首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Ornithine decarboxylase (ODC) is subject to feedback regulation by the polyamines. Thus, addition of putrescine, spermidine or spermine to cells causes inhibition of ODC mRNA translation. Putrescine and spermine are readily converted into spermidine. Therefore, it is conceivable that the inhibition of ODC synthesis observed in putrescine- and spermine-supplemented cells is instead an effect of spermidine. To examine this possibility we have used two analogs of putrescine and spermine, namely 1,4-dimethylputrescine and 5,8-dimethylspermine, which cannot be converted into spermidine. Both analogs were found to inhibit the incorporation of [35S]methionine into ODC protein to approximately the same extent, suggesting that putrescine as well as spermine exert a negative feedback control of ODC mRNA translation in the cell. In addition to suppressing ODC synthesis, both analogs were found to increase the turnover rate of the enzyme. 5,8-Dimethylspermine caused a marked decrease in the activity of S-adenosylmethionine decarboxylase (AdoMetDC). This effect was not obtained with 1,4-dimethylputrescine, indicating that spermine, but not putrescine, exerts a negative control of AdoMetDC. Treatment with 1,4-dimethylputrescine caused extensive depletion of the cellular putrescine and spermidine content, but accumulation of spermine. 5,8-Dimethylspermine treatment, on the other hand, effectively depleted the spermine content and had less effect on the putrescine and spermidine content, at least initially. Nevertheless, the total polyamine content was more extensively reduced by treatment with 5,8-dimethylspermine than with 1,4-dimethylputrescine. Accordingly, only 5,8-dimethylspermine treatment exerted a significant inhibitory effect on Ehrlich ascites tumor cell growth.  相似文献   

3.
Ornithine decarboxylase (ODC) is subject to feedback regulation by the polyamines. Thus, addition of putrescine, spermidine or spermine to cells causes inhibition of ODC mRNA translation. Putrescine and spermine are readily converted into spermidine. Therefore, it is conceivable that the inhibition of ODC synthesis observed in putrescine- and spermine-supplemented cells is instead an effect of spermidine. To examine this possibility we have used two analogs of putrescine and spermine, namely 1,4-dimethylputrescine and 5,8-dimethylspermine, which cannot be converted into spermidine. Both analogs were found to inhibit the incorporation of [35S]methionine into ODC protein to approximately the same extent, suggesting that putrescine as well as spermine exert a negative feedback control of ODC mRNA translation in the cell. In addition to suppressing ODC synthesis, both analogs were found to increase the turnover rate of the enzyme. 5,8-Dimethylspermine caused a marked decrease in the activity of S-adenosylmethionine decarboxylase (AdoMetDC). This effect was not obtained with 1,4-dimethylputrescine, indicating that spermine, but not putrescien, exerts a negative control of AdoMetDC. Treatment with 1,4-dimethylputrescine caused extensive depletion of the cellular putrescine and spermidine content, but accumulation of spermine. 5,8-Dimethylspermine treatment, on the other hand, effectively depleted the spermine content and had less effect on the putrescine and spermidine content, at least initially. Nevertheless, the total polyamine content was more extensively reduced by treatment with 5,8-dimethylspermine than with 1,4-dimethylputrescine. Accordingly, only 5,8-dimethylspermine treatment exerted a significant inhibitory effect on Ehrlich ascites tumor cell growth.  相似文献   

4.
Asparagine stimulated the translation of ornithine decarboxylase (ODC) mRNA more than 10-fold in cultured hepatocytes which had been pretreated with glucagon in simple salt/glucose medium. Putrescine suppressed the increase in the rate of ODC synthesis caused by asparagine without significant change in the amount of ODC mRNA, suggesting that putrescine inhibited the effect of asparagine at least in part at the level of translation. Polysomal distribution of ODC mRNA was analyzed to examine the site of translational regulation by these effectors. In uninduced hepatocytes, most of the ODC mRNA was sedimented slightly after the 40 S ribosomal subunit. This ODC mRNA was sequestered from translational machinery since it was not shifted to the polysome fraction when peptide elongation was specifically inhibited by a low concentration of cycloheximide. In asparagine-treated cells, 40% of total ODC mRNA was in the polysomal fraction and formed heavier polysomes, indicating that asparagine stimulated both recruitment of ODC mRNA from the untranslatable pool and the initiation steps of translation. Putrescine did not change the distribution pattern of ODC mRNA on polysomes significantly. Thus, 30% of ODC mRNA remained on polysomes even when ODC synthesis was completely inhibited by putrescine. Paradoxically more than 70% of ODC mRNA was shifted into polysomes by putrescine in the presence of low concentrations of cycloheximide. These results, together with changes in the polysome profile, suggested that putrescine nonspecifically stimulated the recruitment of ODC mRNA from the untranslatable pool, whereas it specifically inhibited its translation at both the initiation and the elongation steps.  相似文献   

