首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNA helicase II/Gu (RH II/Gu) is a nucleolar protein that unwinds dsRNA in a 5' to 3' direction, and introduces a secondary structure into a ssRNA. The helicase domain is at the N-terminal three-quarters of the molecule and the foldase domain is at the C-terminal quarter. The RNA folding activity of RH II/Gu is not a mere artifact of its binding to RNA. This study narrows down the RNA foldase domain to amino acids 749-801 at the C-terminus of the protein. Dissection of this region by deletion and site-directed mutagenesis shows that the four FRGQR repeats, as well as the C-terminal end bind RNA independently. These juxtaposed subdomains are both important for the RNA foldase activity of RH II/Gu. Mutation of either repeat 2 or repeat 4, or simultaneous mutation of Lys792, Arg793 and Lys797 at the C-terminal end of RH II/Gu to alanines inhibits RNA foldase activity. The last 17 amino acids of RH II/Gu can be replaced by an RNA binding motif from nucleolar protein p120 without a deleterious effect on its foldase activity. A model is proposed to explain how RH II/Gu binds and folds an RNA substrate.  相似文献   

2.
RNA helicase II/Gu (RH-II/Gu) is a nucleolar DEAD-box protein that unwinds double-stranded RNA and introduces secondary structure to a single-stranded RNA. We recently identified its paralogue, RH-II/Gu(beta), in contrast to the original RH-II/Gu(alpha). Their similar intron-exon structures on chromosome 10 suggest gene duplication. To determine functional differences, their expression, localization, and enzymatic activities were compared. RH-II/Gu(alpha) is expressed two- to threefold more than RH-II/Gu(beta) in most tissues. Both proteins localize to nucleoli, suggesting roles in ribosomal RNA production, but RH-II/Gu(beta) also localizes to nuclear speckles containing splicing factor SC35, suggesting possible involvement in pre-mRNA splicing. The C-terminus responsible for nuclear speckle localization of RH-II/Gu(beta) contains an arginine-serine-rich domain present in some RNA splicing proteins. In vitro assays show weaker ATPase and RNA helicase activities of RH-II/Gu(beta). RH-II/Gu(alpha) unwinds RNA substrate with a 21- or 34-nt duplex and 5' overhangs, but RH-II/Gu(beta) unwinds only the shorter duplex. Although RH-II/Gu(beta) has no RNA folding activity, it catalyzes formation of an RNA complex with unidentified structure, which is not observed when assayed with a mixture of the two enzymes. Instead, the presence of RH-II/Gu(beta) stimulates RH-II/Gu(alpha) unwinding activity. Our data suggest distinct and complex regulation of expression of the two paralogues with nonredundant gene products.  相似文献   

3.
4.
Human RNA helicase II/Gu alpha (RH-II/Gu alpha) and RNA helicase II/Gu beta (RH-II/Gu beta) are paralogues that share the same domain structure, consisting of the DEAD box helicase domain (DEAD), the helicase conserved C-terminal domain (helicase_C), and the GUCT domain. The N-terminal regions of the RH-II/Gu proteins, including the DEAD domain and the helicase_C domain, unwind double-stranded RNAs. The C-terminal tail of RH-II/Gu alpha, which follows the GUCT domain, folds a single RNA strand, while that of RH-II/Gu beta does not, and the GUCT domain is not essential for either the RNA helicase or foldase activity. Thus, little is known about the GUCT domain. In this study, we have determined the solution structure of the RH-II/Gu beta GUCT domain. Structural calculations using NOE-based distance restraints and residual dipolar coupling-based angular restraints yielded a well-defined structure with beta-alpha-alpha-beta-beta-alpha-beta topology in the region for K585-A659, while the Pfam HMM algorithm defined the GUCT domain as G571-E666. This structure-based domain boundary revealed false positives in the sequence homologue search using the HMM definition. A structural homology search revealed that the GUCT domain has the RRM fold, which is typically found in RNA-interacting proteins. However, it lacks the surface-exposed aromatic residues and basic residues on the beta-sheet that are important for the RNA recognition in the canonical RRM domains. In addition, the overall surface of the GUCT domain is fairly acidic, and thus the GUCT domain is unlikely to interact with RNA molecules. Instead, it may interact with proteins via its hydrophobic surface around the surface-exposed tryptophan.  相似文献   

