首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims Despite wide consensus that ecological patterns and processes should be studied at multiple spatial scales, the temporal component of diversity variation has remained poorly examined. Specifically, rare species may exhibit patterns of diversity variation profoundly different from those of dominant taxa. Location Southern Finland. Methods We used multiplicative partitioning of true diversities (species richness, Shannon diversity) to identify the most important scale(s) of variation of benthic macroinvertebrate communities across several hierarchical scales, from individual samples to multiple littorals, lakes and years. We also assessed the among‐scale variability of benthic macroinvertebrate community composition by using measures of between‐ and within‐group distances at hierarchical scales. Results On average, a single benthic sample contained 23% of the total regional macroinvertebrate species pool. For both species richness and Shannon diversity, beta‐diversity was clearly the major component of regional diversity, with within‐littoral beta‐diversity (β1) being the largest component of gamma‐diversity. The interannual component of total diversity was small, being almost negligible for Shannon index. Among‐sample (within‐littoral) diversity was related to variation of substratum heterogeneity at the same scale. By contrast, only a small proportion of rare taxa was found in an average benthic sample. Thus, dominant species among lakes and years were about the same, whereas rare species were mostly detected in a few benthic samples in one lake (or year). For rare species, the temporal component of diversity was more important than spatial turnover at most scales. Main conclusions While individual species occurrences and abundances, particularly those of rare taxa, may vary strongly through space and time, patterns of dominance in lake littoral benthic communities are highly predictable. Consequently, many rare species will be missed in temporally restricted samples of lake littorals. In comprehensive biodiversity surveys, interannual sampling of littoral macroinvertebrate communities is therefore needed.  相似文献   

2.
Economic Importance of the Medicinal Plant Trade in Sierra Leone. This study identified, quantified, and evaluated the economic importance of the medicinal plant trade in Sierra Leone so that recommendations for conservation could be made. We carried out a quantitative market survey. We interviewed 120 vendors in three major cities and all vendors in two towns near a national park. Apart from the semistructured interviews, specimen samples were collected and identified, prices noted, and sales units measured. More than 40 species were traded in urban markets, nine species being the most frequently traded in all three cities. Only two plants were traded in the towns: Xylopia aethiopica (Dunal) A.Rich.and Garcinia kola Heckel. Most plants were traded in the form of dried bark or leaves. It was estimated that at least USD 64,000 are being annually traded in informal markets in major cities, the nine species most frequently traded contributing most of the retail value. Little information was found on import/export figures. Results from this study indicate that the trade of certain medicinal plants could be promoted as an alternative livelihood strategy for edge communities of protected areas. However, more information is needed on harvesting techniques, source and abundance of the species traded.  相似文献   

3.
Studies investigating congruent variations in species richness patterns in alpine habitats are scarce. We investigated the potential of using the indicator taxa approach for species richness in alpine habitats of the Scandes (Norway). In four areas, we investigated seven functional and taxonomic terrestrial groups of organisms and evaluated their contribution to the species diversity. The function of each group as a surrogate for the overall species diversity or for the diversity of another taxon was analysed. Three groups of invertebrates (spiders without Lycosids, Lycosids only, and ground beetles), three groups of plants (shrubs, graminoids, and herbs), and lichens were used for a cross-taxon analysis of species diversity. Congruence in species richness was restricted to several significant results, with vascular plants and spiders (Araneae) being best suited as surrogate taxa in alpine habitats of the Scandes. In the cross-taxon analyses they showed strongest significant positive correlations, covering the total species richness of the alpine habitats best. Species counts in one group account for up to 70% of the variation in total species richness. We found only limited evidence for an ideal, efficient biodiversity indicator taxon that could be applied without restrictions at different alpine habitats in low and middle alpine areas. Thus, our results suggest that it is very important to use more than one taxon as indicator for species richness in terrestrial alpine habitats. This should facilitate future conservation planning in alpine areas.  相似文献   