5.
LLC-PK1 cells were brought to a quiescent state by treatment with DL-2-difluoromethylornithine (DFMO), a specific inhibitor of L-ornithine decarboxylase (ODC). The inhibition of ODC, which is the key enzyme for polyamine synthesis, strongly reduced the cellular content of putrescine and spermidine. The cells resumed DNA-synthesis followed by mitosis when exogenous putrescine was added. DFMO treatment strongly stimulated the putrescine uptake capability. A kinetic analysis of the initial uptake rates revealed a saturable Na+-dependent and a saturable Na+-independent pathway on top of non-saturable diffusion. The stimulation by DFMO was exclusively due to an effect on the Vmax values of the saturable pathways. The Na+-dependent transporter had a higher affinity for putrescine (apparent Km = 4.7 +/- 0.7 microM) than the Na+-independent transporter (apparent Km = 29.8 +/- 3.5 microM). As a consequence, although the latter transporter had a higher Vmax, the Na+-dependent transport was more important at a physiological putrescine concentration. Putrescine uptake by both transporters was inhibited with similar relative affinities by spermidine, spermine as well as by the antileukemic agent, methylglyoxal bis(guanylhydrazone), but not by amino acids. The activity of the Na+-dependent transporter was very much dependent on SH-group reagents, whereas the Na+-independent transporter was not affected. Both transporters were inhibited by metabolic inhibitors and by ionophores but the Na+-dependent transporter was affected to a greater extent. For both transporters there was a down-regulation in response to exogenous putrescine. This suggests that the polyamine transporters in LLC-PK1 are adaptively regulated and may contribute to the regulation of the cellular polyamine level and cellular proliferation.  相似文献   

6.
Definition of the cellular events involved in the production of collagenase by macrophages following activation has revealed prostaglandin E2 (PGE2)- and cAMP-dependent steps. Since ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine synthesis, is regulated by cAMP and is associated with certain aspects of protein synthesis, the potential role of this enzyme and its polyamine product, putrescine, in collagenase synthesis was examined. Lipopolysaccharide (LPS) activation of macrophages resulted in a maximal ODC response after 6 to 9 h with a 10- to 12-fold elevation in enzyme activity. This elevation in ODC appeared to be regulated by PGE2 since indomethacin inhibited LPS-induced macrophage ODC levels by 70%. Associated with the indomethacin-mediated inhibition of ODC was a loss of collagenase synthesis. Furthermore, partial restoration of collagenase production in indomethacin-inhibited cultures could be achieved by the addition of putrescine. In additional studies alpha-difluoromethylornithine (DFMO), an irreversible inhibitor of ODC, also inhibited collagenase production when added to LPS-treated macrophages. This inhibition by DFMO could be reversed by the exogenous addition of putrescine. These findings demonstrate that the ODC pathway is an important intracellular component in the sequence of events that lead to macrophage collagenase synthesis.  相似文献   

