首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Integration, one of the hallmarks of retrovirus replication, is mediated by a nucleoprotein complex called the preintegration complex (PIC), in which viral DNA is associated with many protein components that are required for completion of the early phase of infection. A striking feature of the PIC is its powerful integration activity in vitro. The PICs from a freshly isolated cytoplasmic extract of infected cells are able to insert viral DNA into exogenously added target DNA in vitro. Therefore, a PIC-based in vitro assay is a reliable system for assessing protein factors influencing retroviral integration. In this study, we applied a microtiter plate-based in vitro assay to a screening study using a protein library that was produced by the wheat germ cell-free protein synthesis system. Using a library of human E3 ubiquitin ligases, we identified RFPL3 as a potential stimulator of human immunodeficiency virus, type 1 (HIV-1) PIC integration activity in vitro. This enhancement of PIC activity by RFPL3 was likely to be attributed to its N-terminal RING domain. To further understand the functional role of RFPL3 in HIV infection, we created a human cell line overexpressing RFPL3. Immunoprecipitation analysis revealed that RFPL3 was associated with the human immunodeficiency virus, type 1 PICs in infected cells. More importantly, single-round HIV-1 infection was enhanced significantly by RFPL3 expression. Our proteomic approach displays an advantage in the identification of new cellular proteins affecting the integration activity of the PIC and, therefore, contributes to the understanding of functional interaction between retroviral integration complexes and host factors.  相似文献   

3.
4.
5.
Retroviral integration in vivo is mediated by preintegration complexes (PICs) derived from infectious virions. In addition to the integrase enzyme and cDNA substrate, PICs contain a variety of viral and host cell proteins. Whereas two different cell proteins, high-mobility group protein A1 (HMGA1) and the barrier-to-autointegration factor (BAF), were identified as integration cofactors based on activities in in vitro PIC assays, only HMGA1 was previously identified as a PIC component. By using antibodies against known viral and cellular PIC components, we demonstrate here functional coimmunoprecipitation of endogenous BAF protein with human immunodeficiency virus type 1 (HIV-1) PICs. Since integrase protein and integration activity were also coimmunoprecipitated by anti-BAF antibodies, we conclude that BAF is a component of HIV-1 PICs. These data are consistent with the model that BAF functions as an integration cofactor in vivo.  相似文献   

6.
Retroviral integration is executed by the preintegration complex (PIC), which contains viral DNA together with a number of proteins. Barrier-to-autointegration factor (BAF), a cellular component of Moloney murine leukemia virus (MMLV) PICs, has been demonstrated to protect viral DNA from autointegration and stimulate the intermolecular integration activity of the PIC by its DNA binding activity. Recent studies reveal that the functions of BAF are regulated by phosphorylation via a family of cellular serine/threonine kinases called vaccinia-related kinases (VRK), and VRK-mediated phosphorylation causes a loss of the DNA binding activity of BAF. These results raise the possibility that BAF phosphorylation may influence the integration activities of the PIC through removal of BAF from viral DNA. In the present study, we report that VRK1 was able to abolish the intermolecular integration activity of MMLV PICs in vitro. This was accompanied by an enhancement of autointegration activity and dissociation of BAF from the PICs. In addition, in vitro phosphorylation of BAF by VRK1 abrogated the activity of BAF in PIC function. Among the VRK family members, VRK1 as well as VRK2, which catalyze hyperphosphorylation of BAF, could abolish PIC function. We also found that treatment of PICs with certain nucleotides such as ATP resulted in the inhibition of the intermolecular integration activity of PICs through the dissociation of BAF. More importantly, the ATP-induced disruption was not observed with the PICs from VRK1 knockdown cells. Our in vitro results therefore suggest the presence of cellular kinases including VRKs that can inactivate the retroviral integration complex via BAF phosphorylation.  相似文献   

