首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Neural cell differentiation during development is controlled by multiple signaling pathways, in which protein phosphorylation and dephosphorylation play an important role. In this study, we examined the role of pyrophosphatase1 (PPA1) in neuronal differentiation using the loss and gain of function analysis. Neuronal differentiation induced by external factors was studied using a mouse neuroblastoma cell line (N1E115). The neuronal like differentiation in N1E115 cells was determined by morphological analysis based on neurite growth length. In order to analyze the loss of the PPA1 function in N1E115, si-RNA specifically targeting PPA1 was generated. To study the effect of PPA1 overexpression, an adenoviral gene vector containing the PPA1 gene was utilized to infect N1E115 cells. To address the need for pyrophosphatase activity in PPA1, D117A PPA1, which has inactive pyrophosphatase, was overexpressed in N1E115 cells. We used valproic acid (VPA) as a neuronal differentiator to examine the effect of PPA1 in actively differentiated N1E115 cells. Si-PPA1 treatment reduced the PPA1 protein level and led to enhanced neurite growth in N1E115 cells. In contrast, PPA1 overexpression suppressed neurite growth in N1E115 cells treated with VPA, whereas this effect was abolished in D117A PPA1. PPA1 knockdown enhanced the JNK phosphorylation level, and PPA1 overexpression suppressed it in N1E115 cells. It seems that recombinant PPA1 can dephosphorylate JNK while no alteration of JNK phosphorylation level was seen after treatment with recombinant PPA1 D117A. Enhanced neurite growth by PPA1 knockdown was also observed in rat cortical neurons. Thus, PPA1 may play a role in neuronal differentiation via JNK dephosphorylation.  相似文献   

2.
BACKGROUND: On the basis of experiments suggesting that Notch and Delta have a role in axonal development in Drosophila neurons, we studied the ability of components of the Notch signaling pathway to modulate neurite formation in mammalian neuroblastoma cells in vitro. RESULTS: We observed that N2a neuroblastoma cells expressing an activated form of Notch, Notch1(IC), produced shorter neurites compared with controls, whereas N2a cell lines expressing a dominant-negative Notch1 or a dominant-negative Delta1 construct extended longer neurites with a greater number of primary neurites. We then compared the effects on neurites of contacting Delta1 on another cell and of overexpression of Delta1 in the neurite-extending cell itself. We found that N2a cells co-cultured with Delta1-expressing quail cells produced fewer and shorter neuritic processes. On the other hand, high levels of Delta1 expressed in the N2a cells themselves stimulated neurite extension, increased numbers of primary neurites and induced expression of Jagged1 and Notch1. CONCLUSIONS: These studies show that Notch signals can antagonize neurite outgrowth and that repressing endogenous Notch signals enhances neurite outgrowth in neuroblastoma cells. Notch signals therefore act as regulators of neuritic extension in neuroblastoma cells. The response of neuritic processes to Delta1 expressed in the neurite was opposite to that to Delta1 contacted on another cell, however. These results suggest a model in which developing neurons determine their extent of process outgrowth on the basis of the opposing influences on Notch signals of ligands contacted on another cell and ligands expressed in the same cell.  相似文献   

3.
4.
Clonal cell lines N18 and N103 of the mouse neuroblastoma C1300 possess an undifferentiated neuroblast morphology under optimal growth conditions; however, when deprived of serum, N18 can be induced to extend long neurites. Although initial neurite outgrowth is rapid, very long fibers are found only after several days. Both initial outgrowths and established neurites contain microtubules; however, the number and density of these polymerized tubules increase markedly during this time. Optimum conditions have been established for assessing the colchicine-binding activity of neuroblastoma sonicates. A time-decay colchicine-binding assay was used to make a comparative study of the tubulin content of both undifferentiated and differentiated N18 as well as the nondifferentiating N103 and the rat glioma C6. Both morphologies of clone N18 possessed similar concentrations of tubulin (130-140 pmol/10(6) cells). Although cells of clone N103 contain 20% less tubulin than N18 cells, this is considerably more tubulin than is present in the glioma C6 (30 pmol/10(6) cells) which has a similar generation time. Quantitative densitometry of neuroblastoma extracts electrophoresed on SDS-polyacrylamide gels confirmed the constancy of tubulin. Radiolabeled proteins from neuroblastoma cells subjected to both growth conditions show that neurite outgrowth does not create a disproportionate demand for tubulin synthesis. Thus, the morphological differentiation of neuroblastoma cells probably reflects the regulation of tubulin storage and microtubule polymerization.  相似文献   

