首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transforming growth factor β (TGF-β) is a very strong pro-fibrotic factor which mediates its action, at least in part, through the expression of connective tissue growth factor (CTGF/CCN2). Along with these cytokines, the involvement of phospholipids in wound healing and the development of fibrosis has been revealed. Among them, lysophosphatidic acid (LPA) is a novel, potent regulator of wound healing and fibrosis that has diverse effects on many types of cells. We decided to evaluate the effect of LPA together with TGF-β on CTGF expression. We found that myoblasts treated with LPA and TGF-β1 produced an additive effect on CTGF expression. In the absence of TGF-β, the induction of CTGF expression by LPA was abolished by a dominant negative form of the TGF-β receptor type II (TGF-βRII) and by the use of SB 431542, a specific inhibitor of the serine/threonine kinase activity of TGF-βRI, suggesting that CTGF induction is dependent on LPA and requires active TGF-βRs. Moreover, we show that LPA requires Smad-2/3 proteins for the induction of CTGF expression, but not their phosphorylation or their nuclear translocation. The requirement of TGF-βRI for LPA mediated-effects is differential, since treatment of myoblasts with LPA in the presence of SB 431542 abolished the induction of stress fibers but not the induction of proliferation. Finally, we demonstrated that CTGF induction in response to LPA requires the activation of JNK, but not ERK, signaling pathways. The JNK requirement is independent of TGF-βRI-mediated activity. These novel results for the mechanism of action of LPA and TGF-β are important for understanding the role of pro-fibrotic growth factors and phospholipids involved in wound healing and related diseases.  相似文献   

2.
3.
Summary Serum-free supernatants from the human melanoma cell line G361 contain a factor that can potently suppress the generation of tumouricidal lymphokine-activated killer (LAK) cells in response to interleukin-2. To characterise the suppressive factor of tumour origin we performed a number of physicochemical and functional comparisons with another immunosuppressive protein, transforming growth factor (TGF). The bioactivity of tumour-derived suppressor factor (TDSF), assayed by suppression of LAK cell generation, was unaffected by a reducing agent but lost when denatured with a chaotropic agent. In contrast, TGF was inactivated by reduction but not denaturation. TDSF lost bioactivity in conditions of pH less than 4, whereas TGF showed no loss of activity. The TDSF moiety has an estimated pI of 4.3 and a molecular mass of 69–87 kDa. This differs from published values of pI 9.5, and 25 kDa molecular mass for TGF. Anti-TGF antiserum reversed the effects of TGF but did not affect the suppression of LAK cell generation caused by TDSF. These findings provide compelling evidence that the TDSF moiety is not TGF, and may be a novel immunoregulatory cytokine.  相似文献   

4.
5.
Summary Normal human mammary epithelial cells (HMEC) from different individual reduction mammoplasty specimens were all growth inhibited, and showed a flattened, elongated morphology in response to human recombinant transforming growth factor β1 (TGFβ). The degree of growth inhibition varied among specimens, but none of the normal HMEC maintained growth in the continued presence of TGFβ. The degree of growth inhibition also varied with cell age in vitro, cells closer to senescence being more sensitive. TGFβ sensitivity was additionally assayed in two established cell lines derived from one of the reduction mammoplasty specimens after exposure to benzo(a)pyrene. Although varying degrees of growth inhibition and morphologic changes were observed in the cell lines, both lines contained populations that maintained active growth in the presence of TGFβ. Subclones of these lines demonstrated a great plasticity in their growth response to TGFβ, with individual clones ranging from strongly growth inhibited to nearly unaffected. These results suggest that multiple factors influence the extent of TGFβ-induced growth effects on both normal and transformed mammary epithelial cells, and that some of these factors may act through epigenetic mechanisms. This work was supported by CA24844 from the National Institutes of Health, Bethesda, MD, and the Office of Energy Research, Office of Health and Environmental Research of the U.S. Department of Energy under contract DE-AC03-76SF00098.  相似文献   

6.
7.
8.
9.

