首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Tassel and ear primordia were collected from greenhouse-grown specimens of the Mexican maize landrace Chapalote and prepared for scanning electron microscopic (SEM) examination. Measurements of inflorescence apices and spikelet pair primordia (spp) were made from SEM micrographs. Correlation of inflorescence apex diameter with number of spikelet ranks showed no significant difference between tassels and ears, except at the two-rank level where the ear apical meristem had a significantly smaller diameter than corresponding two-ranked tassels. Within individual inflorescences, spp in different ranks enlarged at comparable rates, although the rates from one ear to the next along the stem differed. In both tassels and ears, spp divide to form paired sessile and pedicellate spikelet primordia when the spp is 150 μm wide; ear axes are significantly thicker than tassel axes at the time of bifurcation. The similarities in growth between ear and tassel primordia lend further support to the hypothesis that both the maize tassel and ear are derived from a common inflorescence pattern, a pattern shared with teosinte. Inflorescence primordial growth also suggests that a key character difference between teosinte and maize, distichous vs. polystichous arrangement of spikelets, may be related to size of the apical dome and/or rate of primordium production by the apical meristem. There appears to be more than a single morphological event in the shift from vegetative to reproductive growth. The evocation of axillary buds (ears) is independent of, and temporally separated from, the transition to flowering at the primary shoot apex (tassel).  相似文献   

2.
The discovery of staminodes within the female inflorescences, or “ears,” of some Mexican maize races, and of feminized male inflorescences in annual Mexican teosinte, provides additional support for the theory that the ears of maize evolved from the male primary lateral branch tassels of teosinte by sexual transmutation, and that teosinte is the wild ancestor of maize.  相似文献   

3.
Some have postulated that highland Mexican maize was derived from an ancient high-altitude teosinte and that later introgression between the two taxa occurred. We used scanning electron microscopy to examine the inflorescence development in both the tassel and ear of a high-altitude Toluca teosinte. One of the most interesting observations was the presence of atypical multiranked orthostiches in the central spike of some male Toluca teosinte inflorescences. Most tassels exhibited a central spike with a pure, four-ranked, tetrastichous phyllotaxy or an intermediate (distichous/tetrastichous) phyllotaxy. A few A(1) tassels had a more typical distichous (two-ranked) central spike. Most ears showed the two-rank condition expected for teosintes. However, three ears displayed an intermediate (distichous/tristichous or distichous/ tetrastichous) phyllotaxy and one ear was tetrastichous. Our analysis of spikelet and floret development in all Toluca inflorescences revealed a pattern similar to that in landrace and U.S. maize, as well as to their close relatives, the teosintes. We suggest that this investigation may reveal inflorescence development in a natural maize-teosinte hybrid. This study further supports our hypothesis that both maleness and femaleness in the Zea inflorescences are derived from a common developmental pathway and underpins a proposal that andropogonoid grasses share a common pattern of inflorescence development.  相似文献   

4.
The ontogeny of tassels and ears in a perennial Mexican teosinte, Zea perennis (Hitchc.) Reeves and Mangelsdorf, was examined using scanning electron microscopy and light microscopy. Ear development follows a pattern previously described for two annual teosintes, Z. mays subsp. mexicana and Z. mays subsp. parviglumis var. parviglumis (race Balsas), and for the bisexual mixed inflorescence in a diploperennial teosinte, Z. diploperennis; it differs from that described for the ear of Z. diploperennis plants grown at the latitudes of Iowa and Wisconsin. Common bud primordia of the ear are initiated in the axil of distichously arranged bracts along the ear axis. These common primordia bifurcate to form paired pedicellate and sessile spikelet primordia. Development of the pedicellate spikelets in the ear is arrested leaving the sessile spikelets, along with the adjoining rachis segment, to form solitary grains enclosed within cupulate fruitcases. The organogenesis of the central spike of the tassel is similar to that previously described in other Zea taxa. This developmental study supports the hypothesis that both femaleness and maleness are derived from and expressed on a common background; it is consistent with the view that the maize ear was derived from the central spike of a male inflorescence terminating a primary branch of the main axis of the inflorescence.  相似文献   

