determining (i) the reduction in disease severity (number of lesions per square centimeter) in greenhouse assays and (ii) the reduction in leaf surface pathogen population size (log10 of the number of CFU per leaflet) in growth chamber assays. Nutritional similarity between the nonpathogenic bacteria and X. campestris pv. vesicatoria was quantified by using either niche overlap indices (NOI) or relatedness in cluster analyses based upon in vitro utilization of carbon or nitrogen sources reported to be present in tomato tissues or in Biolog GN plates. In contrast to studies with P. syringae pv. tomato, nutritional similarity between the nonpathogenic bacteria and the pathogen X. campestris pv. vesicatoria was not correlated with reductions in disease severity. Nutritional similarity was also not correlated with reductions in pathogen population size. Further, the percentage of reduction in leaf surface pathogen population size was not correlated with the percentage of reduction in disease severity, suggesting that the epiphytic population size of X. campestris pv. vesicatoria is not related to disease severity and that X. campestris pv. vesicatoria exhibits behavior in the phyllosphere prior to lesion formation that is different from that of P. syringae pv. tomato.  相似文献   

4.
Bacterial streak disease of maize is currently causing some concern among breeders in South Africa. The causal organism of this previously undescribed disease was successfully isolated and its pathogenicity established using KoCH's postulates. Standard physiological and biochemical tests used to identify phytopathogenic bacteria indicated that the bacterium is a Xanthomonas campestris pathovar. Comparisons between this organism and other recognized X. campestris pathovars of the Poaceae indicated that apart from some minor differences the maize streak pathogen is physiologically similar to X. campestris pv. holcicola. However, in repeated reciprocal inoculation experiments all attempts to induce disease symptoms in sorghum with the maize streak pathogen were unsuccessful. Conversely, X. campestris pv. holcicola did produce symptoms in maize leaves. In all the maize cultivars tested the symptoms produced by the maize streak pathogen were, however, always considerably more severe than those caused by X. campestris pv. holcicola. Notwithstanding its physiological similarity to X. campestris pv. holicola it would appear that on the grounds of host specificity the maize streak pathogen warrants new pathovar status. The name X. campestris pv. zeae is proposed.  相似文献   

5.
The number and weight of pods and the weight and nitrogen content of the tops of beans (Phaseolus vulgaris) derived from seeds inoculated with a thiram-resistant strain of Rhizobium phaseoli were increased if the seeds were treated with thiram before sowing in soil. A greater percentage of the nodules on 21-day-old plants were derived from the resistant strain, more nodules were formed, and these nodules were more effective in the presence of the fungicide than in its absence. These differences in nodule numbers were no longer present in 56-day-old plants, and only a small percentage of the nodules contained the resistant strain. The abundance of the fungicide-tolerant R. phaseoli increased rapidly soon after planting the seed and subsequently fell markedly, but the rate of decline was less if the seeds had been treated with the chemical. Protozoa also proliferated if thiram had not been applied to the seed, but their numbers were deleteriously influenced by thiram. Bdellovibrio, bacteriophages, and lytic micro-organisms acting on R. phaseoli were rare under these conditions. Ciliates and flagellated protozoa were initially suppressed by planting thiram-coated bean seeds in nonsterile soil, but the former were inhibited longer than the latter and the ciliate numbers never fully recovered if the seeds were treated with the fungicide. The resistant strain grew well in sterile soil also inoculated with a protozoa-free mixture of soil microorganisms whether thiram was added or not, but after an initial rise in numbers, its abundance fell if the mixture contained protozoa; the rate of this fall was delayed by the fungicide. The numbers of R. phaseoli were consistently less in sterile soil inoculated with the rhizobium plus a mixture of soil microorganisms containing ciliates and other protozoa than if the inoculum contained other protozoa but no ciliates. These results suggest that a suppression of protozoa, and possibly especially the ciliates, accounts for the enhanced growth of beans and the greater initial frequency of nodules formed by the thiram-resistant R. phaseoli in the presence of this fungicide. Thiram applied to uninoculated seed enhanced bean growth if thiram-resistant R. phaseoli were present in soil.  相似文献   