Introduction  

Antinuclear antibodies (ANAs), usually detected by indirect immunofluorescence on HEp-2 cells, are identified in 90% of patients with systemic sclerosis (SSc). Thus, approximately 10% of SSc patients have no routinely detectable autoantibodies, and for 20% to 40% of those with detectable ANAs, the ANAs do not have identified specificity (unidentified ANAs). In this work, we aimed to identify new target autoantigens in SSc patients.  相似文献   

10.
11.
Immaculate and complete palatal seam disintegration, which takes place at the last phase of palate development, is essential for normal palate development. And in absence of palatal midline epithelial seam (MES) disintegration, cleft palate may arise. It has been established that transforming growth factor (TGF) β induces both epithelial mesenchymal transition (EMT) and/or apoptosis during MES disintegration. It is likely that MES might cease cell cycle to facilitate cellular changes prior to undergoing transformation or apoptosis, which has never been studied before. This study was designed to explore whether TGFβ, which is crucial for palatal MES disintegration, is capable of inducing cell cycle arrest. We studied the effects of TGFβ1 and TGFβ3, potent negative regulators of the cell cycle, on p15ink4b activity in MES cells. We surprisingly found that TGFβ1, but not TGFβ3, plays a major role in activation of the p15ink4b gene. In contrast, following successful cell cycle arrest by TGFβ1, it is TGFβ3 but not TGFβ1 that causes later cellular morphogenesis, such as EMT and apoptosis. Since TGFβ signaling activates Smads, we analyzed the roles of three Smad binding elements (SBEs) on the p15ink4b mouse promoter by site specific mutagenesis and found that these binding sites are functional. The ChIP assay demonstrated that TGFβ1, not TGFβ3, promotes Smad4 binding to two 5' terminal SBEs but not the 3' terminal site. Thus, TGFβ1 and TGFβ3 play separate yet complimentary roles in achieving cell cycle arrest and EMT/apoptosis and cell cycle arrest is a prerequisite for later cellular changes.  相似文献   

12.
13.
Age-related macular degeneration (AMD) is one of the major causes of irreversible blindness among aging populations in developed countries and can be classified as dry or wet according to its progression.Wet AMD,which is characterized by angiogenesis on the choroidal membrane,is uncommonly seen but more severe.Controlling or completely inhibiting the factors that contribute to the progression of events that lead to angiogenesis may be an effective strategy for treating wet AMD.Emerging evidence has shown that transforming growth factor-β(TGF-β) signaling plays a significant role in the progression of wet AMD.In this review,we described the roles of and changes in TGF-β signaling in the development of AMD and discussed the mechanisms of the TGF-β superfamily in choroidal neovascularization (CNV) and wet AMD,including the modulation of angiogenesis-related factors,inflammation,vascular fibrosis,and immune responses,as well as cross-talk with other signaling pathways.These remarkable findings indicate that TGF-β signaling is a potential target for wet AMD treatment.  相似文献   

14.
There are diverse investigations focused on the therapies of lymphoma. Our research was taken to identify the effects of lentiviral-mediated Smad4 gene silencing on chemosensitivity of human lymphoma cells to adriamycin (ADM) via transforming growth factor β (TGFβ) signaling pathway. Raji/ADM cells were cultured and infected with lentiviral particles Smad4-short hairpin (shRNA) and control-shRNA. Then, the messenger RNA (mRNA) and protein levels of TGFβ signaling pathway–related factors (Smad4, Smad3, cyclinE, cyclinD1, and p21) in Raji/ADM cells were determined. The effect of Smad4-shRNA on cell viability, invasion and migration, and apoptosis were also detected. Compared with the Raji group, increased mRNA and protein levels of Smad4, Smad3, cyclinE, cyclinD1, enhanced cell proliferation, migration and invasion as well as decreased mRNA, and protein levels of p21 and cell apoptosis rate were found in the Raji/ADM and control-shRNA groups. However, Smad4 gene silencing resulted in decreased mRNA and protein levels of Smad4, Smad3, cyclinE, and cyclinD1 along with inhibited cell proliferation, migration and invasion but increased expression of p21 together with cell apoptosis. Collectively, Smad4 gene silencing can inhibit the activation of TGFβ signaling pathway, thereby enhancing the chemosensitivity of human lymphoma cells to ADM.  相似文献   

