共查询到20条相似文献,搜索用时 13 毫秒
1.
《Chronobiology international》2013,30(2):283-289
In a large, prospective, 8-week open study of 721 outpatients receiving agomelatine treatment for a current major depressive episode (MDE), morningness–eveningness (Composite Scale of Morningness) was assessed before and after treatment to investigate possible changes in morningness–eveningness after treatment and evaluate whether morningness–eveningness at baseline predicted treatment response. A change towards morningness was observed after treatment. This change was greater in responders than non-responders. Moreover, being a morning type at baseline was an independent predictor of response to treatment. Once thought to be a trait variable, morningness–eveningness is a potential treatment target that should be systematically assessed in MDE patients. 相似文献
2.
Melatonin, a ‘hormone of darkness,’ has been reported to play a role in a wide variety of physiological responses including reproduction, circadian homeostasis, sleep, retinal neuromodulation, and vasomotor responses. Our recent studies reported a prophylactic effect of exogenous melatonin against radiation-induced neurocognitive changes. However, there is no reported evidence for a mitigating effect of chronic melatonin administration against radiation-induced behavioral alterations. In the present study, C57BL/6 mice were given either whole day chronic melatonin administration (CMA) or chronic night-time melatonin administration (CNMA) by a low dose of melatonin in drinking water for a period of 2 weeks and 1 month following exposure to 6 Gy of γ-radiation. Various behavioral endpoints, such as locomotor activities, gross behavioral traits, basal anxiety level, and depressive tendencies were scored at different time points. Radiation exposure significantly impaired gross behavioral traits as observed in the open field exploratory paradigms and forced swim test. Both the CMA and CNMA significantly ameliorated the radiation-induced changes in exploratory tendencies, risk-taking behavior and gross behavior traits, such as rearing and grooming. Melatonin administration afforded anxiolytic function against radiation in terms of center exploration tendencies. The radiation-induced augmentation of immobility time in the forced swim test, indices of depression-like behavior was also inhibited by chronic melatonin administration. The results demonstrated the mitigating effect of chronic melatonin administration on radiation-induced affective disorders in mice. 相似文献
3.
Altered expression of nuclear matrix proteins in etoposide induced apoptosis in HL-60 cells 总被引:4,自引:0,他引:4
JinML ZhanP 《Cell research》2001,11(2):125-134
INTRODUCTIIONThe nuclear matrix is an essential component ofthe nucleus which is important for the nuclear structural integrity and specific genomic functions[1, 2].Several articles have reported that the nuclear matrix, as a higher order framework structures, mightbe disassembled du-ring the apoptotic process[3-5].Accordingly3 nuclear lamins A/C or B have beenfound to decrease in apoptotic thymocytes[6], Tcells[7], and carcinoma cell line[8, 9]. The nucleolar protein B23, an obscure ma… 相似文献
4.
Nectins play an important role in forming various intercellular junctions including synapses. This role is regulated by several secretases present at intercellular junctions. We have investigated presenilin (PS)-dependent secretase-mediated processing of nectins in PS1 KO cells and primary hippocampal neurons. The loss of PS1/γ-secretase activity delayed the processing of nectin-1 and caused the accumulation of its full-length and C-terminal fragments. Over-expression of PS2 in PS1 KO cells compensated for the loss of PS1, suggesting that PS2 also has the ability to regulate nectin-1 processing. In mouse brain slices, a pronounced increase in levels of 30 and 24 kDa C-terminal fragments in response to chemical long-term potentiation was observed. The mouse brain synaptosomal fractionation study indicated that nectin-1 localized to post-synaptic and preferentially pre-synaptic membranes and that shedding occurs in both compartments. These data suggest that nectin-1 shedding and PS-dependent intramembrane cleavage occur at synapses, and is a regulated event during conditions of synaptic plasticity in the brain. Point mutation analysis identified several residues within the transmembrane domain that play a critical role in the positioning of cleavage sites by ectodomain sheddases. Nectin-3, which forms hetero-trans-dimers with nectin-1, also undergoes intramembrane cleavage mediated by PS1/γ-secretase, suggesting that PS1/γ-secreatse activity regulates synapse formation and remodeling by nectin processing. 相似文献
5.