6.
Cadmium (Cd) and zinc (Zn) are environmental pollutants affecting both soil and water. The toxicity resulting from the exposure of Xanthomonas campestris, a soil bacterium and plant pathogen, to these metals was investigated. Pretreatment of X. campestris with sub-lethal concentrations of Cd induced adaptive protection against subsequent exposure to lethal doses of Cd. Moreover, Cd-induced cells also showed cross-resistance to lethal concentrations of Zn. These induced protections required newly synthesized proteins. Unexpectedly, Zn-induced cells did not exhibit adaptive protection against lethal concentrations of Zn or Cd. These data suggested that the increased resistance to Cd and Zn killing probably involved other protective mechanisms in addition to ion efflux.Received: 4 December 2002 / Accepted: 24 January 2003  相似文献   

7.
Using X-ray diffraction methodology, we have successfully determined the tertiary structures of the apo- and GTP-bound forms of uridylate kinase (UMPK) from the Gram-negative plant pathogen Xanthomonas campestris with crystals grown under a strong magnetic field. The flexible ATP- and UMP-binding loops are clearly shown under this situation. X. campestris UMPK contains a unique patch of noticeably positive nature from residue R100 to residue R127, allowing it to form a special GTP-binding pocket in the central hole of the structure. Although GTP is found to be situated in a pocket similar to that of the ATP-binding pocket in Bacillus anthracis UMPK, superimposition between the two pockets indicates that they adopt very distinct conformations. Detailed structural analyses of X. campestris UMPK between its apo- and GTP-bound forms reveal that binding of GTP does not induce global conformational change for X. campestris UMPK and only moderates movements for the ATP- and UMP-binding loops. Binding of GTP effector seems to “heat up” X. campestris UMPK, causing overall increases of B-factors for the protein, except for residues interacting with the guanine base. Moderate increase of enzyme activity, as is the case detected in other Gram-negative bacteria, is observed for X. campestris UMPK in the presence of an allosteric GTP effector. Given that the GTP molecules bind in the central cavity of the hexamer and that each GTP molecule interacts with more than one monomer, it is likely that binding of GTP modifies the hexameric assembly to exert long-range allosteric control on X. campestris UMPK, similar to that suggested for the effect of ATP effector on B. anthracis UMPK.  相似文献   

8.
Vibrio parahaemolyticus is a food-borne pathogen that naturally inhabits both marine and estuarine environments. Free-living protozoa exist in similar aquatic environments and function to control bacterial numbers by grazing on free-living bacteria. Protozoa also play an important role in the survival and spread of some pathogenic species of bacteria. We investigated the interaction between the protozoan Acanthamoeba castellanii and the bacterium Vibrio parahaemolyticus. We found that Acanthamoeba castellanii does not prey on Vibrio parahaemolyticus but instead secretes a factor that promotes the survival of Vibrio parahaemolyticus in coculture. These studies suggest that protozoa may provide a survival advantage to an extracellular pathogen in the environment.  相似文献   

9.
Barak JD  Liang AS 《PloS one》2008,3(2):e1657

Background

In the U.S., tomatoes have become the most implicated vehicle for produce-associated Salmonellosis with 12 outbreaks since 1998. Although unconfirmed, trace backs suggest pre-harvest contamination with Salmonella enterica. Routes of tomato crop contamination by S. enterica in the absence of direct artificial inoculation have not been investigated.

Methodology/Principal Findings

This work examined the role of contaminated soil, the potential for crop debris to act as inoculum from one crop to the next, and any interaction between the seedbourne plant pathogen Xanthomonas campestris pv. vesicatoria and S. enterica on tomato plants. Our results show S. enterica can survive for up to six weeks in fallow soil with the ability to contaminate tomato plants. We found S. enterica can contaminate a subsequent crop via crop debris; however a fallow period between crop incorporation and subsequent seeding can affect contamination patterns. Throughout these studies, populations of S. enterica declined over time and there was no bacterial growth in either the phyllosphere or rhizoplane. The presence of X. campestris pv. vesicatoria on co-colonized tomato plants had no effect on the incidence of S. enterica tomato phyllosphere contamination. However, growth of S. enterica in the tomato phyllosphere occurred on co-colonized plants in the absence of plant disease.