7.
Synthesis and uptake are two important regulated mechanisms by which eukaryotic cells maintain polyamine levels. The role that loss of synthesis and/or uptake regulation plays in mediating putrescine toxicity was investigated by comparing toxicity in an ornithine decarboxylase (ODC)-deficient Chinese hamster ovary cell line (C55.7) with a functional putrescine transport system and an ODC-overproducing rat hepatoma cell line (DH23b), which are transport regulation deficient. When C55.7 cells were transfected with either mouse ODC (M) or trypanosome ODC (Tb), intracellular putrescine content increased slightly in C55.7(Tb-ODC), compared to C55.7(M-ODC), due to the lack of response of Tb-ODC to polyamine regulation. The increase in putrescine content resulting from loss of ODC regulation had no impact on cell growth and viability. When the feedback repression of polyamine uptake was blocked with cycloheximide, C55.7 cells transfected with either ODC construct accumulated very high levels of putrescine from the medium, and underwent apoptosis in a putrescine dose-dependent manner. A similar correlation of deregulated putrescine uptake and increased apoptotic cells was observed in DH23b cells. These data demonstrate that loss of feedback regulation on the polyamine transport system, but not ODC activity, is sufficient to induce apoptosis. Thus, downregulation of the transport system is necessary to prevent accumulation of cytotoxic putrescine levels in rodent cells.  相似文献   

8.
The present studies were undertaken to determine the importance of the polyamine biosynthetic pathway in cellular proliferation and hormone-regulated progesterone receptor synthesis in estrogen receptor-containing breast cancer cells. Treatment of MCF-7 cells with difluoromethylornithine (DFMO), the irreversible inhibitor of the enzyme ornithine decarboxylase (ODC), prevented estradiol-induced cell proliferation in a dose-dependent fashion. DFMO inhibition of estradiol-induced cell proliferation was completely recoverable by the addition of exogenous putrescine while putrescine alone did not stimulate proliferation of control cells. ODC activity was 4-fold greater in estrogen-treated cells and DFMO (5 mM) fully inhibited ODC activity. DFMO was able to suppress only slightly further the proliferation of antiestrogen (tamoxifen) treated cells and putrescine was able to recover this DFMO inhibition. In contrast to the suppressive effect of DFMO on cell proliferation, DFMO had no effect on the ability of estrogen to stimulate increased (4-fold elevated) levels of progesterone receptor. Hence, while ODC activity appears important for estrogen-induced cell proliferation, inhibition of the activity of this enzyme has no effect on the ability of estradiol to increase cellular progesterone receptor content.  相似文献   

9.
Translational regulation of mammalian ornithine decarboxylase by polyamines   总被引:19,自引:0,他引:19  
Ornithine decarboxylase, which catalyses the formation of putrescine, is the first and rate-limiting enzyme in the biosynthesis of polyamines in mammalian cells. The enzyme is highly regulated, as indicated by rapid changes in its mRNA and protein during cell growth. Here we report that ornithine decarboxylase is regulated at the translational level by polyamines in difluoromethylornithine-resistant mouse myeloma cells that overproduce the enzyme due to amplification of an ornithine decarboxylase gene. When such cells are exposed to putrescine or other polyamines, there is a rapid and specific decrease in the rate of synthesis of ornithine decarboxylase, assayed by pulse-labeling. Neither the cellular content of ornithine decarboxylase mRNA nor the half-life of ornithine decarboxylase protein is affected. Our results indicate that polyamines negatively regulate the translation of ornithine decarboxylase mRNA, thereby controlling their own synthesis.  相似文献   

10.
11.
The polyamines (putrescine, spermidine, and spermine) are synthesized by almost all organisms and are universally required for normal growth. Ornithine decarboxylase (ODC), an initial enzyme of polyamine synthesis, is one of the most highly regulated enzymes of eucaryotic organisms. Unusual mechanisms have evolved to control ODC, including rapid, polyamine-mediated turnover of the enzyme and control of the synthetic rate of the protein without change of its mRNA level. The high amplitude of regulation and the rapid variation in the level of the protein led biochemists to infer that polyamines had special cellular roles and that cells maintained polyamine concentrations within narrow limits. This view was sustained in part because of our continuing uncertainty about the actual biochemical roles of polyamines. In this article, we challenge the view that ODC regulation is related to precise adjustment of polyamine levels. In no organism does ODC display allosteric feedback inhibition, and in three types of organism, bacteria, fungi, and mammals, the size of polyamine pools may vary radically without having a profound effect on growth. We suggest that the apparent stability of polyamine pools in unstressed cells is due to their being largely bound to cellular polyanions. We further speculate that allosteric feedback inhibition, if it existed, would be inappropriately responsive to changes in the small, freely diffusible polyamine pool. Instead, mechanisms that control the amount of the ODC protein have appeared in most organisms, and even these are triggered inappropriately by variation of the binding of polyamines to ionic binding sites. In fact, feedback inhibition of ODC might be maladaptive during hypoosmotic stress or at the onset of growth, when organisms appear to require rapid increases in the size of their cellular polyamine pools.  相似文献   