7.
Retrovirus preintegration complexes (PIC) in virus-infected cells contain the linear viral DNA genome (approximately 10 kbp), viral proteins including integrase (IN), and cellular proteins. After transport of the PIC into the nucleus, IN catalyzes the concerted insertion of the two viral DNA ends into the host chromosome. This successful insertion process is termed "full-site integration." Reconstitution of nucleoprotein complexes using recombinant human immunodeficiency virus type 1 (HIV-1) IN and model viral DNA donor substrates (approximately 0.30 to 0.48 kbp in length) that are capable of catalyzing efficient full-site integration has proven difficult. Many of the products are half-site integration reactions where either IN inserts only one end of the viral donor substrate into a circular DNA target or into other donors. In this report, we have purified recombinant HIV-1 IN at pH 6.8 in the presence of MgSO4 that performed full-site integration nearly as efficiently as HIV-1 PIC. The size of the viral DNA substrate was significantly increased to 4.1 kbp, thus allowing for the number of viral DNA ends and the concentrations of IN in the reaction mixtures to be decreased by a factor of approximately 10. In a typical reaction at 37 degrees C, recombinant HIV-1 IN at 5 to 10 nM incorporated 30 to 40% of the input DNA donor into full-site integration products. The synthesis of full-site products continued up to approximately 2 h, comparable to incubation times used with HIV-1 PIC. Approximately 5% of the input donor was incorporated into the circular target producing half-site products with no significant quantities of other integration products produced. DNA sequence analysis of the viral DNA-target junctions derived from wild-type U3 and U5 coupled reactions showed an approximately 70% fidelity for the HIV-1 5-bp host site duplications. Recombinant HIV-1 IN successfully utilized a mutant U5 end containing additional nucleotide extensions for full-site integration demonstrating that IN worked properly under nonideal active substrate conditions. The fidelity of the 5-bp host site duplications was also high with these coupled mutant U5 and wild-type U3 donor ends. These studies suggest that recombinant HIV-1 IN is at least as capable as native IN in virus particles and approaching that observed with HIV-1 PIC for catalyzing full-site integration.  相似文献   

8.
9.
Barrier-to-autointegration factor (BAF) is a conserved human chromatin protein exploited by retroviruses. Previous investigators showed that BAF binds double-stranded DNA nonspecifically and is a host component of preintegration complexes (PICs) isolated from cells infected with human immunodeficiency virus type 1 (HIV-1) or Moloney murine leukemia virus. BAF protects PIC structure and stimulates the integration of salt-stripped PICs into target DNA in vitro. PICs are thought to acquire BAF from the cytoplasm during infection. However, we identified two human tissues (of 16 tested) in which BAF mRNA was not detected: thymus and peripheral blood leukocytes, which are enriched in CD4(+) T lymphocytes and macrophage precursors, respectively. BAF protein was detected in activated but not resting CD4(+) T lymphocytes; thus, if BAF were essential for PIC function, we hypothesized that virions might "bring their own BAF." Supporting this model, BAF copurified with HIV-1 virions that were digested with subtilisin to remove microvesicle contaminants, and BAF was present in approximately zero to three copies per virion. In three independent assays, BAF bound directly to both p55 Gag (the structural precursor of HIV-1 virions) and its cleaved product, matrix. Using lysates from cells overexpressing Gag, endogenous BAF and Gag were coimmunoprecipitated by antibodies against Gag. Purified recombinant BAF had low micromolar affinities (1.1 to 1.4 micro M) for recombinant Gag and matrix. We conclude that BAF is present at low levels in incoming virions, in addition to being acquired from the cytoplasm of newly infected cells. We further conclude that BAF might contribute to the assembly or activity of HIV-1 PICs through direct binding to matrix, as well as DNA.  相似文献   

10.
Transferred DNA (T-DNA) of the tumor-inducing (Ti) plasmid is transferred from Agrobacterium tumefaciens to plant cells and is stably integrated into the plant nuclear genome. By the inverse polymerase chain reaction DNA fragments were amplified that contained the T-DNA/plant DNA junctions from the total DNA of a transgenic tobacco plant that had a single copy of the T-DNA in a repetitive region of its genome. A DNA fragment containing the target site was amplified from the total DNA of non-transformed tobacco by the polymerase chain reaction using high-stringency conditions. Comparison of the nucleotide sequence of the target site with those of the T-DNA/plant DNA junctions revealed that various duplications of short stretches of nucleotide sequences around the target and in the incoming T-DNA had accompanied the integration of the T-DNA. A deletion of 16 bp at the target site was also found and the target site was similar, in terms of nucleotide sequence, to regions around the breakpoints of the T-DNA. This finding provides a clear example of the occurrence of complex rearrangements during the integration of T-DNA.  相似文献   