4.
As the area of plantation forest expands worldwide and natural, unmanaged forests decline there is much interest in the potential for planted forests to provide habitat for biodiversity. In regions where little semi-natural woodland remains, the biodiversity supported by forest plantations, typically non-native conifers, may be particularly important. Few studies provide detailed comparisons between the species diversity of native woodlands which are being depleted and non-native plantation forests, which are now expanding, based on data collected from multiple taxa in the same study sites. Here we compare the species diversity and community composition of plants, invertebrates and birds in Sitka spruce- (Picea sitchensis-) dominated and Norway spruce- (Picea abies-) dominated plantations, which have expanded significantly in recent decades in the study area in Ireland, with that of oak- and ash-dominated semi-natural woodlands in the same area. The results show that species richness in spruce plantations can be as high as semi-natural woodlands, but that the two forest types support different assemblages of species. In areas where non-native conifer plantations are the principle forest type, their role in the provision of habitat for biodiversity conservation should not be overlooked. Appropriate management should target the introduction of semi-natural woodland characteristics, and on the extension of existing semi-natural woodlands to maintain and enhance forest species diversity. Our data show that although some relatively easily surveyed groups, such as vascular plants and birds, were congruent with many of the other taxa when looking across all study sites, the similarities in response were not strong enough to warrant use of these taxa as surrogates of the others. In order to capture a wide range of biotic variation, assessments of forest biodiversity should either encompass several taxonomic groups, or rely on the use of indicators of diversity that are not species based.  相似文献   

5.
Soil chemistry can play an important role in determining plant diversity. Serpentine soils are usually toxic to many plant taxa, which limits plant diversity compared to that on adjacent non-serpentine soils. The usually high concentrations of toxic metals in serpentine soils are considered to be the edaphic factors that cause low diversity and high endemism. This paper aimed primarily to determine whether there is a relationship between serpentine soil chemistry and species richness on the Witwatersrand and to compare species richness of the serpentine areas with that of adjacent non-serpentine areas as well as with the species richness of the serpentine areas in the Barberton Greenstone Belt. The alpha- and beta-diversity of the Witwatersrand serpentine and non-serpentine areas was also investigated. A secondary aim of this study was to determine which of the non-serpentine taxa were more common on the serpentine than off the serpentine, which taxa were more common off the serpentine than on the serpentine and which taxa were equally common on and off serpentine soils. There was no significant difference in alpha-diversity between the serpentine and the adjacent non-serpentine areas, but beta-diversity is higher between serpentine plots than between non-serpentine plots. Although soil factors do affect species richness and diversity of plants on the Witwatersrand to a limited extent, the concentrations of soil chemicals in serpentine soils are not sufficiently different from those in non-serpentine soils to significantly influence the species richness and diversity of the serpentine soils. The high, but similar, diversity on serpentine and non-serpentine soils on the Witwatersrand indicates that soil factors do not play a significant role in determining diversity on potentially toxic soils in the area.  相似文献   

6.
云南迪庆州传统藏药雪莲资源的保护和可持续利用   总被引:2,自引:0,他引:2  
对云南省迪庆藏族自治州传统藏药雪莲资源及其利用的状况进行了调查。通过调查发现该地区雪莲植物共有22种及1变种,市场上常当作商品出售的有5种。雪莲每年的贸易量达到55000kg,而且资源利用方式落后,已经造成雪莲特别是二年生的雪莲个体数明显减少,严重威胁了这些物种的生存。依据调查结果,建议提高人们的保护意识,控制雪莲的采集量、限制一年生雪莲采集的时间以及禁止多年生雪莲的采集。  相似文献   

