首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Submitochondrial particles were prepared from bovine heart mitochondria, solubilized with Triton X-114 in the presence of lipids and submitted to hydroxylapatite chromatography. The eluate obtained, containing a mixture of mitochondrial carriers, was processed further by affinity chromatography using as ligand p-aminophenylsuccinate coupled via a diazo bond to aminohexyl-Sepharose 4B. The activity of the dicarboxylate exchanger was measured after reconstitution into asolectin vesicles at each step of the purification procedure. All samples studied were found to display substrate and inhibitor specificity similar to those described for the dicarboxylate carrier in mitochondria. The specific activity of the final material eluted from the affinity column was found to be about 1000-times higher than that of the Triton X-114 extract of submitochondrial particles. SDS-polyacrylamide gel electrophoresis analysis of the affinity chromatography eluate showed the presence of only two polypeptides.  相似文献   

2.
1. A trypsin inhibitor from the tick Boophilus microplus was purified by ion-exchange chromatography and gel filtration. 2. It is pure by the criteria of constant specific activity on gel filtration and by electrophoresis on polyacrylamide gels containing sodium dodecyl sulphate. 3. The protein undergoes reversible polymerization, dissociating at low pH. 4. The apparent molecular weight measured by electrophoresis on polyacrylamide gels containing sodium dodecyl sulphate is 18,500. 5. Inhibition of trypsin occurs by formation of a 1 :1 molar complex. 6. Chymotrypsin is also inhibited, though the dissociation constant of the complex formed is larger than with trypsin. The protein possesses independent sites for the inhibition of chymotrypsin and trypsin. 7. The inhibitor preparation gives an immediate hypersensitivity reaction on intradermal injection into cattle that have been exposed to the tick. The allergenic activity is due to the inhibitor protein itself and not to contaminating material, since the two activities were not separated during purification or in two subsequent affinity-chromatography procedures. 8. The hypersensitivity reaction is a true immunological response, since it is found in almost all cattle that have been exposed to the tick, but not in unexposed animals. In addition, passive cutaneous anaphylaxis can be demonstrated with serum from exposed, but not from unexposed, animals.  相似文献   

3.
Inhibitors of subtilisin and other microbial serine proteases were detected after isoelectric focusing of cereal extracts in polyacrylamide gels by a negative staining technique based on the chromogenic substrate acetyl-d,l-phenylalanine-2-naphthyl ester. The 10 chymotrypsin isoinhibitors identified in experiments with barley extracts were also inhibitors of subtilisin, and sensitivity of detection was about 25 times higher when gels were stained for inhibitors of this enzyme. In addition, one specific subtilisin inhibitor zone was detected. These 11 barley subtilisin isoinhibitors and similar inhibitors in wheat, triticale, rye, oats, sorghum, rice, and maize were further characterized and classified by isoelectric focusing. Techniques used for this purpose included application of microbial enzymes with different specificity of inhibition, comparison of cereal varieties, pretreatment of extract with monospecific antibodies toward a purified inhibitor from the same or a related species, and pretreatment of extract with inhibitor affinity gel. The procedure used for detection of subtilisin inhibitors was also effective after separation of isoinhibitors by sodium dodecyl sulfate-gel electrophoresis.  相似文献   

4.
Identification of the material present in human serum which is responsible for inhibition of binding of desialylated glycoproteins to rat hepatocyte membranes was accomplished by means of affinity chromatography using Sephadex to which the galactose-specific lectin, Ricinus Communis Agglutinin (RCAI) was covalently bound. RCAI-Sephadex was capable of extraction of virtually all of the inhibitory activity from cirrhotic serum. The RCA I-bound inhibitory activity could be eluted with 0.05 M D-galactose. The D-galactose eluate when subjected to radioimmunoelectrophoresis against a number of specific antibodies to human serum glycoproteins produced arcs corresponding to alpha 1-acid glycoprotein, alpha2-macroglobulin, IgG, IgA, and IgM. In another experiment putative terminal galactosyl groups of desialylated glycoproteins in the D-galactose eluate from cirrhotic serum exposed to RCAI-Sephadex were labelled with tritiated borohydride after treatment with galactose oxidase. Subsequent gel electrophoresis showed peaks of radioactivity throughout the area of the gel corresponding to protein molecular weights of the 19 S, 7 S, and 4 S classes. It thus appears that a heterogeneous population of desialylated serum glycoproteins accounts for the inhibition of binding of desialylated glycoprotein to the hepatocyte membrane and that these desialylated glycoproteins are present in small amounts in normal human serum and in greatly increased quantities in serum from patients with cirrhosis.  相似文献   