5.
The normal pattern of maize floral development of staminate florets on the terminal inflorescence (tassel) and pistillate florets on the lateral inflorescences (ears) is disrupted by the recessive mutation tassel seed 2. Tassel seed 2 mutant plants develop pistillate florets instead of staminate florets in the tassel. In addition, the ears of tassel seed 2 plants display irregular rowing of kernels due to the development of the normally suppressed lower floret of each spikelet. The morphology of tassel and ear florets of the recessive maize mutant tassel seed 2 has been compared to those of wild-type maize through development. We have identified the earliest stages at which morphological signs of sex differentiation are evident. We find that sex determination occurs during the same stage on tassel and ear development. Early postsex determination morphology of florets in wild-type ears and in tassel seed 2 tassels and ears is identical.  相似文献   

6.
The ontogeny of tassels and ears in two annual Mexican teosintes, Zea mays subsp. mexicana and Z. mays subsp. parviglumis, was examined using scanning electron microscopy and light microscopy. Ear development in these annual teosintes follows a pattern previously described as leading to the bisexual mixed inflorescence in Z. diploperennis. Common bud primordia are initiated in the axils of distichously arranged bracts along the ear axis. These common primordia bifurcate to form paired sessile and pedicellate spikelet primordia. Development of pedicellate spikelets is arrested leaving the sessile spikelets, along with the adjoining rachis segment, to form solitary grains enclosed within cupulate fruitcases. Development of the central tassel spike is similar to that previously described in the Z. diploperennis tassel, except that the first formed axillary bud primordia form precocious tassel branches. The origin of these tassel branches suggests a possible mechanism for the transition from a distichous spike, characteristic of teosinte, to a polystichous spike, typical of maize.  相似文献   

7.
Development of the mixed inflorescence in Zea diploperennis Iltis, Doebley & Guzman (Poaceae) Mixed inflorescences of diploperennial teosinte, which terminate the main branches of the plant, arise in the same fashion as tassel spikes. The apical meristem produces bracts in a decussate arrangement. A single axillary bud primordium is initiated in the axil of each bract. Growth of the bract is retarded as the bud enlarges and divides longitudinally into two separate spikelet primordia. The paired spikelets running in two ranks on either side of the inflorescence primordium produce the four-rowed condition typical of teosinte tasselS. In the transition region between male and female portions of the inflorescence, development of the pedicellate spikelet of each spikelet pair is arrested at an early ontogenetic stage. Continued growth of the sessile spikelet and associated rachis flaps destroy the remnants of the arrested spikelet in basal portions of the inflorescence. A similar abortion of the lower floret of the sessile spikelet results in a single pistillate floret per node at anthesis. These results provide further support for the hypothesis that a tassel-like mixed inflorescence of teosinte is ancestral to the maize ear.  相似文献   