12.
The polyamines are ubiquitous in nature and appear to fulfil several important functions, mostly related to growth, in the cell. The first, and often rate-limiting, step in the biosynthesis of the polyamines is catalysed by ornithine decarboxylase (ODC), which is subject to a variety of control mechanisms. The polyamines exert a strong feedback regulation of the expression - as well as the degradation of the enzyme. The regulation of ODC expression appears to occur at the translational level. The ODC mRNA contains a long GC-rich 5 untranslated region (UTR), which has been demonstrated to hamper the translation of the mRNA. However, it has not yet been conclusively established whether this part of the mRNA fulfils any function in relation to the polyamine-mediated control of ODC synthesis. In the present study, we have used stable transgenic CHO cells, expressing either full-length ODC mRNA or 5 UTR-truncated ODC mRNA, to elucidate the role, if any, of the 5 UTR in the translational regulation of the enzyme by polyamines. No differences in regulatory properties were observed between the cells expressing the full-length ODC mRNA and those expressing the ODC mRNA devoid of most the 5 UTR. The cell lines down-regulated ODC (synthesis as well as activity) to the same extent upon exposure to an excess of polyamines, demonstrating that the feedback control of ODC mRNA translation occurs by a mechanism independent of the major part of the 5 UTR of the ODC mRNA.  相似文献   

13.
In rats fed ad libitum, a marked circadian rhythm with a peak at night was observed in the hepatic level of ornithine decarboxylase (ODC) [EC 4.1.1.17], the enzyme for the first step of polyamine synthesis. A similar rhythm was found in the hepatic content of putrescine, but not of spermidine or spermine. The mitotic activity of the liver also exhibited a clear rhythm with a peak in the daytime. The rhythms of both ODC and mitosis were generated by cyclic ingestion of proteinous food, since the peaks shifted when rats were meal-fed and both activities disappeared on starvation or protein deprivation. The close parallel between the rhythms suggested that synthesis of polyamine, especially that of putrescine, was a prerequisite for the rhythmic growth of liver. The dietary induction of hepatic ODC depended on the nutritive value of dietary protein; zein or gelatin was effective only when supplemented with limiting amino acids and there was a good correlation between the hepatic ODC level and the relative growth rate.  相似文献   

14.
15.
Summary The effect of several methylputrescines on the activity of insulin-induced ornithine decarboxylase (ODC) was examined in H-35 hepatoma cells. The induction involved both protein and m-RNA synthesis. Actinomycin D inhibited ODC activity when given up to 1 h after insulin treatment. When added to the medium 2 h or 3 h after the insulin, the activity was increased 100% and 80% respectively. Insulin-induced ODC from H-35 cells had a biphasic half-life, a shorter one of 46 min and a longer one of 90 min.1-Methylputrescine and 2-methylputrescine were found to be competitive inhibitors of the ODC from H-35 cells with Ki values of 2.8 and 0.1 mM respectively. Putrescine itself was found to have a Ki = 2.4 mM. N-Methylputrescine was a very poor inhibitor of the cell free ODC while 1,4-dimethylputrescine did not show any inhibitory effect. When cellular ODC activity was measured, the four methylputrescines assayed as well as putrescine entirely abolished its activity in the H-35 cells when given at a 1 mM concentration together with insulin. 1-Methylputrescine and 1,4-dimethylputrescine abolished 60% of the activity at a 0.1 µM concentration. All the methylputrescines given at 0.1 mM concentrations decreased the putrescine content of the stimulated cells to the levels found in quiescent cells, but only 1-methyl and 2-methylputrescines decreased spermidine and spermine content. 1,4-Dimethyl and 1-methylputrescines showed a strong inhibition of ODC synthesis, while the other diamines were less inhibitory. At concentrations that abolished ODC activity, 1,4-dimethylputrescine decreased 70% of the total immunoreactive ODC bands, while 1-methyl and 2-methylputrescine decreased them by 50%, and N-methylputrescine and putrescine decreased them by 20%. The lack of decrease in immuno-reactive ODC with the latter two compounds was mainly due to the appearance of immunoreactive degradation products of ODC of low molecular weight. Putrescine and N-methylputrescine affected protein synthesis to a small extent in stimulated cells, while 1-methylputrescine decreased it to the level of non-stimulated cells. Insulin (1 µM concentration) stimulated DNA synthesis in the cells, and this stimulation was doubled in the presence of 2-methylputrescine or putrescine. It can be concluded that, among the methylputrescines assayed, 2-methylputrescine was the best inhibitor of cell-free ODC activity, while 1,4-dimethylputrescine and 1-methylputrescine were the best inhibitors of cellular ODC activity.Abbreviations ODC Ornithine Decarboxylase - TLC Thin Layer Chromatography - DNEM Dulbecco's Modified Essential Medium - PBS Phosphate Buffered saline - PEG Polyethyleneglycol  相似文献   