5.
Gwack Y  Yoo H  Song I  Choe J  Han JH 《Journal of virology》1999,73(4):2909-2915
Hepatitis G virus (HGV) nonstructural protein 3 (NS3) contains amino acid sequence motifs typical of ATPase and RNA helicase proteins. In order to examine the RNA helicase activity of the HGV NS3 protein, the NS3 region (amino acids 904 to 1580) was fused with maltose-binding protein (MBP), and the fusion protein was expressed in Escherichia coli and purified with amylose resin and anion-exchange chromatography. The purified MBP-HGV/NS3 protein possessed RNA-stimulated ATPase and RNA helicase activities. Characterization of the ATPase and RNA helicase activities of MBP-HGV/NS3 showed that the optimal reaction conditions were similar to those of other Flaviviridae viral NS3 proteins. However, the kinetic analysis of NTPase activity showed that the MBP-HGV/NS3 protein had several unique properties compared to the other Flaviviridae NS3 proteins. The HGV NS3 helicase unwinds RNA-RNA duplexes in a 3'-to-5' direction and can unwind RNA-DNA heteroduplexes and DNA-DNA duplexes as well. In a gel retardation assay, the MBP-HGV/NS3 helicase bound to RNA, RNA/DNA, and DNA duplexes with 5' and 3' overhangs but not to blunt-ended RNA duplexes. We also found that the conserved motif VI was important for RNA binding. Further deletion mapping showed that the RNA binding domain was located between residues 1383 and 1395, QRRGRTGRGRSGR. Our data showed that the MBP-HCV/NS3 protein also contains the RNA binding domain in the similar domain.  相似文献   

6.
RNA helicase II/Gu (RH-II/Gu) is a nucleolar RNA helicase of the DEAD-box superfamily. In this study, the functional domains of RH-II/Gu molecule were mapped by fusing the protein or its deletion mutants with a green fluorescence protein and subsequently transfecting or microinjecting the recombinant constructs into HeLa cells. In addition to the identification of a nuclear localization signal (NLS) in the N-terminus and a nucleolar targeting signal in the central helicase domain, a hidden NLS and a nucleolar targeting signal were found in the C-terminal arginine/glycine-rich domain. RH-II/Gu colocalized with fibrillarin, a component of the dense fibrillar region of the nucleolus. Overexpression of the entire RH-II/Gu protein or specific domains of the protein in HeLa cells did not interfere with the normal distribution of fibrillarin. However, when the helicase domain was truncated, the distribution pattern of fibrillarin was distorted. Microinjection of the wild-type RH-II/Gu cDNA into the nucleus of HeLa cells did not disrupt normal cell growth. However, when cells were injected with mutant DNA, only a small percentage of HeLa cells progressed through the cell cycle. Analysis of centrosomes in transfected cells demonstrated that most of the mutant-expressing cells were arrested early in the cell cycle. The results suggest that each of the structural domains of RH-II/Gu is necessary for cell growth and cell cycle progression.  相似文献   

7.
Yang H  Henning D  Valdez BC 《The FEBS journal》2005,272(15):3788-3802
RNA helicase II/Gu(alpha) is a multifunctional nucleolar protein involved in ribosomal RNA processing in Xenopus laevis oocytes and mammalian cells. Downregulation of Gu(alpha) using small interfering RNA (siRNA) in HeLa cells resulted in 80% inhibition of both 18S and 28S rRNA production. The mechanisms underlying this effect remain unclear. Here we show that in mammalian cells, Gu(alpha) physically interacts with ribosomal protein L4 (RPL4), a component of 60S ribosome large subunit. The ATPase activity of Gu(alpha) is important for this interaction and is also necessary for the function of Gu(alpha) in the production of both 18S and 28S rRNAs. Knocking down RPL4 expression using siRNA in mouse LAP3 cells inhibits the production of 47/45S, 32S, 28S, and 18S rRNAs. This inhibition is reversed by exogenous expression of wild-type human RPL4 protein but not the mutant form lacking Gu(alpha)-interacting motif. These observations have suggested that the function of Gu(alpha) in rRNA processing is at least partially dependent on its ability to interact with RPL4.  相似文献   

8.
Most positive strand RNA viruses infecting plants and animals encode proteins containing the so-called nucleotide binding motif (NTBM) (1) in their amino acid sequences (2). As suggested from the high level of sequence similarity of these viral proteins with the recently described superfamilies of helicase-like proteins (3-5), the NTBM-containing cylindrical inclusion (CI) protein from plum pox virus (PPV), which belongs to the potyvirus group of positive strand RNA viruses, is shown to be able to unwind RNA duplexes. This activity was found to be dependent on the hydrolysis of NTP to NDP and Pi, and thus it can be considered as an RNA helicase activity. In the in vitro assay used, the PPV CI protein was only able to unwind double strand RNA substrates with 3' single strand overhangs. This result indicates that the helicase activity of the PPV CI protein functions in the 3' to 5' direction (6). To our knowledge, this is the first report on a helicase activity associated with a protein encoded by an RNA virus.  相似文献   