8.
Gene flow between maize [Zea mays (L.)] and its wild relatives does occur, but at very low frequencies. Experiments were undertaken in Tapachula, Nayarit, Mexico to investigate gene flow between a hybrid maize, landraces of maize and teosinte (Z. mays ssp. mexicana, races Chalco and Central Plateau). Hybridization, flowering synchrony, pollen size and longevity, silk elongation rates, silk and trichome lengths and tassel diameter and morphology were measured. Hybrid and open-pollinated maize ears produced a mean of 8 and 11 seeds per ear, respectively, when hand-pollinated with teosinte pollen, which is approximately 1–2% of the ovules normally produced on a hybrid maize ear. Teosinte ears produced a mean of 0.2–0.3 seeds per ear when pollinated with maize pollen, which is more than one-fold fewer seeds than produced on a maize ear pollinated with teosinte pollen. The pollination rate on a per plant basis was similar in the context of a maize plant with 400–500 seeds and a teosinte plant with 30–40 inflorescences and 9–12 fruitcases per inflorescence. A number of other factors also influenced gene-flow direction: (1) between 90% and 95% of the fruitcases produced on teosinte that was fertilized by maize pollen were sterile; (2) teosinte collections were made in an area where incompatibility systems that limit fertilization are present; (3) silk longevity was much shorter for teosinte than for maize (approx. 4 days vs. approx. 11 days); (4) teosinte produced more pollen on a per plant basis than the landraces and commercial hybrid maize; (5) teosinte frequently produced lateral branches with silks close to a terminal tassel producing pollen. Collectively these factors tend to favor crossing in the direction of teosinte to maize. Our results support the hypothesis that gene flow and the subsequent introgression of maize genes into teosinte populations most probably results from crosses where teosinte first pollinates maize. The resultant hybrids then backcross with teosinte to introgress the maize genes into the teosinte genome. This approach would slow introgression and may help explain why teosinte continues to co-exist as a separate entity even though it normally grows in the vicinity of much larger populations of maize.  相似文献   

9.
Suppressor of sessile spikeletsl (Sos1) is a dominant mutant of maize that blocks branching of the spikelet-pair primordium to form the sessile spikelet during ear development. As a result, Sos1 mutant ears and tassels possess single spikelets as opposed to the normal condition of paired spikelets, one sessile and the other pedicellate. Sos1 also causes a reduction in the number of tassel branches and the number of orthostichies (or cupule ranks) in the ear. The sos1 genetic locus maps to the short arm of maize chromosome 4. The Sos1 single spikelet phenotype appears similar to the single spikelet phenotype found in teosinte, the probable progenitor of maize. This similarity invites the hypothesis that sos1 had a role in the evolution of maize from teosinte. However, genetic mapping data and a comparison of the developmental basis of the single spikelet condition in the Sos1 mutant and teosinte demonstrate that their similar phenotypes result from distinct genetic-developmental mechanisms. These results indicate that sos1 was not involved in the evolution of maize and caution against drawing conclusions of homology based solely on similar adult phenotypes.  相似文献   

10.
Argentine popcorn is an exotic race considered by some to be similar to the earliest cultivated maize. We used scanning electron microscopy to examine inflorescence development in both the tassel and ear. In our material, and under our conditions, both two-ranked central tassel spikes and two-ranked ears were observed as well as more typical four-ranked structures. Subsequent development of spikelets and florets was similar to that observed in other varieties of maize and in their close relatives—the teosintes. We suggest that the switch from two-ranked to four-ranked inflorescences (a key trait difference between teosinte and maize) may be due to a change in developmental timing allowing an additional meristem bifurcation of axillary branch primordia prior to the initiation of spikelet pair primordia.  相似文献   

11.
The development of the unisexual male and female flowers of Zea mays from bisexual initials in both tassels and ears has been reinvestigated with SEM and TEM. The early stages of spikelet branch primordia, spikelet initiation, and early flower development are similar in both flowers, though differences in rates of growth of glumes, lemmas, and palea were detected. In both tassel and ear flowers, a pair of stamens arises opposite the lemmas and a third stamen initiates later at right angles to the first pair but from a point on the meristem below its insertion. Gynoecia develop on both tassel and ear flowers first as a ridge which overgrows the apical meristem giving rise to the stylar canal and the elongate silk. Male flowers arise in the tassel through selective vacuolation and abortion of the cells of the early gynoecium. The single female flower in each ear spikelet arises through the vacuolation and abortion of stamens in the upper flower and the repression of growth of and the eventual regression of the lower flower in each spikelet. The significance of these selective organ abortions for practical applications is discussed.  相似文献   