Background
A mutation in the BRI2/ITM2b gene causes familial Danish dementia (FDD). BRI2 is an inhibitor of amyloid-?? precursor protein (APP) processing, which is genetically linked to Alzheimer??s disease (AD) pathogenesis. The FDD mutation leads to a loss of BRI2 protein and to increased APP processing. APP haplodeficiency and inhibition of APP cleavage by ??-secretase rescue synaptic/memory deficits of a genetically congruous mouse model of FDD (FDDKI). ??-cleavage of APP yields the ??-carboxyl-terminal (??-CTF) and the amino-terminal-soluble APP?? (sAPP??) fragments. ??-secretase processing of ??-CTF generates A??, which is considered the main cause of AD. However, inhibiting A?? production did not rescue the deficits of FDDKI mice, suggesting that sAPP??/??-CTF, and not A??, are the toxic species causing memory loss.Results
Here, we have further analyzed the effect of ??-secretase inhibition. We show that treatment with a ??-secretase inhibitor (GSI) results in a worsening of the memory deficits of FDDKI mice. This deleterious effect on memory correlates with increased levels of the ??/??-CTFs APP fragments in synaptic fractions isolated from hippocampi of FDDKI mice, which is consistent with inhibition of ??-secretase activity.Conclusion
This harmful effect of the GSI is in sharp contrast with a pathogenic role for A??, and suggests that the worsening of memory deficits may be due to accumulation of synaptic-toxic ??/??-CTFs caused by GSI treatment. However, ??-secretase cleaves more than 40 proteins; thus, the noxious effect of GSI on memory may be dependent on inhibition of cleavage of one or more of these other ??-secretase substrates. These two possibilities do not need to be mutually exclusive. Our results are consistent with the outcome of a clinical trial with the GSI Semagacestat, which caused a worsening of cognition, and advise against targeting ??-secretase in the therapy of AD. Overall, the data also indicate that FDDKI is a valuable mouse model to study AD pathogenesis and predict the clinical outcome of therapeutic agents for AD. 相似文献6.
We found that diploid seedless watermelon can be produced by pollination with partially functional pollen, which was irradiated with γ-rays at the doses of 600 and 800 Gy. The diploid seedless fruits were almost similar to normal fruits in development from pollination to maturity. The number of empty seeds in the diploid seedless fruits varied among the cultivars used. Seedless watermelon cultivars revealed a significant increase in total sugar and carotenoids (lycopene and gb-carotene) contents. The pollen tubes of the pollen subjected to γ-radiation penetrated normally into the synergid, and sperm cells were discharged. Subsequently, the egg nucleus and sperm nucleus became attached to each other in the egg cell and a globular embryo was formed. However, the embryo failed to differentiate the tissues and degenerated. It is suggested that seedless watermelon fruits induced by γ-rays are characterized by increasing yield and better quality due to higher carotenoid and total sugar contents and fruit weight. In some cultivars, there is a tendency in decreasing the thickness of rind. 相似文献
7.
8.
9.
Background
We describe molecular processes that can facilitate pathogenesis of Alzheimer''s disease (AD) by analyzing the catalytic cycle of a membrane-imbedded protease γ-secretase, from the initial interaction with its C99 substrate to the final release of toxic Aβ peptides.Results
The C-terminal AICD fragment is cleaved first in a pre-steady-state burst. The lowest Aβ42/Aβ40 ratio is observed in pre-steady-state when Aβ40 is the dominant product. Aβ42 is produced after Aβ40, and therefore Aβ42 is not a precursor for Aβ40. The longer more hydrophobic Aβ products gradually accumulate with multiple catalytic turnovers as a result of interrupted catalytic cycles. Saturation of γ-secretase with its C99 substrate leads to 30% decrease in Aβ40 with concomitant increase in the longer Aβ products and Aβ42/Aβ40 ratio. To different degree the same changes in Aβ products can be observed with two mutations that lead to an early onset of AD, ΔE9 and G384A. Four different lines of evidence show that γ-secretase can bind and cleave multiple substrate molecules in one catalytic turnover. Consequently depending on its concentration, NotchΔE substrate can activate or inhibit γ-secretase activity on C99 substrate. Multiple C99 molecules bound to γ-secretase can affect processive cleavages of the nascent Aβ catalytic intermediates and facilitate their premature release as the toxic membrane-imbedded Aβ-bundles.Conclusions
Gradual saturation of γ-secretase with its substrate can be the pathogenic process in different alleged causes of AD. Thus, competitive inhibitors of γ-secretase offer the best chance for a successful therapy, while the noncompetitive inhibitors could even facilitate development of the disease by inducing enzyme saturation at otherwise sub-saturating substrate. Membrane-imbedded Aβ-bundles generated by γ-secretase could be neurotoxic and thus crucial for our understanding of the amyloid hypothesis and AD pathogenesis. 相似文献10.