9.
10.
The NS3 protein of Japanese encephalitis virus (JEV) contains motifs typical of RNA helicase/NTPase but no RNA helicase activity has been reported for this protein. To identify and characterize the RNA helicase activity of JEV NS3, a truncated form of the protein with a His-tag was expressed in Escherichia coli and purified. The purified JEV NS3 protein showed an RNA helicase activity, which was dependent on divalent cations and ATP. An Asp-285-to-Ala substitution in motif II of the JEV NS3 protein abolished the ATPase and RNA helicase activities. These results indicate that the C-terminal 457 residues are sufficient to exhibit the RNA helicase activity of JEV NS3.  相似文献   

11.
12.
The DEAD-box protein Mss116p promotes group II intron splicing in vivo and in vitro. Here we explore two hypotheses for how Mss116p promotes group II intron splicing: by using its RNA unwinding activity to act as an RNA chaperone or by stabilizing RNA folding intermediates. We show that an Mss116p mutant in helicase motif III (SAT/AAA), which was reported to stimulate splicing without unwinding RNA, retains ATP-dependent unwinding activity and promotes unfolding of a structured RNA. Its unwinding activity increases sharply with decreasing duplex length and correlates with group II intron splicing activity in quantitative assays. Additionally, we show that Mss116p can promote ATP-independent RNA unwinding, presumably via single-strand capture, also potentially contributing to DEAD-box protein RNA chaperone activity. Our findings favor the hypothesis that DEAD-box proteins function in group II intron splicing as in other processes by using their unwinding activity to act as RNA chaperones.  相似文献   

13.
DEAD-box proteins are the most common RNA helicases, and they are associated with virtually all processes involving RNA. They have nine conserved motifs that are required for ATP and RNA binding, and for linking phosphoanhydride cleavage of ATP with helicase activity. The Q motif is the most recently identified conserved element, and it occurs approximately 17 amino acids upstream of motif I. There is a highly conserved, but isolated, aromatic group approximately 17 amino acids upstream of the Q motif. These two elements are involved in adenine recognition and in ATPase activity of DEAD-box proteins. We made extensive analyses of the Q motif and upstream aromatic residue in the yeast translation-initiation factor Ded1. We made site-specific mutations and tested them for viability in yeast. Moreover, we purified various mutant proteins and obtained the Michaelis-Menten parameters for the ATPase activities. We also measured RNA affinities and strand-displacement activities. We find that the Q motif not only regulates ATP binding and hydrolysis but also regulates the affinity of the protein for RNA substrates and ultimately the helicase activity.  相似文献   

14.
The Saccharomyces cerevisiae DEAD-box protein Mss116p is a general RNA chaperone that functions in splicing mitochondrial group I and group II introns. Recent X-ray crystal structures of Mss116p in complex with ATP analogs and single-stranded RNA show that the helicase core induces a bend in the bound RNA, as in other DEAD-box proteins, while a C-terminal extension (CTE) induces a second bend, resulting in RNA crimping. Here, we illuminate these structures by using high-throughput genetic selections, unigenic evolution, and analyses of in vivo splicing activity to comprehensively identify functionally important regions and permissible amino acid substitutions throughout Mss116p. The functionally important regions include those containing conserved sequence motifs involved in ATP and RNA binding or interdomain interactions, as well as previously unidentified regions, including surface loops that may function in protein-protein interactions. The genetic selections recapitulate major features of the conserved helicase motifs seen in other DEAD-box proteins but also show surprising variations, including multiple novel variants of motif III (SAT). Patterns of amino acid substitutions indicate that the RNA bend induced by the helicase core depends on ionic and hydrogen-bonding interactions with the bound RNA; identify a subset of critically interacting residues; and indicate that the bend induced by the CTE results primarily from a steric block. Finally, we identified two conserved regions—one the previously noted post II region in the helicase core and the other in the CTE—that may help displace or sequester the opposite RNA strand during RNA unwinding.  相似文献   

15.
16.
17.
Genetic manipulations have revealed the functions of RNA helicases in ribosomal RNA (rRNA) biogenesis in yeast. However, no report shows the role of an RNA helicase in rRNA formation in higher eukaryotes. This study reports the functional characterization of the frog homologue of nucleolar RNA helicase II/Gu (xGu or DDX21). Down-regulation of xGu in Xenopus laevis oocyte using an antisense oligodeoxynucleotide results in the depletion of 18 and 28 S rRNAs. The disappearance of 18 S rRNA is accompanied by an accumulation of 20 S, indicating that xGu is critical in the processing of 20 to 18 S rRNA. The degradation of 28 S rRNA into fragments smaller than 18 S is also associated with a specific decrease in the level of xGu protein. These effects are reversed in the presence of in vitro synthesized wild type xGu mRNA but not its helicase-deficient mutant form. Similar aberrant rRNA processing is observed when antibody against xGu is microinjected. The involvement of xGu in processing of rRNA is consistent with the localization of Gu protein to the granular and dense fibrillar components of PtK2 cell nucleoli by immunoelectron microscopy. Our results show that xGu is involved in the processing of 20 to 18 S rRNA and contributes to the stability of 28 S rRNA in Xenopus oocytes.  相似文献   