Conclusions/Significance

S. enterica contaminated soil can lead to contamination of the tomato phyllosphere. A six week lag period between soil contamination and tomato seeding did not deter subsequent crop contamination. In the absence of plant disease, presence of the bacterial plant pathogen, X. campestris pv. vesicatoria was beneficial to S. enterica allowing multiplication of the human pathogen population. Any event leading to soil contamination with S. enterica could pose a public health risk with subsequent tomato production, especially in areas prone to bacterial spot disease.  相似文献   

10.
Enhancing Soybean Rhizosphere Colonization by Rhizobium japonicum   总被引:2,自引:2,他引:0       下载免费PDF全文
A study was conducted to seek means to increase the colonization of the rhizosphere of soybeans (Glycine max L. Merrill) by Rhizobium japonicum. For this purpose, a strain of R. japonicum that was resistant to benomyl, streptomycin, and erythromycin was used. The numbers of R. japonicum rose quickly in the first 2 days after soybean seeds were planted in soil and then rapidly fell. The decline was slower if the seeds were coated with benomyl. This fungicide reduced the numbers of bacteria and protozoa in the rhizosphere, but the effect became less or disappeared as the plants grew. In sterile soil inoculated with R. japonicum and a mixture of microorganisms, the numbers of R. japonicum were usually lower if protozoa were present than if they were absent. Nodulation and plant yield were increased by the addition of benomyl to soybean seeds sown in sterile soil inoculated with R. japonicum and a mixture of microorganisms. The addition of streptomycin and erythromycin to soil stimulated the growth of R. japonicum but inhibited other bacteria in the presence or absence of soybeans. The data indicate that colonization can be increased by the use of antimicrobial agents and R. japonicum strains resistant to those inhibitors.  相似文献   

11.
The nucleotide sequence was determined for the genome of Xanthomonas oryzae pathovar oryzae (Xoo) KACC10331, a bacterium that causes bacterial blight in rice (Oryza sativa L.). The genome is comprised of a single, 4 941 439 bp, circular chromosome that is G + C rich (63.7%). The genome includes 4637 open reading frames (ORFs) of which 3340 (72.0%) could be assigned putative function. Orthologs for 80% of the predicted Xoo genes were found in the previously reported X.axonopodis pv. citri (Xac) and X.campestris pv. campestris (Xcc) genomes, but 245 genes apparently specific to Xoo were identified. Xoo genes likely to be associated with pathogenesis include eight with similarity to Xanthomonas avirulence (avr) genes, a set of hypersensitive reaction and pathogenicity (hrp) genes, genes for exopolysaccharide production, and genes encoding extracellular plant cell wall-degrading enzymes. The presence of these genes provides insights into the interactions of this pathogen with its gramineous host.  相似文献   

12.
The efficacy of copper bactericides for control of Xanthomonas campestris pv. vesicatoria in eastern Oklahoma tomato fields was evaluated. Copper bactericides did not provide adequate control, and copper-resistant (Cur) strains of the pathogen were isolated. The Cur genes in these strains were located on a large indigenous plasmid designated pXV10A. The host range of pXV10A was investigated; this plasmid was efficiently transferred into 8 of 11 X. campestris pathovars. However, the transfer of pXV10A to other phytopathogenic genera was not detected. DNA hybridization experiments were performed to characterize the Cur genes on pXV10A. A probe containing subcloned Cur genes from X. campestris pv. vesicatoria E3C5 hybridized to pXV10A; however, a subclone containing Cur genes from P. syringae pv. tomato PT23 failed to hybridize to pXV10A. Further DNA hybridization experiments were performed to compare pXV10A with pXvCu plasmids, a heterogenous group of Cur plasmids present in strains of X. campestris pv. vesicatoria from Florida. These studies indicated that the Cur genes on pXV10A and pXvCu plasmids share nucleotide sequence homology and may have a common origin. Further experiments showed that these plasmids are distinctly different because pXV10A did not contain sequences homologous to IS476, an insertion sequence present on pXvCu plasmids.  相似文献   

13.
The populations ofKlebsieila pneumoniae, Escherichia coli, Enterobacter aerogenes, andPseudomonas sp. fell following their addition to soil, but species lysing these gram-negative bacteria were not detected. The numbers ofStaphylococcus aureus andMicrococcus flavus fell by more than four orders of magnitude and ofSaccharomyces cerevisiae by more than two orders after their addition to soil. Organisms lysing these gram-positive bacteria were present in soil, but their numbers did not increase as a result of the additions. Lytic activity againstS. aureus was detected in soil filtrates, but this activity was not enhanced by inoculation of soil with the bacterium. Addition of cycloheximide to soil suspensions delayed the fall in abundance ofM. flavus but did not suppress the lytic populations. We conclude that lysis is not responsible for the decline of bacteria orS. cerevisiae added to soil.  相似文献   