16.
The roles of ornithine decarboxylase (ODC, EC 4.1.1.17) and polyamines in cellular aging were investigated by examining serum-induced changes of these parameters in quiescent IMR-90 human diploid fibroblasts as a function of their population doubling level (PDL) and in human progeria fibroblasts. Serum stimulation caused increases of ODC and DNA synthesis in IMR-90 human diploid fibroblasts, with maximal values occurring, respectively, 10 hr and 22 hr after serum stimulation. Both serum-induced ODC activity and DNA synthesis in IMR-90 cells were found to be inversely related to their PDL. Maximal ODC activity and DNA synthesis in young cells (PDL = approximately 18-22) were, respectively, five-fold and six-fold greater than that in old cells (PDL = approximately 50-55), which in turn were comparable or slightly higher than that in progeria fibroblasts. Polyamine contents (putrescine, spermidine, and spermine) in quiescent IMR-90 cells did not show significant PDL-dependency. The putrescine and spermine contents in quiescent progeria cells were comparable to those in quiescent IMR-90 cells. The spermidine content in quiescent progeria cells, however, was extremely low, less than half of that in quiescent IMR-90 cells. Serum stimulation caused a marked increase in putrescine content in young cells but not in old cells or in progeria cells. The spermidine and the spermine content in IMR-90 cells, either young or old, and in progeria cells did not change significantly after serum stimulation. Our study indicated that aging of IMR-90 human diploid fibroblasts was accompanied by specific changes of polyamine metabolism, namely, the serum-induced ODC activity and putrescine accumulation. These changes were also observed in progeria fibroblasts derived from patients with Hutchinson-Gilford syndrome.  相似文献   

17.
The role of the cytoplasm in the regulation of ornithine decarboxylase (ODC) has been examined in enucleated 3T3 cells (cytoplasts). ODC activity can be increased 15–25-fold by a cytoplasmic mechanism(s) in enucleates prepared from growing cells by treatment which lead to 50–75-fold increases in intact growing cells. Since the enzyme activity simultaneously becomes less stable in these cytoplasts as in whole cells, it appears this increase is due either to activation of pre-existing enzyme or increased synthesis. A biphasic increase during the first 20 h after stimulus is seen in cytoplasts prepared from growing cells which have been stimulated for the prior 5 h. The second increase in activity does not appear to be due to decreased degradation or conversion to a more active form. These results are analogous to those reported previously for intact growing cells in experiments which employed metabolic inhibitors, and similarly suggest that there is cytoplasmic control of ODC synthesis. Medium polyamines reduce ODC activity in cytoplasts with kinetics and characteristics similar to those previously reported for intact cells. These data are also most consistent with regulation of synthesis at the translational level.  相似文献   

18.
Regulation of polyamine metabolism by translational control   总被引:1,自引:0,他引:1  
Perez-Leal O  Merali S 《Amino acids》2012,42(2-3):611-617
  相似文献   