12.
13.
玉米为雌雄同株异花植物,其雄穗着生于植株顶部,雌穗腋生。雄穗一方面需产生足量花粉以保证雌穗授粉结实,另一方面由于对下部叶片的遮蔽作用和自身营养需求,其生长发育会同时影响叶片光合作用效率和能量分配,因此优化雄穗结构是提高玉米产量的重要措施之一。玉米雄穗性状包括雄穗分枝数、雄穗分枝长度、雄穗主轴长度、雄穗分枝总长度、雄穗分枝角度等,均为多基因控制的数量性状。自20世纪90年代,研究者开始利用数量性状位点(quantitative trait locus,QTL)定位方法解析玉米雄穗性状遗传结构;随着玉米自交系B73等参考基因组释放,以及DNA微阵列、基因组重测序等高通量基因分型技术的日益成熟,全基因组关联分析(genome-wide association study, GWAS)成为数量性状遗传研究的主流方法,目前已鉴定出大量玉米雄穗性状遗传位点。通过总结雄穗性状遗传定位研究结果,构建一致性图谱并挖掘定位热点区间,有助于进一步了解雄穗性状遗传结构特征及指导雄穗性状候选基因克隆。此外,通过对调控雄穗发育的已知基因进行功能分类,可为解析玉米雄穗发育的遗传网络和调控通路提供理论支撑。  相似文献   

14.
The tassel seed mutations ts4 and Ts6 of maize cause irregular branching in its inflorescences, tassels, and ears, in addition to feminization of the tassel due to the failure to abort pistils. A comparison of the development of mutant and wild-type tassels and ears using scanning electron microscopy reveals that at least four reproductive meristem types can be identified in maize: the inflorescence meristem, the spikelet pair meristem, the spikelet meristem, and the floret meristem. ts4 and Ts6 mutations affect the fate of specific reproductive meristems in both tassels and ears. ts4 mutants fail to form spikelet meristems from spikelet pair meristems. Ts6 mutants are delayed in the conversion of certain spikelet meristems into floret meristems. Once floret meristems are established in both of these mutants, they form florets that appear normal but fail to undergo pistil abortion in the tassel. The abnormal branching associated with each mutant is suppressed at the base of ears, permitting the formation of normal, fertile spikelets. The classification of the different types of reproductive meristems will be useful in interpretation of gene expression patterns in maize. It also provides a framework for understanding meristem functions that can be varied to diversify inflorescence architectures in the Gramineae.  相似文献   

15.
Maize develops separate male and female flowers in different locations on a single plant. Male flowers develop at the tip of the shoot in the tassel, and female flowers develop on the ears, which terminate short branches. The development of male flowers in tassels and female flowers in ears is the result of selective abortion of pistils or stamens, respectively, in developing florets. Genetic analysis has shown that stamen abortion and pistil abortion are under the control of two different genetic pathways. Local levels of the plant hormone gibberellic acid determine whether or not stamens are suppressed. Pistil abortion is under the regulation of the tassel seed genes, one of which has been shown to encode a short-chain alcohol dehydrogenase. The tassel seed genes play a role in regulating the fate of inflorescence meristems as well as pistil primordium fate.  相似文献   

16.
17.
以710份玉米地方品种为材料,采用随机区组设计,研究了其在脂肪、蛋白质与淀粉等品质性状以及株高、穗长等农艺性状上的表型多样性,分析了这些研究材料的表型多样性在地理来源上的分布.结果表明:(1)平均油分含量4.92%,达到高油3、2和1等级的材料各11、2和3份,地区间差异不显著;(2)平均蛋白质含量12.55%,96%的材料达到食用玉米1等级蛋白质舍量,地区间差异显著;(3)平均淀粉含量70.88%,所有材料均未达高淀粉玉米品种审定标准;(4)株高、穗位高和雄穗分枝数等3个植株性状的变异程度大,地区间差异显著,华南、西南和西北的植株高大,雄穗发达,而华北和东北的植株矮小,雄穗分枝数较少;(5)在3个果穗性状中,变异程度大小依次是穗长、穗行数和穗粗,地区间差异显著,筛选到长穗、粗穗和多穗行材料各5、1和3份;(6)不同地区和不同性状的多样性指数均有显著差异,以华南、华东和西南玉米材料的多样性水平较高.所有研究材料的表型多样性分析结果显示这些材料的脂肪与蛋白质含量较高,淀粉舍量较低;华南、华东和西南种质的多样性水平明显高于其他地区的种质.  相似文献   