5.
Biochemical, electrophoretic and immunological studies were made among peroxisomal enzymes in three organs of soybean [Glycine max (L.) Merr. cv. Centennial] to compare the enzyme distribution and characteristics of specialized peroxisomes in one species. Leaves, nodules and etiolated cotyledons were compared with regard to several enzymes localized solely in their peroxisomes: catalase (EC 1.11.1.6), malate synthase (EC 4.1.3.2), glycolate oxidase (EC 1.1.3.1), and urate oxidase (EC 1.7.3.3). Catalase activity was found in all tissue extracts. Electrophoresis on native polyacrylamide gels indicated that leaf catalase migrated more anodally than nodule or cotyledon catalase as shown by both activity staining and Western blotting. Malate synthase activity and immunologically detectable protein were present only in the cotyledon extracts. Western blots of denaturing (lithium dodecyl sulfate) gels probed with anti-cotton malate synthase antiserum, reveal a single subunit of 63 kDa in both cotton and soybean cotyledons. Glycolic acid oxidase activity was present in all three organs, but ca 20-fold lower (per mg protein) in both nodule and cotyledon extracts compared to leaf extracts. Electrophoresis followed by activity staining on native gels indicated one enzyme form with the same mobility in nodule, cotyledon and leaf preparations. Urate oxidase activity was found in nodule extracts only. Native gel electrophoresis showed a single band of activity. Novel electrophoretic systems had to be developed to resolve the urate oxidase and glycolate oxidase activities; both of these enzymes moved cathodally in the gel system employed while most other proteins moved anodally. This multifaceted study of enzymes located within three specialized types of peroxisomes in a single species has not been undertaken previously, and the results indicate that previous comparisons between the enzyme content of specialized peroxisomes from different organisms are mostly consistent with that for a single species, soybean.  相似文献   

6.
Affinity chromatography on a cAMP-specific phosphodiesterase inhibitor related to Rolipram, immobilized to AH Sepharose allowed to perform an efficient purification of the cAMP-specific phosphodiesterase isoenzyme from rat heart cytosol (102-fold purification with a 35% yield in a single step). This affinity chromatography involved a biospecific interaction since a 2 mM cAMP elution step at 30 degrees C was necessary for releasing the cAMP specific form tightly bound on the affinity gel. The cAMP eluate fraction exhibited a high specificity towards cAMP (cAMP/cGMP hydrolysis ratio 5-10), a marked sensitivity to Rolipram inhibition and could be resolved in two cAMP-specific, highly Rolipram-sensitive peaks of pI 6.7 and 4.8 by IEF on polyacrylamide gel plates. Protein stain of the IEF gel revealed a single band at pI 6.7.  相似文献   

7.
A crude inhibitor for pancreatic lipase was extracted from soybean seeds. The lipase activity decreased curvilinearly with an increase in inhibitor concentration. At a low inhibitor concentration, enhanced inhibition was observed by the co-existence of protein such as bovine serum albumin in the reaction mixture. The lipase activity was inhibited immediately after the addition of inhibitor which did not cause the significant destraction of substrate emulsion. The lipase activities of Aspergillus niger, Rhizopus delemar and castor bean seeds were also inhibited. The inhibition was observed when various oil substrates such as soybean oil, linseed oil, olive oil emulsions and Ediol were used, and the extent of inhibition varied among them. Column chromatography of inhibitor on Sephadex G–100 showed that the molecular weight of a main peak of inhibitor was estimated as about 80,000.  相似文献   