7.
Grasslands are constructed for soil and wildlife conservation in agricultural landscapes across Europe and North America. Constructed grasslands may mitigate habitat loss for grassland-dependent animals and enhance ecosystem services that are important to agriculture. The responses of animal species richness and abundance to grassland habitat quality are often highly variable, however, and monitoring of multiple taxa is often not feasible. We evaluated whether multiple animal taxa responded to variation in constructed grassland habitats of southwest Ohio, USA, in ways that could be predicted from indicators based on quality assessment indices, Simpson diversity, and the species richness of ants and plants. The quality assessment indices included a widely used Floristic Quality Assessment (FQA) index, and a new Ant Quality Assessment (AntQA) index, both based on habitat specificity and species traits. The ant and plant indicators were used as predictor variables in separate general linear models of four target taxa—bees, beetles, butterflies and birds—with response variables of overall species richness and abundance, and subsets of taxa that included the abundance of ecosystem-service providers and grassland-associated species. Plant Simpson diversity was the best-fitting predictor variable in models of overall bee and beetle abundance, and the abundance of bees classified as ecosystem-service (ES) providers. FQA and plant richness were the best predictors of overall butterfly species richness and abundance. Ant species richness was the best predictor of overall bird species richness and abundance as well as the abundance of ES birds, while the AntQA index was the best predictor for the abundance of grassland bird and butterfly species. Thus, plant Simpson diversity and ant species richness were the most effective indicators for complementary components of grassland animal communities, whereas quality assessment indices were less robust as indicators and require more knowledge on the habitat specificity of individual ant and plant species.  相似文献   

8.
Studying patterns of species distributions along elevation gradients is frequently used to identify the primary factors that determine the distribution, diversity and assembly of species. However, despite their crucial role in ecosystem functioning, our understanding of the distribution of below‐ground fungi is still limited, calling for more comprehensive studies of fungal biogeography along environmental gradients at various scales (from regional to global). Here, we investigated the richness of taxa of soil fungi and their phylogenetic diversity across a wide range of grassland types along a 2800 m elevation gradient at a large number of sites (213), stratified across a region of the Western Swiss Alps (700 km2). We used 454 pyrosequencing to obtain fungal sequences that were clustered into operational taxonomic units (OTUs). The OTU diversity–area relationship revealed uneven distribution of fungal taxa across the study area (i.e. not all taxa are everywhere) and fine‐scale spatial clustering. Fungal richness and phylogenetic diversity were found to be higher in lower temperatures and higher moisture conditions. Climatic and soil characteristics as well as plant community composition were related to OTU alpha, beta and phylogenetic diversity, with distinct fungal lineages suggesting distinct ecological tolerances. Soil fungi, thus, show lineage‐specific biogeographic patterns, even at a regional scale, and follow environmental determinism, mediated by interactions with plants.  相似文献   

9.
10.
In this paper, we analyzed the taxonomic diversity of the Argentine dicots to evaluate their relationships with area, latitude, and longitude. We also evaluated species diversity and higher taxa diversity relationships. The families, genera and species diversity in Argentine dicots was not explained by the area of each province but it varied through latitudinal and longitudinal gradients. The taxonomic diversity of these plants increased from high to low latitudes and west–east longitudes. These patterns would explain why the main diversity centers are located in the North region of this country. As we expected the species diversity and higher taxa diversity showed a positive relationship. At this scale, higher taxa diversity could be use as surrogate for species diversity.  相似文献   

11.
The present-day geographic distribution of individual species of five taxonomic groups (plants, dragonflies, butterflies, herpetofauna and breeding birds) is relatively well-known on a small scale (5 × 5 km squares) in Flanders (north Belgium). These data allow identification of areas with a high diversity within each of the species groups. However, differences in mapping intensity and coverage hamper straightforward comparisons of species-rich areas among the taxonomic groups. To overcome this problem, we modelled the species richness of each taxonomic group separately using various environmental characteristics as predictor variables (area of different land use types, biotope diversity, topographic and climatic features). We applied forward stepwise multiple regression to build the models, using a subset of well-surveyed squares. A separate set of equally well-surveyed squares was used to test the predictions of the models. The coincidence of geographic areas with high predicted species richness was remarkably high among the four faunal groups, but much lower between plants and each of the four faunal groups. Thus, the four investigated faunal groups can be used as relatively good indicator taxa for one another in Flanders, at least for their within-group species diversity. A mean predicted species diversity per mapping square was also estimated by averaging the standardised predicted species richness over the five taxonomic groups, to locate the regions that were predicted as being the most species-rich for all five investigated taxonomic groups together. Finally, the applicability of predictive modelling in nature conservation policy both in Flanders and in other regions is discussed.  相似文献   