5.
The Slit-Robo GTPase-activating proteins (srGAPs) are important multifunctional adaptor proteins involved in various aspects of neuronal development, including axon guidance, neuronal migration, neurite outgrowth, dendritic morphology and synaptic plasticity. Among them, srGAP3, also named MEGAP (Mental disorder-associated GTPase-activating protein), plays a putative role in severe mental retardation. SrGAP3 expression in ventricular zones of neurogenesis indicates its involvement in early stage of neuronal development and differentiation. Here, we show that overexpression of srGAP3 inhibits VPA (valproic acid)-induced neurite initiation and neuronal differentiation in Neuro2A neuroblastoma cells, whereas knockdown of srGAP3 facilitates the neuronal differentiation in this cell line. In contrast to the wild type, overexpression of srGAP3 harboring an artificially mutation R542A within the functionally important RhoGAP domain does not exert a visible inhibitory effect on neuronal differentiation. The endogenous srGAP3 selectively binds to activated form of Rac1 in a RhoGAP pull-down assay. We also show that constitutively active (CA) Rac1 can rescue the effect of srGAP3 on attenuating neuronal differentiation. Furthermore, change in expression and localization of endogenous srGAP3 is observed in neuronal differentiated Neuro2A cells. Together, our data suggest that srGAP3 could regulate neuronal differentiation in a Rac1-dependent manner.  相似文献   

6.
Neuroblastoma is an embryonic tumour of the sympathetic nervous system and is one of the most common cancers in childhood. A high differentiation stage has been associated with a favourable outcome; however, the mechanisms governing neuroblastoma cell differentiation are not completely understood. The MYCN gene is considered the hallmark of neuroblastoma. Even though it has been reported that MYCN has a role during embryonic development, it is needed its decrease so that differentiation can be completed. We aimed to better define the role of MYCN in the differentiation processes, particularly during the early stages. Considering the ability of MYCN to regulate non-coding RNAs, our hypothesis was that N-Myc protein might be necessary to activate differentiation (mimicking embryonic development events) by regulating miRNAs critical for this process. We show that MYCN expression increased in embryonic cortical neural precursor cells at an early stage after differentiation induction. To investigate our hypothesis, we used human neuroblastoma cell lines. In LAN-5 neuroblastoma cells, MYCN was upregulated after 2 days of differentiation induction before its expected downregulation. Positive modulation of various differentiation markers was associated with the increased MYCN expression. Similarly, MYCN silencing inhibited such differentiation, leading to negative modulation of various differentiation markers. Furthermore, MYCN gene overexpression in the poorly differentiating neuroblastoma cell line SK-N-AS restored the ability of such cells to differentiate. We identified three key miRNAs, which could regulate the onset of differentiation programme in the neuroblastoma cells in which we modulated MYCN. Interestingly, these effects were accompanied by changes in the apoptotic compartment evaluated both as expression of apoptosis-related genes and as fraction of apoptotic cells. Therefore, our idea is that MYCN is necessary during the activation of neuroblastoma differentiation to induce apoptosis in cells that are not committed to differentiate.  相似文献   