14.
The exopolysaccharides (EPS) of virulent and avirulent strains of Xanthomonas campestris pv. glycines, causal agent of bacterial pustule disease of soybean, and one strain of the soybean non-pathogen X. c. pv. campestris were isolated, purified, and their compositions compared. EPS produced by X. c. pv. glycines in a completely defined medium appears to be identical to the well-characterized EPS produced by X. c. pv. campestris (commonly referred to as xanthan gum). The EPS of all strains was composed of the carbohydrates glucose, mannose and glucuronic acid with acetyl and pyruvyl substituents present. Permethylation analyses indicated EPS preparations had identical hexose substitution patterns. Avirulent strains of X. c. pv. glycines produced as much or more acidic EPS as did virulent strains in vitro. None of the EPS preparations were active as elicitors of the soybean pterocarpanoid phytoalexin glyceollin as determined by a soybean cotyledon bioassay.  相似文献   

15.
Plant pathogen Xanthomonas campestris pv. campestris produces cis-11-methyl-2-dodecenoic acid (diffusible signal factor [DSF]) as a cell-cell communication signal to regulate biofilm dispersal and virulence factor production. Previous studies have demonstrated that DSF biosynthesis is dependent on the presence of RpfF, an enoyl-coenzyme A (CoA) hydratase, but the DSF synthetic mechanism and the influence of the host plant on DSF biosynthesis are still not clear. We show here that exogenous addition of host plant juice or ethanol extract to the growth medium of X. campestris pv. campestris could significantly boost DSF family signal production. It was subsequently revealed that X. campestris pv. campestris produces not only DSF but also BDSF (cis-2-dodecenoic acid) and another novel DSF family signal, which was designated DSF-II. BDSF was originally identified in Burkholderia cenocepacia to be involved in regulation of motility, biofilm formation, and virulence in B. cenocepacia. Functional analysis suggested that DSF-II plays a role equal to that of DSF in regulation of biofilm dispersion and virulence factor production in X. campestris pv. campestris. Furthermore, chromatographic separation led to identification of glucose as a specific molecule stimulating DSF family signal biosynthesis in X. campestris pv. campestris. 13C-labeling experiments demonstrated that glucose acts as a substrate to provide a carbon element for DSF biosynthesis. The results of this study indicate that X. campestris pv. campestris could utilize a common metabolite of the host plant to enhance DSF family signal synthesis and therefore promote virulence.  相似文献   

16.
Black rot of cabbage caused by Xanthomonas campestris pv. campestris is one of the most important diseases of crucifers worldwide. Expression of defence-related enzymes in cabbage in response to X. campestris pv. campestris was investigated in the current experiment. Among the defence-related enzymes (phynylalanine ammonia lyase, peroxidase, polyphenol oxidase, superoxide dismutase [SOD] and chitinase) and quantity of phenolic compounds studied in the present investigation, phenylalanine ammonia lyase (PAL), the key enzyme in the phenylpropanoid pathway was the first enzyme suppressed at three days after inoculation in X. campestris pv. campestris-cabbage system. Correlation analysis indicated that PAL and phenolic compounds are the two most important compounds determining the susceptibility of cabbage to X. campestris pv. campestris. Induction of peroxidase isoform-1 (Rf value: 0.059) and SOD isoform-1 (Rf value: 0.179) three days after pathogen inoculation implicated the role of these isozymes in susceptible cabbage – X. campestris pv. campestris interaction. This study demonstrates the susceptibility of cabbage to X. campestris pv. campestris is a result of declination of PAL and phenolic contents at biochemical level as a manifestation of increase in bacterial population at the cellular level within the host tissues.  相似文献   