12.
1. Data on host plant associations of butterflies (Papilionoidea, excluding Hesperiidae) from two biogeographical regions were used to investigate (1) whether tropical herbivores are more narrowly specialized with regard to host plant choice than those of northern temperate zones, and (2) whether tropical butterflies show a greater diversity of host plant affiliations. 2. There was no evidence for a more restricted diet breadth of tropical butterflies, with diet breadth being measured as number of host plant families used per species. In the families Papilionidae, Pieridae, and Nymphalidae, host plant ranges of West Palaearctic and South-East Asian species are similar, whereas in one speciose group within the Lycaenidae, the Polyommatini, tropical species are significantly more polyphagous. 3. Diet breadth also differs among higher butterfly taxa. While Papilionidae, Pieridae, the nymphalid subfamilies Satyrinae, Morphinae, Libytheinae and Apaturinae, as well as the temperate-zone Polyommatini in the Lycaenidae are composed predominantly of host specialists, the degree of polyphagy is higher among the remaining nymphalid subfamilies and in many lycaenids. These results challenge strongly the view that tropical herbivores are generally more specialized in this regard than herbivores of higher latitudes. Rather, chemical constraints and phylogenetic conservatism shape host plant associations in many taxa in such a way that differences between temperate and tropical representatives are slight. 4. Host plant diversity, measured as the number of plant families used per butterfly family and by application of the log-series model, is much higher in South-East Asian Nymphalidae and Lycaenidae (the two largest families) than in their Western Palaearctic relatives. No such differences are observed in the Papilionidae and Pieridae (the two smaller families). Besides effects of sample size, the strong association of papilionid and pierid butterflies with plants characterized by a small set of classes of secondary plant compounds might generally restrict their capability to utilize a broader taxonomic range of host plants. 5. The results indicate that high floral diversity can be reflected by higher diversity of host plant affiliations of herbivores, but taxonomic idiosyncrasies render it difficult to draw generalized conclusions.  相似文献   

13.
There is a long history of archaeologists and forensic scientists using pollen found in a dust sample to identify its geographic origin or history. Such palynological approaches have important limitations as they require time-consuming identification of pollen grains, a priori knowledge of plant species distributions, and a sufficient diversity of pollen types to permit spatial or temporal identification. We demonstrate an alternative approach based on DNA sequencing analyses of the fungal diversity found in dust samples. Using nearly 1,000 dust samples collected from across the continental U.S., our analyses identify up to 40,000 fungal taxa from these samples, many of which exhibit a high degree of geographic endemism. We develop a statistical learning algorithm via discriminant analysis that exploits this geographic endemicity in the fungal diversity to correctly identify samples to within a few hundred kilometers of their geographic origin with high probability. In addition, our statistical approach provides a measure of certainty for each prediction, in contrast with current palynology methods that are almost always based on expert opinion and devoid of statistical inference. Fungal taxa found in dust samples can therefore be used to identify the origin of that dust and, more importantly, we can quantify our degree of certainty that a sample originated in a particular place. This work opens up a new approach to forensic biology that could be used by scientists to identify the origin of dust or soil samples found on objects, clothing, or archaeological artifacts.  相似文献   

14.
Fossil pollen data from sediment cores may be used as a measure for past plant diversity. According to the theory of probability, palynological richness is positively related to the pollen count. In a low pollen count, only common taxa are detected, whereas rare taxa are only detected by chance. The detection of all pollen taxa requires a very high pollen count, which is time-consuming. In regular palynological investigations, the detected richness in pollen spectra varies with the pollen count. Rarefaction analysis estimates palynological richness in an exactly equal-sum count for all samples, so that comparison between samples is meaningful. However, the over-representation of some taxa suppresses the detection probability of rare taxa; low total pollen abundance in a sample enhances the detection probability of rare taxa and long-distance transported pollen grains. These factors bias the observed palynological richness and distort comparisons. Palynological richness in a pollen count proportional to its pollen influx may be one proxy for reconstructing diversity trends through time. The use of this proxy overcomes most problems encountered in rarefaction analysis, but is constrained by inaccuracy in estimating pollen influx due to the imprecise time control of sediment cores. Estimating palynological richness by mathematical methods may be another way of reconstructing pollen diversity. Pollen data tend to reflect diversity on a regional scale. Sites from small basins have the advantage of recording diversity at both local and regional scales, if the detection of each taxon is independent. By associating one site from a large basin with a series of sites from very small basins (e.g. forest-hollows), information about both regional and local diversity may be obtained. Entomophilous pollen taxa may have to be measured using a different strategy than anemophilous taxa.  相似文献   