7.
目的:探讨Complexin蛋白对神经母瘤细胞分化的影响及机制。方法:采用神经母瘤细胞(N2a)作为实验材料,在其中过表达Complexin蛋白以及其突变体后,利用激光共聚焦显微镜拍照并利用Image J软件对N2a细胞的分化比率、突起数量以及突起生长长度进行统计学分析。结果:在N2a细胞中过表达Cpx蛋白后,细胞分化率比对照组(即转染空白对照质粒)增加约2倍。Cpx1-86和Cpxpoorclamp突变体可促进N2a细胞的分化,而Cpx27-134突变体对N2a细胞分化无明显影响。随着时间的延长,过表达野生型Cpx蛋白和其N端缺失突变体都不能显著增加细胞突起的数量;但在转染4天后,过表达野生型Cpx蛋白能显著增加分化细胞的突起长度,而其N端缺失突变体不能引起突起长度的增加。结论:Complexin蛋白主要通过其N端序列促进神经母瘤细胞(N2a)的分化,增加分化后突起的长度,但对突起数量没有明显影响。  相似文献   

8.
1. Cyclophilin A (CyP-A), a soluble cytoplasmic immunophilin, is known for its involvement in T cell differentiation and proliferation. Although CyP-A has a pivotal role in the immune response, it is most highly concentratedin brain, where its functions are largely unknown.2. We reported previously that a murine neuroblastoma (NB-P2) cellline can partially differentiate into neurons when treated with cyclosporin A (CyS-A), implicating a role for CyP-A in neuronal differentiation (Hovland et al. [1999]. Neurochem. Int. 3:229–235).3. The role of CyP-A in regulating neuronal growth and differentiation is not well defined. To investigate this, we first tested the utility of retroviral-mediated gene transfer and expression in human embryonic brain (HEB) and NB-P2 cells. Second, we examined the effects of retroviral-mediated overexpression or antisense-mediated reduction of CyP-A in HEB and NB-P2 cells.4. Our data show that retroviral vectors are efficient for stable gene transfer and expression in both cell lines. Moreover, neither overexpression nor reduction of CyP-A expression in NB-P2 cells altered the growth rate or induced differentiation. More importantly, the up- or down-regulation of CyP-A expressiondid not affect the magnitude of cAMP-induced NB-P2 differentiation. However, overexpression of CyP-A increased the growth rate of HEB cells.5. In summary, the utility of retroviral vectors for stable gene expression in human embryonic brain and murine neuroblastoma cells was shown. Furthermore,a novel role for CyP-A in augmenting the proliferation of human embryonic braincells was demonstrated in vitro.  相似文献   

9.
Expression and function of TRK-B and BDNF in human neuroblastomas.   总被引:18,自引:0,他引:18       下载免费PDF全文
There is considerable interest in the role of the TRK family of neuotrophin receptors in regulating growth and differentiation in normal and neoplastic nerve cells. A neuroblastoma is a common pediatric tumor derived from the neural crest, and the majority of favorable neuroblastomas express a high level of TRK-A mRNA. However, little is known about the expression or function of TRK-B in these tumors. TRK-B encodes a tyrosine kinase that binds to brain-derived neuotrophic factor (BDNF), as well as neurotrophin-3 (NT-3) and NT-4/5. We have studied the N-myc-amplified human neuroblastoma cell line, SMS-KCN, which expresses both TRK-B and BDNF. Exogenous BDNF induces tyrosine phosphorylation of TRK-B as well as phosphorylation of phospholipase C-gamma 1, the extracellular signal-regulated kinases 1 and 2, and phosphatidylinositol-3 kinase. BDNF also induces expression of the immediate-early genes c-FOS and NGFI-A but not NGFI-B or NGFI-C. In addition, BDNF appears to promote cell survival and neurite outgrowth. SMS-KCN cells also express TRK-A, which is phosphorylated in response to nerve growth factor. However, the downstream TRK-A signaling is apparently defective. Finally, we determined that in a series of 74 primary neuroblastomas, 36% express TRK-B mRNA, 68% express BDNF mRNA, and 31% express both. Truncated TRK-B appears to be preferentially expressed in more-differentiated tumors (ganglioneuromas and ganglioneuroblastomas), whereas full-length TRK-B is expressed almost exclusively in immature neuroblastomas with N-myc amplification. Our findings suggest that in TRK-B-expressing human neuroblastomas, BDNF promotes survival and induces neurite outgrowth in an autocrine or paracrine manner. The BDNF/TRK-B pathway may be particularly important for growth and differentiation of neuroblastomas with N-myc amplification.  相似文献   