8.
A collagenase inhibitor was purified from bovine cartilage by a combination of gel filtration, ion exchange, concanavalin A-Sepharose affinity chromatography, and elution from preparative sodium dodecyl sulfate-polyacrylamide gels. The inhibitor was purified 370-fold and migrated as a single polypeptide with an Mr of 19,000 on SDS-polyacrylamide gels. It stained positively for carbohydrate with periodic acid-Schiff's reagent and bound to lectins, indicating that it is a glycoprotein. The inhibitory activity was stable to heating up to 60 degrees C and between pH 4 and 10. The inhibition of collagenase by the cartilage inhibitor could not be reversed by trypsin or mersalyl. The inhibitory activity did not require the presence of free sulfhydryl groups, and it could be removed from the cartilage extract by incubating with native collagen, suggesting that the inhibitor binds to collagen. The cartilage inhibitor was effective against human and mouse interstitial collagenases, but it did not inhibit trypsin or bacterial collagenase.  相似文献   

9.
M J Longley  D W Mosbaugh 《Biochemistry》1991,30(10):2655-2664
We have detected the in situ activities of DNA glycosylase, endonuclease, exonuclease, DNA polymerase, and DNA ligase using a novel polyacrylamide activity gel electrophoresis procedure. DNA metabolizing enzymes were resolved through either native or SDS-polyacrylamide gels containing defined 32P-labeled oligonucleotides annealed to M13 DNA. After electrophoresis, these enzymes catalyzed in situ reactions and their [32P]DNA products were resolved from the gel by a second dimension of electrophoresis through a denaturing DNA sequencing gel. Detection of modified (degraded or elongated) oligonucleotide chains was used to locate various enzyme activities. The catalytic and physical properties of Novikoff hepatoma DNA polymerase beta were found to be similar under both in vitro and in situ conditions. With 3'-terminally matched and mismatched [32P]DNA substrates in the same activity gel, DNA polymerase and/or 3' to 5' exonuclease activities of Escherichia coli DNA polymerase I (large fragment), DNA polymerase III (holoenzyme), and exonuclease III were detected and characterized. In addition, use of matched and mismatched DNA primers permitted the uncoupling of mismatch excision and chain extension steps. Activities first detected in nondenaturing activity gels as either multifunctional or multimeric enzymes were also identified in denaturing activity gels, and assignment of activities to specific polypeptides suggested subunit composition. Furthermore, DNA substrates cast within polyacrylamide gels were successfully modified by the exogenous enzymes polynucleotide kinase and alkaline phosphatase before and after in situ detection of E. coli DNA ligase activity, respectively. Several restriction endonucleases and the tripeptide (Lys-Trp-Lys), which acts as an apurinic/apyrimidinic endonuclease, were able to diffuse into gels and modify DNA. This ability to create intermediate substrates within activity gels could prove extremely useful in delineating the steps of DNA replication and repair pathways.  相似文献   

10.
Altered contractility of airway smooth muscle (SM) is one of the main causes of allergic asthma, in which the predominance of Th2 over Th1 cytokines plays a central role. In the present study, we examine the effects of Th2 cytokines on airway SM contraction. Treatment with a low concentration of IL-4 (0.2 ng/ml) for 6 h augmented, whereas higher concentrations (2-20 ng/ml) inhibited, agonist-induced contractions of collagen gels containing bovine tracheal SM cells. Another Th2 cytokine (IL-13) showed an augmentation of gel contraction in the concentration range of 20-200 ng/ml. IL-4 and IL-13 increased mRNA expression and protein secretion of matrix metalloproteinase (MMP)-1, but these cytokines did not affect Ca(2+)-mobilizing properties and phosphorylation levels of myosin L chain in bovine tracheal SM cells. These changes were sensitive to wortmannin, an inhibitor of PI3K, but not to leflunomide, an inhibitor of STAT6. Scanning electron microscope observation revealed that collagen fibers twining around SM cells were completely dissolved in 20 ng/ml IL-4-treated gels and reorganized into basket-like structure in 20 ng/ml IL-13-treated gels. Exogenous application of high and low concentrations of MMP-1 also induced the inhibition and augmentation of gel contraction, respectively. Furthermore, nonselective MMP inhibitor galardin suppressed the effects of IL-4 and IL-13 on gel contraction, and MMP-1-targeted small-interfering RNA reversed the inhibitory effects of IL-4 on gel contraction to the augmentation. This indicates that Th2 cytokines modulate airway contraction without affecting cellular contractility but by secreting MMP-1 from the SM cells via PI3K activation and changing cell-to-matrix interactions.  相似文献   