11.
Replication of retroviruses requires integration of the linear viral DNA genome into the host chromosomes. Integration requires the viral integrase (IN), located in high-molecular-weight nucleoprotein complexes termed preintegration complexes (PIC). The PIC inserts the two viral DNA termini in a concerted manner into chromosomes in vivo as well as exogenous target DNA in vitro. We reconstituted nucleoprotein complexes capable of efficient concerted (full-site) integration using recombinant wild-type human immunodeficiency virus type I (HIV-1) IN with linear retrovirus-like donor DNA (480 bp). In addition, no cellular or viral protein cofactors are necessary for purified bacterial recombinant HIV-1 IN to mediate efficient full-site integration of two donor termini into supercoiled target DNA. At about 30 nM IN (20 min at 37 degrees C), approximately 15 and 8% of the input donor is incorporated into target DNA, producing half-site (insertion of one viral DNA end per target) and full-site integration products, respectively. Sequencing the donor-target junctions of full-site recombinants confirms that 5-bp host site duplications have occurred with a fidelity of about 70%, similar to the fidelity when using IN derived from nonionic detergent lysates of HIV-1 virions. A key factor allowing recombinant wild-type HIV-1 IN to mediate full-site integration appears to be the avoidance of high IN concentrations in its purification (about 125 microg/ml) and in the integration assay (<50 nM). The results show that recombinant HIV-1 IN may not be significantly defective for full-site integration. The findings further suggest that a high concentration or possibly aggregation of IN is detrimental to the assembly of correct nucleoprotein complexes for full-site integration.  相似文献   

12.
13.
Since HBV DNA integration was discovered for the first time in 1980, various methods have been used to detect and study it, such as Southern Blot, in situ hybridization, polymerase chain reaction and so on. HBV DNA integration is thought to be random on the whole although some hot spots of integration were described by some researchers, one of which might be the repetitive sequences of the genomic DNA. Besides, DNA damage, especially double-strand breaks could promote HBV DNA integration into host genome. HBV DNA integration into cells may damage the stability of the genome, cause DNA rearrangement, promote DNA deletion and induce the formation of HCC.  相似文献   

14.
To replicate, a retrovirus must synthesize a cDNA copy of the viral RNA genome and integrate that cDNA into a chromosome of the host. We have investigated the role of a host cell cofactor, HMG I(Y) protein, in integration of human immunodeficiency virus type 1 (HIV-1) and Moloney murine leukemia virus (MoMLV) cDNA. Previously we reported that HMG I(Y) cofractionates with HIV-1 preintegration complexes (PICs) isolated from freshly infected cells. PICs depleted of required components by treatment with high concentrations of salt could be reconstituted by addition of purified HMG I(Y) in vitro. Here we report studies using immunoprecipitation that indicate that HMG I(Y) is associated with MoMLV preintegration complexes. In mechanistic studies, we show for both HIV-1 and MoMLV that each HMG I(Y) monomer must contain multiple DNA binding domains to stimulate integration by HMG I(Y)-depleted PICs. We also find that HMG I(Y) can condense model HIV-1 or MoMLV cDNA in vitro as measured by stimulation of intermolecular ligation. This reaction, like reconstitution of integration, depends on the presence of multiple DNA binding domains in each HMG I(Y) monomer. These data suggest that binding of multivalent HMG I(Y) monomers to multiple cDNA sites compacts retroviral cDNA, thereby promoting formation of active integrase-cDNA complexes.  相似文献   

15.
Since HBV DNA integration was discovered for the first time in 1980, various methods have been used to detect and study it, such as Southern Blot, in situ hybridization, polymerase chain reaction and so on. HBV DNA integration is thought to be random on the whole although some hot spots of integration were described by some researchers, one of which might be the repetitive sequences of the genomic DNA. Besides, DNA damage, especially double-strand breaks could promote HBV DNA integration into host genome. HBV DNA integration into cells may damage the stability of the genome, cause DNA rearrangement, promote DNA deletion and induce the formation of HCC.  相似文献   