10.
Syntaxin是特异性地分布在神经细胞突触前质膜上的一种多结构域蛋白,它是细胞质膜融合的关键性蛋白,但Syntaxin在神经细胞分化过程中的作用尚未阐明。本实验旨在探讨Syntaxin蛋白对神经母瘤细胞分化的影响及其影响机制。通过在小鼠的神经母瘤细胞(N2a)中过表达不同的Syntaxin蛋白突变体,统计细胞的分化率、突起分支数和突起总长度等参数,来观察Syntaxin蛋白及其突变体对神经细胞分化的影响。通过实验结果得知Syntaxin蛋白促进神经母瘤细胞分化的作用位点在其氨基端的Habc结构域,主要影响细胞的分化突起数目和突起总长度,对细胞分化率无显著作用。  相似文献   

11.
Neuro-2a (N2a) cells are derived from spontaneous neuroblastoma of mouse and capable to differentiate into neuronal-like cells. Recently, P2X7 receptor has been shown to sustain growth of human neuroblastoma cells but its role during neuronal differentiation remains unexamined. We characterized the role of P2X7 receptors in the retinoic acid (RA)-differentiated N2a cells. RA induced N2a cells differentiation into neurite bearing and neuronal specific proteins, microtubule-associated protein 2 (MAP2) and neuronal specific nuclear protein (NeuN), expressing neuronal-like cells. Interestingly, the RA-induced neuronal differentiation was associated with decreases in the expression and function of P2X7 receptors. Functional inhibition of P2X7 receptors by P2X7 receptor selective antagonists, 5′-triphosphate, periodate-oxidized 2′,3′-dialdehyde ATP (oATP), brilliant blue G (BBG) or A438079 induced neurite outgrowth. In addition, RA and oATP treatment stimulated the expression of neuron-specific class III beta-tubulin (TuJ1), and knockdown of P2X7 receptor expression by siRNA induced neurite outgrowth. To elucidate the possible mechanism, we found the levels of basal intracellular Ca2+ concentrations ([Ca2+]i) were decreased in either RA- or oATP-differentiated or P2X7 receptor knockdown N2a cells. Simply cultured N2a cells in low Ca2+ medium induced a 2-fold increase in neurite length. Treatment of N2a cells with ATP hydrolase apyrase and the P2X7 receptors selective antagonist oATP or BBG decreased cell viability and cell number. Nevertheless, oATP but not BBG decreased cell proliferation and cell cycle progression. These results suggest for the first time that decreases in expression/function of P2X7 receptors are involved in neuronal differentiation. We provide additional evidence shown that the ATP release-activated P2X7 receptor is important in maintaining cell survival of N2a neuroblastoma cells.  相似文献   

12.
Neuronal differentiation is a complex process in which many different signalling pathways may be involved. An increase in the intracellular levels of cyclic AMP (cAMP) has been shown to induce neuronal differentiation and also to cooperate with NGF to induce PC12 neurite outgrowth in a Ras-dependent manner. However, the neuritogenic activities associated with cAMP are still not well understood. The purpose of this study was to investigate the potential neuritogenic activities mediated by cAMP. For this purpose, we used the human neuroblastoma cell line SH-SY5Y. These neuroblastoma cells respond to cAMP by forming neurite-like extensions. We tried to identify some essential pathways involved in the cAMP-induced neurite elongation of these cells. Our results indicated that PKA is transiently activated in this elongation model. When we blocked PKA activity, elongation did not take place. Similarly, PI3K also plays an essential role because when we blocked this kinase activity, there was no neurite elongation. Indeed, over-expression of the p110-catalytic subunit or an activating form of the p85-regulatory subunit (p65) is able to induce some degree of neurite extension. Moreover, our results showed that when elongation is initiated, PI3K is still essential for maintenance of the neuronal morphology, whereas PKA or MAPK (ERKs or p38) activation does not appear to be necessary during this process.  相似文献   