11.
Guinea pig liver transglutaminase is a Ca2+ dependent enzyme which catalyzes the formation of inter- and intramolecular ε-(γ-glutamyl)lysyl cross-links between protein molecules. We have found that solutions of several proteins (αs1-casein, and soybean 11S and 7S globulins) were gelatinized firmly by transglutaminase. The gel formation depended on the protein concentration. In the case of αs1-casein, a reaction mixture containing below 2% was incapable of gelation. However, above 3%, a firm gel was formed by transglutaminase. As to soybean 11S and 7S globulins, reaction mixtures containing below 5% did not form gels, while, above 8%, firm gels were formed. The protein solutions in the presence of EDTA, an inhibitor of transglutaminase, were not gelatinized on treatment with transglutaminase. Thus, transglutaminase and a higher concentration of a substrate protein are indispensable for firm gel formation. It is supposed that the protein gels are formed through covalent bonds with transglutaminase.  相似文献   

12.
The structure and composition of galactan from Furcellaria lumbricalis (furcellaran) were investigated in connection with rheological specificities, gel structure, and extraction conditions. The polysaccharide was characterized by 13C nuclear magnetic resonance (13C-NMR) and Fourier transform infrared spectroscopy, inductively coupled plasma-optical emission spectrometry, electrothermal atomization atomic absorption spectrometry, and gel permeation chromatography methods. The microstructure of polymer gels was studied using a cryofixation method in combination with freeze-drying and scanning electron microscopy (SEM) techniques. The undersulfated furcellaran backbone consists mainly of 3,6-anhydro-d-galactose (28.5–30.1%) and galactose residues, the latter being partly sulfated in positions 4 and 6, which give rise to some specific properties of the gel. Also, residues of 6-O-methyl-d-galactose as a minor component are found to be present. The water-extracted furcellaran with the average molecular weight about 290 kDa is rich in nitrogen, calcium, magnesium, and potassium, while the sodium content is rather low. The low sulfur content (5.3%) and 13C-NMR spectra refer to an undersulfated nature of this galactan. The extraction of seaweeds in low concentration alkaline solutions (instead of water) leads to a significant increase of the minimum size of the galactan particles and the value of gel strength (more than 12 times for Rb-containing gels). The properties of the gel are dependent on specific tentacle-like structure units present in furcellaran gels established by a high-resolution SEM.  相似文献   

13.
A new assay has been developed for detection of butyrylcholinesterase (EC 3.1.1.8) activity based upon the change in absorbance of phenol red, caused by the release of butyric acid from the substrate. Using commercially available enzyme prepared from horse serum, linear, dose-related decreases in absorbance were obtained, generally with correlation values of 0.965 or greater. The assay was modified and used to detect enzyme activity in the supernatants from primary cultures of mouse hepatocytes. The enzyme-mediated response was inhibited by NN-diisopropylphosphorodiamidic anhydride, a specific inhibitor of butyrylcholinesterase.  相似文献   

14.
A nonlysosomal alkaline protease which degrades the oxidatively modified form of Escherichia coli glutamine synthetase has been purified to apparent homogeneity from rat and mouse liver acetone powders. Its molecular weight was determined to be 300,000 by Sephacryl S-300 gel filtration but results of further studies using high pressure liquid chromatography gel filtration suggest a value of 650,000. Examination of the subunit structure by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed multiple bands of molecular weights between 22,000 and 34,000. The alkaline protease was inhibited by thiol reagents. Phenylmethylsulfonyl fluoride, aprotinin, leupeptin, antipain, and chymostatin partially inhibited the protease. The inhibition by phenylmethylsulfonyl fluoride was prevented by dithiothreitol, and alpha 1-antitrypsin and soybean trypsin inhibitor did not inhibit. No inhibition was observed with metalloprotease inhibitors. The alkaline protease is active over a broad range of pH with optimum activity for the degradation of oxidized glutamine synthetase around pH 9.0. Its activity is not stimulated by MgATP. A study of the products of insulin B chain degradation demonstrated major cleavage sites at Gln13-Ala14, Leu15-Tyr16, Cys(SO3H)19-Gly20, Gln4-His5, and Leu17-Val18. Based on its endopeptidase activity and its inhibitor specificity, the alkaline protease should be classified as a cysteine proteinase. It appears to be distinct from previously described proteinases and is likely involved in nonlysosomal mechanisms of intracellular protein turnover.  相似文献   