MS Wolfe 《Biological chemistry》2012,393(9):899-905
Abstract γ-Secretase is a membrane-embedded protease complex with presenilin as the catalytic component. Cleavage within the transmembrane domain of the amyloid β-protein precursor (APP) by γ-secretase produces the C-terminus of the amyloid β-peptide (Aβ), a proteolytic product prone to aggregation and strongly linked to Alzheimer's disease (AD). Presenilin mutations are associated with early-onset AD, but their pathogenic mechanisms are unclear. One hypothesis is that these mutations cause AD through a toxic gain of function, changing γ-secretase activity to increase the proportion of 42-residue Aβ over the more soluble 40-residue form. A competing hypothesis is that the mutations cause AD through a loss of function, by reducing γ-secretase activity. However, γ-secretase apparently has two types of activities, an endoproteolytic function that first cuts APP to generate a 48/49-residue form of Aβ, and a carboxypeptidase activity that processively trims these longer Aβ intermediates approximately every three residues to form shorter, secreted forms. Recent studies suggest a resolution of the gain-of-function vs. loss-of-function debate: presenilin mutations may increase the proportion of longer, more aggregation-prone Aβ by specifically decreasing the trimming activity of γ-secretase. That is, the reduction of this particular proteolytic function of presenilin, not its endoproteolytic activity, may lead to the neurotoxic gain of function. 相似文献
11.
Increase in the generation and deposition of amyloid-β (Aβ) plays a central role in the development of Alzheimer's Disease (AD). Elevation of the activity of γ-secretase, a key enzyme required for the generation for Aβ, can thus be a potential risk factor in AD. However, it is not known whether γ-secretase can be upregulated in vivo. While in vitro studies showed that expression of all four components of γ-secretase (Nicastrin, Presenilin, Pen-2 and Aph-1) are required for upregulation of γ-secretase, it remains to be established as to whether this is true in vivo. To investigate whether overexpressing a single component of the γ-secretase complex is sufficient to elevate its level and activity in the brain, we analyzed transgenic mice expressing either wild type or familial AD (fAD) associated mutant PS1. In contrast to cell culture studies, overexpression of either wild type or mutant PS1 is sufficient to increase levels of Nicastrin and Pen-2, and elevate the level of active γ-secretase complex, enzymatic activity of γ-secretase and the deposition of Aβ in brains of mice. Importantly, γ-secretase comprised of mutant PS1 is less active than that of wild type PS1-containing γ-secretase; however, γ-secretase comprised of mutant PS1 cleaves at the Aβ42 site of APP-CTFs more efficiently than at the Aβ40 site, resulting in greater accumulation of Aβ deposits in the brain. Our data suggest that whereas fAD-linked PS1 mutants cause early onset disease, upregulation of PS1/γ-secretase activity may be a risk factor for late onset sporadic AD. 相似文献
12.
《朊病毒》2013,7(1):62-72
In transmissible spongiform encephalopathies (TSEs) and Alzheimer disease (AD) both misfolding and aggregation of specific proteins represent key features. Recently, it was observed that PrPc is a mediator of a synaptic dysfunction induced by Aβ oligomers. We tested a novel γ-secretase modulator (CHF5074) in a murine model of prion disease. Groups of female mice were intracerebrally or intraperitoneally infected with the mouse-adapted Rocky Mountain Laboratory prions. Two weeks prior infection, the animals were provided with a CHF5074-medicated diet (375 ppm) or a standard diet (vehicle) until they showed neurological signs and eventually died. In intracerebrally infected mice, oral administration of CHF5074 did not prolong survival of the animals. In intraperitoneally-infected mice, CHF5074-treated animals showed a median survival time of 21 d longer than vehicle-treated mice (p < 0.001). In these animals, immunohistochemistry analyses showed that deposition of PrPSc in the cerebellum, hippocampus and parietal cortex in CHF5074-treated mice was significantly lower than in vehicle-treated animals. Immunostaining of glial fibrillary acidic protein (GFAP) in parietal cortex revealed a significantly higher reactive gliosis in CHF5074-treated mice compared with the control group of infected animals. Although the mechanism underlying the beneficial effects of CHF5074 in this murine model of human prion disease is unclear, it could be hypothesized that the drug counteracts PrPSc toxicity through astrocyte-mediated neuroprotection. CHF5074 shows a pharmacological potential in murine models of both AD and TSEs thus suggesting a link between these degenerative pathologies. 相似文献
13.