13.
Cell differentiation is often associated with decreased cell growth, indicating an altered rate of macromolecule synthesis and degradation. In this study, we present evidence that autophagy, a process for bulk degradation of cytoplasm, is activated during retinoic acid-induced neuronal differentiation of neuroblastoma N2a cells. Chemical inhibitors of autophagy, including 3-MA and LY294002, abrogate cell differentiation. RNA interference of autophagy gene beclin 1 markedly delays the process of differentiation. We also find that cell differentiation is accompanied by decreased activity of mTOR, a major controller of cell growth and a negative regulator of autophagy. However, completely inhibiting mTOR by rapamycin decreases neurite outgrowth, cell size and the immunoreactivity for neuronal markers. Our study suggests that an appropriate level of mTOR activity is important in cell differentiation for a balance between macromolecule synthesis and degradation.  相似文献   

14.
15.
Nerve growth factor (NGF) plays a key role in the differentiation of neurons. In this study, we established three NGF-induced neurite-positive (NIN+) subclones that showed high responsiveness to NGF-induced neurite outgrowth and three NGF-induced neurite-negative (NIN-) subclones that abolished NGF-induced neurite outgrowth from parental SH-SY5Y cells, and analyzed differences in the NGF signaling cascade. The NIN+ subclones showed enhanced responsiveness to FK506-mediated neurite outgrowth as well. To clarify the mechanism behind the high frequency of NGF-induced neurite outgrowth, we investigated differences in NGF signaling cascade among subclones. Expression levels of the NGF receptor TrkA, and NGF-induced increases in mRNAs for the immediate-early genes (IEGs) c-fos and NGF inducible (NGFI) genes NGFI-A, NGFI-B and NGFI-C, were identical among subclones. Microarray analysis revealed that the NIN+ cell line showed a very different gene expression profile to the NIN- cell line, particularly in terms of axonal vesicle-related genes and growth cone guidance-related genes. Thus, the difference in NGF signaling cascade between the NIN+ and NIN- cell lines was demonstrated by the difference in gene expression profile. These differentially expressed genes might play a key role in neurite outgrowth of SH-SY5Y cells in a region downstream from the site of induction of IEGs, or in a novel NGF signaling cascade.  相似文献   

16.
We show that a glycerophosphodiester phosphodiesterase homolog, GDE2, is widely expressed in brain tissues including primary neurons, and that the expression of GDE2 in neuroblastoma Neuro2A cells is significantly upregulated during neuronal differentiation by retinoic acid (RA) treatment. Stable expression of GDE2 resulted in neurite formation in the absence of RA, and GDE2 accumulated at the regions of perinuclear and growth cones in Neuro2A cells. Furthermore, a loss-of-function of GDE2 in Neuro2A cells by RNAi blocked RA-induced neurite formation. These results demonstrate that GDE2 expression during neuronal differentiation plays an important role for growing neurites.  相似文献   