15.
The apparent isoelectric point of a component focused on polyacrylamide gels is normally estimated by extrapolating a pH gradient determined on one gel to another gel which has been stained for protein in order to locate the position of the component (1). The pH gradient is determined by slicing the gel transversely and reading the pH of the eluate after soaking the segments for 1–2 hr in a small amount of degassed water. It is assumed that the gradients in both gels are identical. Alternatively, an antimony microelectrode has been used to measure pH gradients directly in unsectioned gels (2). Similar techniques have been applied to polyacrylamide gel slabs and are reviewed by Vesterberg (3). Righetti and Drysdale (4) have recently reviewed these and other aspects of isoelectric focusing in gels.I report here a very precise method for the determination of a protein “isoelectric point” that can be accomplished with a single gel. The technique is demonstrated with yeast phosphoglycerate kinase and the very low density lipoprotein (VLDL) fraction from human plasma.  相似文献   

16.
The major fibrinolytic enzymes present in leukocyte granules and active at physiological pH have been identified. The fibrinolytic activity in extracts of leukocyte granules was bound to fibrinogen-Sepharose and eluted with 8.0 M urea. Two distinct zones of fibrinolytic activity were detected upon electrophoresis of leukocyte extracts on fibrinogen polyacrylamide gels, and both were qualitatively recovered in the 8.0 M urea eluate. Quantitatively, greater than 95% of the fibrinolytic activity was recovered in the urea eluate. Two major leukocyte proteases, elastase (EC 3.4.21.11) and cathepsin G (EC 3.4.21.-), were quantitatively recovered in the urea eluate. Both enzymes, when purified separately by affinity chromatography, were shown to: (a) possess fibrinolytic activity; (b) coincide in mobility and generate the two zones of fibrinolytic activity on fibrinogen polyacrylamide gels; and (c) quantitatively reconstitute the fibrinolytic activity of the leukocyte granules when combined at activity levels present in granular extracts. A highly significant correlation (r = 0.98) was found between the fibrinolytic activity and the sum of elastase and cathepsin G activity in leukocytes from five donors. Thus, elastase and cathepsin G are the major enzymes of the leukocyte fibrinolytic pathway, and fibrinogen-Sepharose chromatography may be used to obtain these enzymes.  相似文献   

17.
Studies in our laboratory have indicated that tumor cell membrane-bound proteases are responsible for the ability of tumor cells to lyse normal cells in vitro. In order to evaluate the tumor cell membrane enzymes, a purified tumor cell membrane preparation was prepared and the nonionic detergent Triton X-100 was used to extract active enzymes from the cell membranes. The solubilized membrane enzymes were then studied by Triton X-100 polyacrylamide gel electrophoresis under non-denaturing conditions. Using this technique the tumor cell membranes were shown to contain esterproteases that reacted with the substrates alpha-naphthyl acetate and naphthol-AS-aminocaproate. These esterproteases were inhibited by diisopropyl fluorphosphate and tosyl lysine chloromethyl ketone but not by tosylamide phenylethyl chloromethyl ketone, soybean trypsin inhibitor p-chloromercuribenzene sulfonic acid; N-ethylmaleimide choline iodide, alpha-1-anti-trypsin. NaF, epsilon-aminocaproic acid, ethylenediamine tetraacetic acid, or eserine. SBTI affinity chromatography of the tumor cell membrane extract revealed that some of the serine esterproteases bound to the SBTI column. The proteolytic activity of the tumor cell membrane extract and a fraction eluted from the SBTI affinity column was demonstrated using casein. We conclude that the tumor cell membranes contain previously undescribed serine proteases that are identifiable by their esterase activity and inhibitor profiles in polyacrylamide gels.  相似文献   