Giorgio Poli Erica Corda Barbara Lucchini Maria Puricelli Piera Anna Martino Paola Dall'Ara Gino Villetti Silvio R Bareggi Cristiano Corona Elena Vallino Costassa Paola Gazzuola Barbara Iulini Maria Mazza Pierluigi Acutis Paolo Mantegazza Cristina Casalone Bruno P Imbimbo 《朊病毒》2012,6(1):62-72
In transmissible spongiform encephalopathies (TSEs) and Alzheimer disease (AD) both misfolding and aggregation of specific proteins represent key features. Recently, it was observed that PrPC is a mediator of a synaptic dysfunction induced by Aβ oligomers. We tested a novel γ-secretase modulator (CHF5074) in a murine model of prion disease. Groups of female mice were intracerebrally or intraperitoneally infected with the mouse-adapted Rocky Mountain Laboratory prions. Two weeks prior infection, the animals were provided with a CHF5074-medicated diet (375 ppm) or a standard diet (vehicle) until they showed neurological signs and eventually died. In intracerebrally infected mice, oral administration of CHF5074 did not prolong survival of the animals. In intraperitoneally-infected mice, CHF5074-treated animals showed a median survival time of 21 d longer than vehicle-treated mice (p < 0.001). In these animals, immunohistochemistry analyses showed that deposition of PrPSc in the cerebellum, hippocampus and parietal cortex in CHF5074-treated mice was significantly lower than in vehicle-treated animals. Immunostaining of glial fibrillary acidic protein (GFAP) in parietal cortex revealed a significantly higher reactive gliosis in CHF5074-treated mice compared with the control group of infected animals. Although the mechanism underlying the beneficial effects of CHF5074 in this murine model of human prion disease is unclear, it could be hypothesized that the drug counteracts PrPSc toxicity through astrocyte-mediated neuroprotection. CHF5074 shows a pharmacological potential in murine models of both AD and TSEs thus suggesting a link between these degenerative pathologies.Key words: TSE, prion, murine model, γ-secretase modulator, therapy 相似文献
14.
Bo Li Zhang Lei Brain D. Lichty Dong Li Gui-Mei Zhang Zuo-Hua Feng Yonghong Wan Bo Huang 《Cancer immunology, immunotherapy : CII》2010,59(2):313-321
The reduction or loss of MHC-I antigen surface expression in human and murine tumor cells is partly attributable to the dysregulation
of various components of the MHC-I antigen-processing machinery. Accumulating evidence suggests that autophagy, besides its
vital role in maintaining the cellular homeostasis, plays an important role in MHC-II surface expression. Here, we report
that autophagy is a negative regulator of MHC-I antigen expression in B16 melanoma cells; however, in the presence of IFN-γ,
it is converted to a positive regulator. We show that autophagy not only participates in the degradation of MHC-I antigen
but also plays a role in the generation of MHC-I-binding peptides. For these two processes, IFN-γ interferes with MHC-I antigen
degradation, rather than affecting peptide generation. Using B16 melanoma mouse model, we further show that autophagy may
enhance the cytolysis of CTL to melanoma cells at the early stage of melanoma, but impairs the cytolysis at the late stage.
Such different consequences may be explained by the different levels of IFN-γ during tumor progression. Taken together, our
findings demonstrate that autophagy is involved in the regulation of MHC-I antigen expression, through which autophagy can
play different roles in tumor immunity. 相似文献
15.
M Nishimura S Nakamura N Kimura L Liu T Suzuki I Tooyama 《Journal of neurochemistry》2012,123(1):21-28
Age-dependent accumulation of the amyloid-β peptide (Aβ) in the brain is a pre-condition for development of Alzheimer's disease. A relative increase in the generation of longer Aβ species such as Aβ42 and Aβ43 is critical for Aβ deposition, but the underlying mechanism remains unresolved. Here, we performed a cell-free assay using microsome fractions of temporal cortex tissues from 42 cynomolgus monkeys and found that Aβ40-generating γ-secretase activity (γ40) decreased with age, whereas Aβ42-generating γ-secretase activity (γ42) was unaltered. In ELISAs, more than 80% of monkeys over 20-years old showed evidence of Aβ accumulation in the temporal cortex. The ratio of γ42 to γ40 increased with age and correlated with the level of accumulated Aβ. These results suggest that γ-secretase activity undergoes age-related, non-genetic modulation and that this modulation may cause Aβ accumulation in aging brains. Similar modulation may predispose aged human brains to Alzheimer's disease. 相似文献
16.
17.