19.
The rate-limiting enzymes in polyamine biosynthesis, ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (AdoMetDC), are negatively regulated by the polyamines spermidine and spermine. In the present work the spermidine synthase inhibitor S-adenosyl-1,8-diamino-3-thio-octane (AdoDATO) and the spermine synthase inhibitor S-methyl-5'-methylthioadenosine (MMTA) were used to evaluate the regulatory role of the individual polyamines. Treatment of Ehrlich ascites-tumour cells with AdoDATO caused a marked decrease in spermidine content together with an accumulation of putrescine and spermine. Treatment with MMTA, on the other hand, gave rise to a marked decrease in spermine, with a simultaneous accumulation of spermidine. A dramatic increase in the activity of AdoMetDC, but not of ODC, was observed in MMTA-treated cells. This increase appears to be unrelated to the decrease in spermine content, because a similar rise in AdoMetDC activity was obtained when AdoDATO was given in addition to MMTA, in which case the spermine content remained largely unchanged. Instead, we show that the increase in AdoMetDC activity is mainly due to stabilization of the enzyme, probably by binding of MMTA. Treatment with AdoDATO had no effects on the activities of ODC and AdoMetDC, even though it caused a precipitous decrease in spermidine content. The expected decrease in spermidine-mediated suppression of ODC and AdoMetDC was most probably counteracted by the simultaneous increase in spermine. The combination of AdoDATO and MMTA caused a transient rise in ODC activity. Concomitant with this rise, the putrescine and spermidine contents increased, whereas that of spermine remained virtually unchanged. The increase in ODC activity was due to increased synthesis of the enzyme. There were no major effects on the amount of AdoMetDC mRNA by treatment with the inhibitors, alone or in combination. However, the synthesis of AdoMetDC was slightly stimulated in cells treated with MMTA or AdoDATO plus MMTA. The present study demonstrates that regulation of neither ODC nor AdoMetDC is a direct function of the polyamine structure. Instead, it appears that the biosynthesis of the polyamines is feedback-regulated by the various polyamines at many different levels.  相似文献   

20.
Ornithine decarboxylase (ODC, EC 4.1.1.17) expression is subject to negative feedback regulation by the polyamines. The results of previous studies favor either translational or post-translational regulation. To facilitate further analysis of the mechanism by which polyamines affect ODC expression we have used a cell line (L1210-DFMOr) that overproduces ODC. This cell line was isolated by selection for resistance to the antiproliferative effect of the ODC inhibitor alpha-difluoromethylornithine (DFMO). These cells respond similarly to polyamine depletion and repletion as do their wild-type counterparts. When L1210-DFMOr cells were grown in the presence of 20 mM DFMO (i.e., when their polyamine content was reduced to an extent that still permitted a normal growth rate) ODC represented 4-5% of the soluble protein synthesized. After transfer of the cells to a medium lacking DFMO (i.e., when their polyamine pools were repleted), the rate of incorporation of [35S]methionine into ODC was one order of magnitude lower. Since this difference in incorporation of radioactivity into ODC remained the same irrespective of the pulse-label time used (between 2 and 20 min) it is likely to represent a true difference in ODC synthesis rate. Consequently, the pulse-label experiments cannot be explained by rapid degradation of the enzyme during the labeling period. The difference in ODC synthesis rate was not accompanied by a corresponding difference in the steady-state level of ODC mRNA. Analyses of the distribution of ODC mRNA in polysome profiles did not demonstrate any major difference between cells grown in the absence or presence of DFMO, even though the ODC synthesis rate differed by as much as 10-fold. However, the distribution of the ODC mRNA in the polysome profiles indicated that the message was poorly translated. Thus, most of the ODC mRNA was present in fractions containing ribosomal subunits or monosomes. Inhibition of elongation by cycloheximide treatment resulted in a shift of the ODC mRNA from the region of the gradient containing ribosomal subunits to that containing mono- and polysomes, indicating that most of the ODC mRNA was accessible to translation. Taken together these data lend support to a translational control mechanism which involves both initiation and elongation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号