18.
The NS3 protein of the hepatitis C virus (HCV) is a 631 amino acid residue bifunctional enzyme with a serine protease localized to the N-terminal 181 residues and an RNA helicase located in the C-terminal 450 residues. The HCV NS3 RNA helicase consists of three well-defined subdomains which all contribute to its helicase activity. The second subdomain of the HCV helicase is flexibly linked to the remainder of the NS3 protein and could undergo rigid-body movements during the unwinding of double-stranded RNA. It also contains several motifs that are implicated in RNA binding and in coupling NTP hydrolysis to nucleic acid unwinding and translocation. As part of our efforts to use NMR techniques to assist in deciphering the enzyme's structure-function relationships and developing specific small molecule inhibitors, we have determined the solution structure of an engineered subdomain 2 of the NS3 RNA helicase of HCV, d(2Delta)-HCVh, and studied the backbone dynamics of this protein by (15)N-relaxation experiments using a model-free approach. The NMR studies on this 142-residue construct reveal that overall subdomain 2 of the HCV helicase is globular and well structured in solution even in the absence of the remaining parts of the NS3 protein. Its solution structure is very similar to the corresponding parts in the X-ray structures of the HCV NS3 helicase domain and intact bifunctional HCV NS3 protein. Slow hydrogen-deuterium exchange rates map to a well-structured, stable hydrophobic core region away from the subdomain interfaces. In contrast, the regions facing the subdomain interfaces in the HCV NS3 helicase domain are less well structured in d(2Delta)-HCVh, show fast hydrogen-deuterium exchange rates, and the analysis of the dynamic properties of d(2Delta)-HCVh reveals that these regions of the protein show distinct dynamical features. In particular, residues in motif V, which may be involved in transducing allosteric effects of nucleotide binding and hydrolysis on RNA binding, exhibit slow conformational exchange on the milli- to microsecond time-scale. The intrinsic conformational flexibility of this loop region may facilitate conformational changes required for helicase function.  相似文献   

19.
A previously unreported DNA unwinding enzyme, referred to as the 75-kDa helicase, was recently purified from Escherichia coli cell extracts and biochemically characterized (Wood, E. R., and Matson, S. W. (1987) J. Biol. Chem. 262, 15269-15276). In order to initiate the genetic analysis of the 75-kDa helicase, the gene encoding this enzyme was cloned. DNA sequencing confirmed the identity of the gene since the predicted amino acid sequence of the encoded polypeptide precisely matched the sequence of the first 27 NH2-terminal amino acid residues of the 75-kDa helicase as determined by peptide sequencing. The predicted amino acid sequence of the 75-kDa helicase is similar in several regions to the amino acid sequences of two other E. coli helicases, Rep protein and helicase II. The gene encoding the 75-kDa helicase was mapped to 22 min on the E. coli chromosome. We propose that this newly defined locus be referred to as helD, and, to avoid confusion with other E. coli helicases with a similar molecular size, we propose that the 75-kDa helicase be referred to as helicase IV.  相似文献   

20.
Helicases are molecular motors that couple the energy of ATP hydrolysis to the unwinding of structured DNA or RNA and chromatin remodeling. The conversion of energy derived from ATP hydrolysis into unwinding and remodeling is coordinated by seven sequence motifs (I, Ia, II, III, IV, V, and VI). The Q motif, consisting of nine amino acids (GFXXPXPIQ) with an invariant glutamine (Q) residue, has been identified in some, but not all helicases. Compared to the seven well-recognized conserved helicase motifs, the role of the Q motif is less acknowledged. Mutations in the human ChlR1 (DDX11) gene are associated with a unique genetic disorder known as Warsaw Breakage Syndrome, which is characterized by cellular defects in genome maintenance. To examine the roles of the Q motif in ChlR1 helicase, we performed site directed mutagenesis of glutamine to alanine at residue 23 in the Q motif of ChlR1. ChlR1 recombinant protein was overexpressed and purified from HEK293T cells. ChlR1-Q23A mutant abolished the helicase activity of ChlR1 and displayed reduced DNA binding ability. The mutant showed impaired ATPase activity but normal ATP binding. A thermal shift assay revealed that ChlR1-Q23A has a melting point value similar to ChlR1-WT. Partial proteolysis mapping demonstrated that ChlR1-WT and Q23A have a similar globular structure, although some subtle conformational differences in these two proteins are evident. Finally, we found ChlR1 exists and functions as a monomer in solution, which is different from FANCJ, in which the Q motif is involved in protein dimerization. Taken together, our results suggest that the Q motif is involved in DNA binding but not ATP binding in ChlR1 helicase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号