15.
As one of the most important hypotheses on biogeographical distribution, Rapoport's rule has attracted attention around the world. However, it is unclear whether the applicability of the elevational Rapoport's Rule differs between organisms from different biogeographical regions. We used Stevens’ method, which uses species diversity and the averaged range sizes of all species within each (100 m) elevational band to explore diversity‐elevation, range‐elevation, and diversity‐range relationships. We compared support for the elevational Rapoport's rule between tropical and temperate species of seed plants in Nepal. Neither tropical nor temperate species supported the predictions of the elevational Rapoport's rule along the elevation gradient of 100–6,000 m a.s.l. for any of the studied relationships. However, along the smaller 1,000–5,000 m a.s.l. gradient (4,300 m a.s.l. for range‐elevation relationships) which is thought to be less influenced by boundary effects, we observed consistent support for the rule by tropical species, although temperate species did not show consistent support. The degree of support for the elevational Rapoport's rule may not only be influenced by hard boundary effects, but also by the biogeographical affinities of the focal taxa. With ongoing global warming and increasing variability of temperature in high‐elevation regions, tropical taxa may shift upward into higher elevations and expand their elevational ranges, causing the loss of temperate taxa diversity. Relevant studies on the elevational Rapoport's rule with regard to biogeographical affinities may be a promising avenue to further our understanding of this rule.  相似文献   

16.
The vegetation of shallow depressions on Ivorian granite inselbergs was studied along a gradient from the savanna zone in the north to the rainforest zone in the south of the country. Short-term inundation and prolonged drought are typical features of this habitat. In total, 64 taxa belonging to 25 families were recorded, with the Poaceae, Cyperaceae and Fabaceae accounting for the greatest proportion of species. Annuals represent the predominant life form and comprise nearly two thirds of all species recorded. DCA ordination of the sample plots illustrates that diversity decreases from north to south, and is accompanied by a gradual transition in the ambient vegetation from savanna to rainforest. This decrease is in marked contrast with diversity of surrounding vegetation types. In the drier northern area, it appears as if the less favourable environmental conditions prevent a state of community equilibrium being attained in the shallow depressions. This enables weak competitors to co-exist along with more vigorous species, which, in the south of the country, form species-poor stands. Furthermore, the fact that inselbergs in the rainforest zone are more isolated enhances the probability of extinction of less competitive associates.  相似文献   

17.
The microbiome associated with ornamental plants has largely been neglected, despite its potential for impacting plant health. This work characterized the composition, diversity, and microbial co‐associations in the soil microbiome associated with species and cultivars of plant in the genus Buxus (common name boxwood), a group of woody perennial shrubs commonly used in residential landscapes and found in native ecosystems. Soil was collected from 82 individual curated boxwood accessions at the U.S. National Arboretum National Boxwood Collection. Amplicon libraries targeting archaea, bacteria, and fungi were generated and sequenced using the Illumina MiSeq platform. Identification of individual sequence variants resulted in 275 archaeal, 15,580 bacterial, and 7,525 fungal taxa. Neither spatial distance among samples nor association with different types of boxwood were significant predictors of soil microbiome composition. However, archaeal and bacterial diversity was significantly different in soil from distinct types of boxwood. Co‐association networks indicated that archaea and bacteria show greater evidence of being keystone taxa than fungi. Overall, this work demonstrates the potential for targeting specific keystone taxa to shift the soil microbiome associated with these boxwood accessions and that planting different species or cultivars in the landscape may shift the diversity of prokaryotic microorganisms.  相似文献   