18.
Irish EE 《Plant physiology》1997,114(3):817-825
The maize (Zea mays L.) mutation Tassel seed 6 (Ts6) disrupts both sex determination in the tassel and the pattern of branching in inflorescences. This results in the formation of supernumerary florets in tassels and ears and in the development of pistils in tassel florets where they are normally aborted. A developmental analysis indicated that extra florets in Ts6 inflorescences are most likely the result of delayed determinacy in spikelet meristems, which then initiate additional floret meristems rather than initiating floral organs as in wild type. I have used culturing experiments to assay whether delayed determinacy of Ts6 mutant tassels is reflected in an altered timing of specific determination events. Length of the tassel was used as a developmental marker. These experiments showed that although Ts6 tassels elongate much more slowly than wild type, both mutant and wild-type tassels gained the ability to form flowers with organs of normal morphology in culture at the same time. In situ hybridization patterns of expression of the maize gene Kn, which is normally expressed in shoot meristems and not in determinate lateral organs, confirmed that additional meristems, rather than lateral organs, are initiated by spikelet meristems in Ts6 tassels.  相似文献   

19.
Maize (Zea mays L.) is a monoecious grass plant in which mature male and female florets form the tassel and ear, respectively. Maize is often used as a model plant to study flower development. Several maize tassel seed mutants, such as the recessive mutants tasselseed1 (ts1) and tasselseed2 (ts2), exhibit a reversal in sex determination, which leads to the generation of seeds in tassels. The phenotype of the dominant mutant, Tasselseed5 (Ts5), is similar to that of ts2. Here, we positionally cloned the underlying gene of Ts5 and characterized its function. We show that the GRMZM2G177668 gene is overexpressed in Ts5. This gene encodes a cytochrome C oxidase, which catalyzes the transformation of jasmonoyl‐L‐isoleucine (JA‐Ile) to 12OH‐JA‐Ile during jasmonic acid catabolism. Consistent with this finding, no JA‐Ile peak was detected in Ts5 tassels during the sex determination period, unlike in the wild type. Transgenic maize plants overexpressing GRMZM2G177668 exhibited a tassel‐seed phenotype similar to that of Ts5. These results indicate that the JA‐Ile peak in tassels is critical for sex determination and that the Ts5 mutant phenotype results from the disruption of this peak in tassels during sex determination.  相似文献   

20.
Hubbard L  McSteen P  Doebley J  Hake S 《Genetics》2002,162(4):1927-1935
The evolution of domesticated maize from its wild ancestor teosinte is a dramatic example of the effect of human selection on agricultural crops. Maize has one dominant axis of growth, whereas teosinte is highly branched. The axillary branches in maize are short and feminized whereas the axillary branches of teosinte are long and end in a male inflorescence under normal growth conditions. Previous QTL and molecular analysis suggested that the teosinte branched1 (tb1) gene of maize contributed to the architectural difference between maize and teosinte. tb1 mutants of maize resemble teosinte in their overall architecture. We analyzed the tb1 mutant phenotype in more detail and showed that the highly branched phenotype was due to the presence of secondary and tertiary axillary branching, as well as to an increase in the length of each node, rather than to an increase in the number of nodes. Double-mutant analysis with anther ear1 and tassel seed2 revealed that the sex of the axillary inflorescence was not correlated with its length. RNA in situ hybridization showed that tb1 was expressed in maize axillary meristems and in stamens of ear primordia, consistent with a function of suppressing growth of these tissues. Expression in teosinte inflorescence development suggests a role in pedicellate spikelet suppression. Our results provide support for a role for tb1 in growth suppression and reveal the specific tissues where suppression may occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号