18.
This study examined whether the neurointermediate lobe (NIL) of the rat pituitary contains latent kallikrein- and thrombin-like proteases activated by trypsin. Partial characterization of such proteases was attempted. Also examined were the distribution of proteolytic activity within the NIL and levels in both male and female lobes. NIL homogenates were assayed for proteolytic activity at pH 8.0 before and after incubation with trypsin (10 micrograms/ml). Trypsin caused a 10-fold activation of kallikrein-like activity and a 40-fold activation of thrombin-like activity in NIL homogenates. The kallikrein-like activity was separated into two components using diethylaminoethyl-Sephadex. The predominant kallikrein-like protease was a potent kininogenase closely related or identical to glandular kallikrein and was almost exclusively localized to the intermediate lobe. The second kallikrein-like protease (kallikrein A) was a weak kininogenase sensitive to inhibition by both soybean trypsin inhibitor and aprotinin and was similarly concentrated in both the neural lobe and the intermediate lobe. The thrombin-like protease was sensitive to inhibition by hirudin (a specific thrombin inhibitor), clotted fibrinogen, and was slightly more concentrated in the neural lobe than in the intermediate lobe. NILs from female rats contained approximately 40% less kallikrein activity than NILs from male rats but did not differ in their content of thrombin-like activity.  相似文献   

19.
A new detecting method for protease inhibitors, especially for low-molecular-weight inhibitors, is reported. Inhibitor samples were separated on a protein substrate-SDS-polyacrylamide gel in a Tris-Tricine buffer system that improves the separation and identification of peptides and low-molecular-weight proteins. After electrophoresis, the gel was incubated with the target proteases to hydrolyze the background protein substrate. The inhibitor bands, which were protected from proteolysis by the target proteases, were stained. Standard low-molecular-weight inhibitors, such as pepstatin A for pepsin or matrix metalloproteases inhibitor I for collagenase, as well as larger inhibitors, such as soybean trypsin inhibitor or aprotinin for tryspin and cystatin C for papain, were demonstrated by this method and showed clear blue inhibitor bands in the white background when the gels were treated with the target proteases. Some significant applications of this method are introduced. This method is an ideal system for discovering new protease inhibitors in small natural samples.  相似文献   

20.
An Mr 20,000 protein inhibitor of C1, the first component of complement, has been purified from human urine and characterized. This inhibitor, tentatively designated factor J, is apparently distinct from known complement inhibitors. During purification on QAE-Sephadex, Mono Q, and heparin-Sepharose, factor J was detected by its ability to inhibit the complement-mediated lysis of sheep erythrocytes bearing antibody, C1, and activated C4 (EAC14). The purity of factor J was documented by the concordant elution from a hydroxylapatite column of functional activity and the UV absorbance as measured at three different wavelengths (220, 254, and 280 nm). The relative Mr of 20,000 was determined by sodium dodecyl sulfate-slab gel electrophoresis of radioiodinated protein. Amino acid analysis indicated a high cysteine content and allowed calculations of a specific activity of 7 functional units/pmol. The target of factor J inhibitory activity on the lysis of EAC14 was localized to C1 by the following criteria: factor J inhibited C1 in a C1 transfer assay, but had no effect on C42 activity or decay, and had no effect on the efficiency of isolated C2 or C3-C9 as provided in serum-EDTA. Factor J inhibition was rapid and not significantly influenced by temperature. In a second functional assay, factor J inhibited the association of the tetrameric complex C1r2s2 with 125I-C1q, and the results, when analyzed graphically by a reciprocal plot, were consistent with noncompetitive inhibition (Ki = 529-760 pM range). Functional and/or antigenic data indicated that factor J is distinct from the other known inhibitors of C1, namely the C1 inhibitor and the C1q inhibitor. Antihuman serum precipitated radioiodinated factor J, indicating that an antigen identical or cross-reacting with factor J exists in serum. In summary, factor J is a newly described potent inhibitor of C1 function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号