18.
The macrofauna associated with Fucus serratus at Dale in south-west Wales contained 30 taxa of which five were common: these comprised four encrusting bryozoans and a hydroid. The bryozoans Flustrellidra hispida and Electra pilosa showed significant variations in abundance according to the size and structure of plants colonised. Electra was most abundant on plants where other bryozoans were least numerous. Colony growth in Electra was proportional to the amount of space provided by individual plant segments whilst growth in competitively superior species appeared to be independent of the size of the plant segments colonised. Dynamena pumila was larger and more abundant on larger segment faces where competition was presumably weaker. Each species showed a specific pattern of zonation along the fronds. The dominant species were generally more abundant on the concave surfaces of the plants. There was some evidence for the tendency for certain taxa to co-occur but the degree of association between species was weak and probably of limited biological significance. Species diversity varied with plant structure. More species occurred on concave surfaces at all plant levels but the overall pattern of diversity on the two segment faces was similar; diversity was greatest in the shrubbier mid-frond regions. Differential distribution of the dominant encrusting taxa within this Fucus community results in a considerable degree of niche segregation and ecological isolation.  相似文献   

19.
Cloning/sequencing and fragment analysis of ribosomal RNA genes (rDNA) are becoming increasingly common methods for the identification of microbial taxa. Sequences of these genes provide many additional taxonomic characters for species that otherwise have few distinctive morphological features, or that require involved microscopy or laboratory culture and testing. These same approaches are now being applied with great success in ecological studies of natural communities of microorganisms. Extensive information on the composition of natural microbial assemblages is being amassed at a rapid pace through genetic analyses of environmental samples and comparison of the resulting genetic information with well-established (and rapidly growing) public databases. We examined microbial eukaryote diversity in a natural seawater sample from the coastal western North Atlantic Ocean using two molecular biological approaches: the cloning and sequencing of rRNA genes and by fragment analysis of these genes using the terminal restriction fragment length polymorphism (T-RFLP) method. A simple experiment was carried out to examine changes in the overall eukaryote (largely protistan) diversity and species composition (phylotype diversity) of a natural microbial assemblage when a seawater sample is placed in a container and incubated at ambient light and temperature for 72 h. Containment of the natural seawater sample resulted in relatively minor changes in the overall eukaryote diversity (species richness) obtained by either molecular method at three time points (time-zero, time-24 h, time-72 h). However, substantial changes in the dominance of particular eukaryote phylotypes took place between the three sampling times. Only 18% of the total number of phylotypes observed in the study were observed at all three time points, while 65% (108 of 165) phylotypes were observed only at a single time point (54 unique phylotypes initially, 37 more unique phylotypes at 24 h, and 17 more at 72 h). The results of this study indicate that a high diversity of protistan taxa existed in the original seawater sample at very low abundance, and thus were not observed in the initial characterization of community structure. Containment resulted in significant shifts in the dominance of these taxa, enabling the presence of previously unobserved phylotypes to be documented after 24 or 72 h of incubation.  相似文献   

20.
Molecular methods based on soil DNA extracts are increasingly being used to study the fungal diversity of ectomycorrhizal (EM) fungal communities in soil. Contrary to EM root tip identification, the use of molecular methods enables identification of extramatrical mycelia in soil. To compare fungal diversity as determined by root tip identification and mycelial identification, six soil samples were analysed. Root tips were extracted from the six samples and after amplification, the basidiomycete diversity on the root tips was analysed by denaturing gradient gel electrophoresis (DGGE). The soil from the six samples was sieved, total soil DNA was extracted and after amplification, the basidiomycete diversity in the soil fractions was analysed by DGGE. Fourteen different bands were excised from the DGGE gel and sequenced; fungal taxon names could be assigned to eight bands. Out of a total of 14 fungal taxa detected in soil, 11 fungal taxa were found on root tips, of which seven were EM fungal taxa. To examine whether the sieving treatment would affect EM species diversity, two different sieve mesh sizes were used and in addition, the organic soil fraction was analysed separately. DGGE analysis showed no differences in banding pattern for the different soil fractions. The organic fraction gave the highest DGGE band intensities. This work demonstrates that there is a high correspondence between basidiomycete diversity detected by molecular analysis of root tips and soil samples, irrespective of the soil fraction being analysed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号