17.
Neuroglobin, the third mammalian globin with a hexa-coordinated heme, exists predominantly in neurons of the brain. Neuroglobin plays an important role in neuronal death upon ischemia and oxidative stress. The physiological function of neuroglobin remains unclear. Here, we report a novel function of neuroglobin in neurite development. Knocking-down neuroglobin exhibited a prominent neurite-deficient phenotype in mouse neuroblastoma N2a cells. Silencing neuroglobin prevented neurite outgrowth, while ectopic expression of neuroglobin but not homologous cytoglobin promoted neurite outgrowth of N2a cells upon serum withdrawal. In primary cultured rat cerebral cortical neurons, neuroglobin was upregulated and preferentially distributed in neurites during neuronal development. Overexpression of neuroglobin but not cytoglobin in cultured cortical neurons promoted axonal outgrowth, while knocking-down of neuroglobin retarded axonal outgrowth. Neuroglobin overexpression suppressed phosphatase and tensin homolog (PTEN) but increased Akt phosphorylation during neurite induction. Bimolecular fluorescence complementation and glutathione S-transferase pull-down assays revealed that neuroglobin and various mutants (E53Q, E118Q, K119N, H64A, H64L, and Y44D) bound with Akt and PTEN differentially. Neuroglobin E53Q showed a prominent reduced PTEN binding but increased Akt binding, resulting in decreased p-PTEN, increased p-Akt, and increased neurite length. Taken together, we demonstrate a critical role of neuroglobin in neuritogenesis or development via interacting with PTEN and Akt differentially to activate phosphatidylinositol 3-kinase/Akt pathway, providing potential therapeutic applications of neuroglobin for axonopathy in neurological diseases.  相似文献   

18.
Bin1 is a novel protein that specifically binds Myc and inhibits, at least in part, Myc transactivation. Bin1 seems to play a role in cell cycle control, acting as a tumor suppressor gene. Since MYC family genes play a regulatory role in the proliferation, differentiation, and apoptosis of the nervous system, we studied the effects of the overexpression of the Myc-interacting protein, Bin1, in neuroblastoma and astrocytoma cell lines, which were chosen as neural cell system models. The major effects of BIN1 overexpression observed in undifferentiated neuroblastoma and astrocytoma cells were a significant reduction of cell growth, an increase in the G(0)/G(1) cell population and the induction of apoptosis. The trigger of programmed cell death by Bin1 is described for the first time. Bin1 overexpression in undifferentiated cells did not induce any maturation process as neither neuronal nor astrocyte differentiation markers were upregulated in neuroblastoma and astrocytoma cells, respectively. On the other side, the effects of Bin1 overproduction in neuroblastoma and astrocytoma cells committed towards neuronal and astrocyte differentiation, respectively, were different from those observed in undifferentiated cells. Although we did not evidence any triggering of programmed cell death, we did notice a further induction towards more differentiated phenotypes. Our studies suggest that Bin1 overexpression in neuroblastoma and astrocytoma cells can result in one of the following pathways: (1) suppressed cell proliferation, (2) induced differentiation, or (3) apoptosis. Thus, it appears that Bin1 operates through different pathways that involve activation of different genes: the chosen pathway however will depend on the proliferating or differentiated state of the cell.  相似文献   

19.
20.
The mood-stabilizing agent valproic acid (VPA) potently promotes neuronal differentiation. As yet, however, little is known about the underlying molecular mechanism. Here, we show that VPA upregulates cytohesin-2 and mediates neurite outgrowth in N1E-115 neuroblastoma cells. Cytohesin-2 is the guanine-nucleotide exchange factor (GEF) for small GTPases of the Arf family; it regulates many aspects of cellular functions including morphological changes. Treatment with the specific cytohesin family inhibitor SecinH3 or knockdown of cytohesin-2 with its siRNA results in blunted induction of neurite outgrowth in N1E-115 cells. The outgrowth is specifically inhibited by siRNA knockdown of Arf6, but not by that of Arf1. Furthermore, VPA upregulates Arl4D, an Arf-like small GTPase that has recently been identified as the regulator that binds to cytohesin-2. Arl4D knockdown displays an inhibitory effect on neurite outgrowth resulting from VPA, while expression of constitutively active Arl4D induces outgrowth. We also demonstrate that the addition of cell-permeable peptide, coupling the cytohesin-2-binding region of Arl4D into cells, reduces the effect of VPA. Thus, Arl4D is a previously unknown regulator of neurite formation through cytohesin-2 and Arf6, providing another example that the functional interaction of two different small GTPases controls an important cellular function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号