Alzheimer's disease (AD) is a neurodegenerative disorder that leads to progressive cognitive decline. Recent studies from our group and others have suggested that certain G-protein coupled receptors (GPCRs) can influence the processing of the amyloid precursor protein (APP). Earlier, we demonstrated that stimulation of a chemokine receptor, CXCR2, results in enhanced γ-secretase activity and in increased amyloid-beta (Aβ) production. Taken together, results obtained from in vitro studies indicate that therapeutic targeting of CXCR2 might aid in lowering Aβ levels in the AD brain. To better understand the precise function and to predict the consequences of CXCR2 depletion in the AD brain, we have crossed CXCR2 knockout mice with mice expressing presenilin (PS1 M146L) and APPsw mutations (PSAPP). Our present study confirms that CXCR2 depletion results in reduction of Aβ with concurrent increases of γ-secretase substrates. At the mechanistic level, the effect of CXCR2 on γ-secretase was not found to occur via their direct interaction. Furthermore, we provide evidence that Aβ promotes endocytosis of CXCR2 via increasing levels of CXCR2 ligands. In conclusion, our current study confirms the regulatory role of CXCR2 in APP processing, and poses it as a potential target for developing novel therapeutics for intervention in AD. 相似文献
18.
19.
Zhang R Yang D Zhou C Cheng K Liu Z Chen L Fang L Xie P 《Analytical biochemistry》2012,427(2):116-120
Western blot analysis is a commonly used technique for determining specific protein levels in clinical samples. For normalization of protein levels in Western blot, a suitable loading control is required. On account of its relatively high and constant expression, β-actin has been widely employed in Western blot of cell cultures and tissue extracts. However, β-actin's presence in human plasma and this protein's putative role as a plasma-based loading control for Western blot analysis remain unknown. In this study, an enzyme-linked immunosorbent assay was used to determine the concentration of β-actin in human plasma, which is 6.29±0.54 ng/ml. In addition, the linearity of β-actin immunostaining and loaded protein amount was evaluated by Western blot, and a fine linearity (R2=0.974±0.012) was observed. Furthermore, the expression of plasma β-actin in major depressive disorder subjects and healthy controls was compared. The data revealed no statistically significant difference between these two groups. Moreover, the total coefficient of variation for β-actin expression in the two groups was 9.2±1.2%. These findings demonstrate that β-actin is present in human plasma and may possibly be used as a suitable loading control for plasma-based Western blot analysis in major depressive disorder. 相似文献
20.
Yamada H Akahoshi N Kamata S Hagiya Y Hishiki T Nagahata Y Matsuura T Takano N Mori M Ishizaki Y Izumi T Kumagai Y Kasahara T Suematsu M Ishii I 《Free radical biology & medicine》2012,52(9):1716-1726
Physiological roles of the transsulfuration pathway have been recognized by its contribution to the synthesis of cytoprotective cysteine metabolites, such as glutathione, taurine/hypotaurine, and hydrogen sulfide (H(2)S), whereas its roles in protecting against methionine toxicity remained to be clarified. This study aimed at revealing these roles by analyzing high-methionine diet-fed transsulfuration-defective cystathionine γ-lyase-deficient (Cth(-/-)) mice. Wild-type and Cth(-/-) mice were fed a standard diet (1 × Met: 0.44%) or a high-methionine diet (3 × Met or 6 × Met), and hepatic conditions were monitored by serum biochemistry and histology. Metabolome analysis was performed for methionine derivatives using capillary electrophoresis- or liquid chromatography-mass spectrometry and sulfur-detecting gas chromatography. The 6 × Met-fed Cth(-/-) (not 1 × Met-fed Cth(-/-) or 6 × Met-fed wild type) mice displayed acute hepatitis, which was characterized by markedly elevated levels of serum alanine/aspartate aminotransferases and serum/hepatic lipid peroxidation, inflammatory cell infiltration, and hepatocyte ballooning; thereafter, they died of gastrointestinal bleeding due to coagulation factor deficiency. After 1 week on 6 × Met, blood levels of ammonia/homocysteine and hepatic levels of methanethiol/3-methylthiopropionate (a methionine transamination product/methanethiol precursor) became significantly higher in Cth(-/-) mice than in wild-type mice. Although hepatic levels of methionine sulfoxide became higher in 6 × Met-fed wild-type mice and Cth(-/-) mice, those of glutathione, taurine/hypotaurine, and H(2)S became lower and serum levels of homocysteine became much higher in 6 × Met-fed Cth(-/-) mice than in wild-type mice. Thus, transsulfuration plays a critical role in the detoxification of excessive methionine by circumventing aberrant accumulation of its toxic transamination metabolites, including ammonia, methanethiol, and 3-methylthiopropionate, in addition to synthesizing cysteine-derived antioxidants to counteract accumulated pro-oxidants such as methionine sulfoxide and homocysteine. 相似文献