16.
17.
18.
Encapsidation of host restriction factor APOBEC3G (A3G) into vif-deficient human immunodeficiency virus type 1 (HIV-1) blocks virus replication at least partly by C-to-U deamination of viral minus-strand DNA, resulting in G-to-A hypermutation. A3G may also inhibit HIV-1 replication by reducing viral DNA synthesis and inducing viral DNA degradation. To gain further insight into the mechanisms of viral inhibition, we examined the metabolism of A3G-exposed viral DNA. We observed that an overall 35-fold decrease in viral infectivity was accompanied by a five- to sevenfold reduction in viral DNA synthesis. Wild-type A3G induced an additional fivefold decrease in the amount of viral DNA that was integrated into the host cell genome and similarly reduced the efficiency with which HIV-1 preintegration complexes (PICs) integrated into a target DNA in vitro. The A3G C-terminal catalytic domain was required for both of these antiviral activities. Southern blotting analysis of PICs showed that A3G reduced the efficiency and specificity of primer tRNA processing and removal, resulting in viral DNA ends that are inefficient substrates for integration and plus-strand DNA transfer. However, the decrease in plus-strand DNA transfer did not account for all of the observed decrease in viral DNA synthesis associated with A3G. These novel observations suggest that HIV-1 cDNA produced in the presence of A3G exhibits defects in primer tRNA processing, plus-strand DNA transfer, and integration.  相似文献   

19.
Chen H  Engelman A 《Journal of virology》2000,74(17):8188-8193
Two activities of retroviral integrase, 3' processing and DNA strand transfer, are required to integrate viral cDNA into a host cell chromosome. Integrase activity has been analyzed in vitro using purified protein and recombinant DNA substrates that model the U3 and U5 ends of viral cDNA or by using viral preintegration complexes (PICs) that form during virus infection. Numerous studies have investigated changes in integrase or viral DNA for effects on both 3' processing and DNA strand transfer activities using purified protein, but similar analyses have not been carried out using PICs. Here, we analyzed PICs from human immunodeficiency virus type 1 (HIV-1) strain 604del, an integration-defective mutant lacking 26 bp of U5, and revE1, a revertant of 604del containing an additional 19-bp deletion, for levels of 3' processing activity that occurred in infected cells and for levels of in vitro DNA strand transfer activity. Whereas revE1 supported one-third to one-half of the level of wild-type DNA strand transfer activity, the level of 604del DNA strand transfer activity was undetectable. Surprisingly, integrase similarly processed the 3' ends of 604del and revE1 in vivo. We therefore conclude that 604del is blocked in its ability to replicate in cells after the 3' processing step of retroviral integration. Whereas Western blotting showed that wild-type, revE1, and 604del PICs contained similar levels of integrase protein, Mu-mediated PCR footprinting revealed only minimal protein-DNA complex formation at the ends of 604del cDNA. We propose that 604del is replication defective because proteins important for DNA strand transfer activity do not stably associate with this cDNA after in vivo 3' processing by integrase.  相似文献   

20.
Although there have been a few reports that the HIV-1 genome can be selectively integrated into the genomic DNA of cultured host cell, the biochemistry of integration selectivity has not been fully understood. We modified the in vitro integration reaction protocol and developed a reaction system with higher efficiency. We used a substrate repeat, 5'-(GTCCCTTCCCAGT)(n)(ACTGGGAAGGGAC)(n)-3', and a modified sequence DNA ligated into a circular plasmid. CAGT and ACTG (shown in italics in the above sequence) in the repeat units originated from the HIV-1 proviral genome ends. Following the incubation of the HIV-1 genome end cDNA and recombinant integrase for the formation of the pre-integration (PI) complex, substrate DNA was reacted with this complex. It was confirmed that the integration selectively occurred in the middle segment of the repeat sequence. In addition, integration frequency and selectivity were positively correlated with repeat number n. On the other hand, both frequency and selectivity decreased markedly when using sequences with deletion of CAGT in the middle position of the original target sequence. Moreover, on incubation with the deleted DNAs and original sequence, the integration efficiency and selectivity for the original target sequence were significantly reduced, which indicated interference effects by the deleted sequence DNAs. Efficiency and selectivity were also found to vary discontinuously with changes in manganese dichloride concentration in the reaction buffer, probably due to its influence on the secondary structure of substrate DNA. Finally, integrase was found to form oligomers on the binding site and substrate DNA formed a loop-like structure. In conclusion, there is a considerable selectivity in HIV-integration into the specified sequence; however, similar DNA sequences can interfere with the integration process, and it is therefore difficult for in vivo integration to occur selectively in the actual host genome DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号