17.
Changes in populations of microorganisms around germinating bean (Phaseolus vulgaris L.) seeds, in the rhizosphere of bean, and in a model rhizosphere were studied. Strains of Rhizobium phaseoli that were resistant to streptomycin and thiram were used, and as few as 300 R. phaseoli cells per g of soil could be enumerated with a selective medium that was devised. A direct role was not evident for bacterial competitors, lytic bacteria, antibiotic-producing microorganisms, bacteriophages, and Bdellovibrio in the suppression of R. phaseoli around germinating seeds and in the rhizosphere. Protozoa increased in numbers in the soil upon planting of the seeds. The extent of colonization of soil by R. phaseoli was inversely related to the presence of large numbers of bacteria and protozoa. Colonization of R. phaseoli was improved upon suppression of protozoa with thiram and also when the soil was amended with other protozoan inhibitors and mannitol to simulate seed and root exudation. The data support the view that the decrease in numbers of R. phaseoli is caused by an increase in protozoan predation, the protozoa increasing in number because they prey on bacteria that proliferate by using seed and root exudates as nutrients.  相似文献   

18.
Summary The red sandy loam soils of Bangalore were found to contain Colpoda spp. and Uroleptus spp. as the predominant protozoa. The effect of these protozoa on Rhizobium S-12 and Azotobacter chroococcum which gain entry into soil as bacterial inoculants was studied. In the presence of protozoa a fall in the population of Rhizobium S-12 and A. chroococcum in soil suggested that these bacteria serve as prey for the protozoa. But complete devouring of the prey by the predators never occurred. In broth culture decline in the population of the two bacteria in the presence of protozoa was much quicker compared to soil. Several bacteria survived in broth too suggesting that soil does not prevent the predator from finding its prey. This upholds the recent view that the protozoa devour bacteria if they are sufficiently close to each other, that the energy gained by devouring the cell is greater than that required for hunting. Reduced nodulation and not absence of nodules, in soybean by Rhizobium S-12 in presence of protozoa further supports this view. re]19751105  相似文献   

19.
The sizes of the populations of individual bacterial species diminished following their addition to water from lakes with different trophic levels at temperatures of 5, 10, 15, and 30°C. Some species persisted after their initial reduction in cell numbers, but others were undetectable after 3 to 15 days. The decline of these introduced bacteria was not a result of their inoculation at higher densities than are found in nature. The death of most of the test species was not the result of starvation, abiotic factors, bdellovibrios, or bacteriophages. Despite the presence of lytic bacteria, the lake water did not have lytic activity against the test species. Protozoan predation was a significant factor in the fall in bacterial population sizes because protozoa increased in numbers as the bacterial density fell, the suppression of protozoa led to the elimination or delay of the decline of the bacteria, and the addition of protozoa to lake water in which indigenous protozoa were suppressed produced the same pattern of bacterial elimination as in untreated lake water.  相似文献   

20.
The populations of Pseudomonas sp. B4, Escherichia coli, Klebsiella pneumoniae, Micrococcus flavus, and Rhizobium leguminosarum biovar phaseoli declined rapidly in lake water. The initially rapid decline of the two pseudomonads and R. phaseoli was followed by a period of slow loss of viability, but viable cells of the other species were not found after 10 days. The rapid initial phase of decline was not a result of Bdellovibrio spp., bacteriophages, or toxins in the water since Bdellovibrio spp. were not present and passage of the lake water through filters that should not have removed bacteriophages or soluble toxins led to the elimination of the rapid phase of decline. The addition of 250 g of cycloheximide and 30 g of nystatin per ml eliminated viable protozoa form the lake water, and the population of Pseudomonas sp. B4 did not fall and the decline of E. coli and K. pneumoniae was delayed or slowed under these conditions. Pseudomonas sp. L2 proliferated rapidly in lake water amended with glucose, phosphate, and NH4NO3, but its numbers subsequently fell abruptly; however, in water amended with cycloheximide and nystatin, which killed indigenous protozoa, the population density was higher and the fall in numbers was delayed. Of the nutrients, the chief response was to carbon, but when glucose was added, phosphorus and nitrogen stimulated growth further. Removing other bacteria by filtering the lake water before inoculation with Pseudomonas sp. L2 suggested that competition reduced the extent of response of the pseudomonad to added nutrients. We suggest that the decline in lake water of bacteria that are resistant to starvation may be a result of protozoan grazing and that the extent of growth of introduced species may be limited by the supply of available carbon and sometimes of nitrogen and phosphorus, and by predation by indigenous protozoa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号