15.
16.
17.
 After having established the specificity of the antibodies for the rat testis by western blot analysis, the potential target cells for transforming growth factors (TGFβs) were identified by immunohistochemical detection of both type I (TβRI) and type II (TβRII) transducing receptors for TGFβs in the adult rat testis in situ. Leydig cells showed a strong TβRII immunoreactivity whereas the TβRI staining was weak. Only TβRII was detectable in Sertoli cells. In germ cells, staining for TβRI was stronger than for TβRII and the expression of both receptors depended on the seminiferous cycle stage. TβRI first appeared in pachytene spermatocytes and was absent in elongated spermatids from stage XIV onwards. Labelling for TβRII was observed as early as the spermatogonia stage; it increased in pachytene spermatocytes at the onset of TβRI and disappeared in elongating spermatids from stage XI onwards. These results show that TGFβs can affect somatic cells functions and suggest that these factors are involved in the control of meiosis and early spermiogenesis, exerting a direct effect on germ cells. Accepted: 18 June 1998  相似文献   

18.
19.
The repair of dermal tissue is a complex process of interconnected phenomena, where cellular, chemical and mechanical aspects all play a role, both in an autocrine and in a paracrine fashion. Recent experimental results have shown that transforming growth factor -β (TGFβ) and tissue mechanics play roles in regulating cell proliferation, differentiation and the production of extracellular materials. We have developed a 1D mathematical model that considers the interaction between the cellular, chemical and mechanical phenomena, allowing the combination of TGFβ and tissue stress to inform the activation of fibroblasts to myofibroblasts. Additionally, our model incorporates the observed feature of residual stress by considering the changing zero-stress state in the formulation for effective strain. Using this model, we predict that the continued presence of TGFβ in dermal wounds will produce contractures due to the persistence of myofibroblasts; in contrast, early elimination of TGFβ significantly reduces the myofibroblast numbers resulting in an increase in wound size. Similar results were obtained by varying the rate at which fibroblasts differentiate to myofibroblasts and by changing the myofibroblast apoptotic rate. Taken together, the implication is that elevated levels of myofibroblasts is the key factor behind wounds healing with excessive contraction, suggesting that clinical strategies which aim to reduce the myofibroblast density may reduce the appearance of contractures.  相似文献   

20.
Mouse incisors grow continuously throughout life. This growth is supported by the division of dental epithelial stem cells that reside in the cervical loop region. Little is known about the maintenance and regulatory mechanisms of dental epithelial stem cells. In the present study, we investigated how transforming growth factor β (TGF-β) signaling-mediated mesenchymal-epithelial cell interactions control dental epithelial stem cells. We designed two approaches using incisor organ culture and bromodeoxyuridine (BrdU) pulse-chase experiments to identify and evaluate stem cell functions. We show that the loss of the TGF-β type I receptor (Alk5) in the cranial neural crest-derived dental mesenchyme severely affects the proliferation of TA (transit-amplifying) cells and the maintenance of dental epithelial stem cells. Incisors of Wnt1-Cre; Alk5(fl/fl) mice lost their ability to continue to grow in vitro. The number of BrdU label-retaining cells (LRCs) was dramatically reduced in Alk5 mutant mice. Fgf10, Fgf3, and Fgf9 signals in the dental mesenchyme were downregulated in Wnt1-Cre; Alk5(fl/fl) incisors. Strikingly, the addition of exogenous fibroblast growth factor 10 (FGF10) into cultured incisors rescued dental epithelial stem cells in Wnt1-Cre; Alk5(fl/fl) mice. Therefore, we propose that Alk5 functions upstream of Fgf10 to regulate TA cell proliferation and stem cell maintenance and that this signaling mechanism is crucial for stem cell-mediated tooth regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号