首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
报道了用DEAE-纤维素(DE-23)离子交换柱层析从鹿茸二杠中分离、纯化及鉴定硫酸软骨素的方法.首先用适量蒸馏水浸泡鹿茸二杠并将其捣碎,离心取沉淀用盐酸胍浸提,浸提液对尿素液透析后经DEAE-纤维素(DE-23)离子交换柱层析,吸附大量的硫酸软骨素;再用含盐尿素溶液梯度洗脱、分离后,经软骨素酶消化及琼脂糖凝胶电泳, 与硫酸软骨素标准品比较,证实得到的物质为纯的硫酸软骨素蛋白聚糖,其得率约为48.77%.该方法使硫酸软骨素分离纯化一步完成,大大简化了纯化步骤.  相似文献   

3.
The hydrozoan is the simplest organism whose movements are governed by the neuromuscular system, and its de novo morphogenesis can be easily induced by the removal of body parts. These features make the hydrozoan an excellent model for studying the regeneration of tissues in vivo, especially in the nervous system. Although glycosaminoglycans (GAGs) and proteoglycans (PGs) have been implicated in the signaling functions of various growth factors and play critical roles in the development of the central nervous system, the isolation and characterization of GAGs from hydrozoans have never been reported. Here, we characterized GAGs of Hydra magnipapillata. Immunostaining using anti-GAG antibodies showed chondroitin or chondroitin sulfate (CS) in the developing nematocyst, which is a sting organelle specific to cnidarians. The CS-PGs might furnish an environment for assembling nematocyst components, and might themselves be components of nematocysts. Therefore, GAGs were isolated from Hydra and their structural features were examined. A considerable amount of CS, three orders of magnitude less heparan sulfate (HS), but no hyaluronan were found, as in Caenorhabditis elegans. Analysis of the disaccharide composition of HS revealed glucosamine 2-N-sulfation, glucosamine 6-O-sulfation, and uronate 2-O-sulfation. CS contains not only nonsulfated and 4-O-sulfated N-acetylgalactosamine (GalNAc) but also 6-O-sulfated GalNAc. The average molecular size of CS and HS was 110 and 10 kDa, respectively. It has also been established here that CS chains are synthesized on the core protein through the ubiquitous linkage region tetrasaccharide, suggesting that indispensable functions of the linkage region in the synthesis of GAGs have been conserved during evolution.  相似文献   

4.
Jing W  DeAngelis PL 《Glycobiology》2003,13(10):661-671
Type A Pasteurella multocida produces a hyaluronan (HA) capsule to enhance infection. The 972-residue HA synthase, pmHAS, polymerizes the linear HA polysaccharide composed of alternating beta3N-acetylglucosamine (GlcNAc)-beta4glucuronic acid (GlcUA). We demonstrated previously that pmHAS possesses two independent glycosyltransferase sites. Here we further define the sites and putative motifs. Deletion of residues 1-117 does not affect HA polymerizing activity. The carboxyl-terminal boundary of the GlcUA-transferase resides within residues 686-703. Both transferase sites contain a DXD motif essential for HA synthase activity. D247N or D249N mutants possessed only GlcUA-transferase activity, whereas D527N or D529N mutants possessed only GlcNAc-transferase activity, further confirming our assignment of the two active sites within the synthase polypeptide. A potential role of the DXD motif in substrate binding was supported by experiments utilizing high UDP-sugar concentrations that partially rescued the activity of certain mutants. The WGGED sequence motif is involved in GlcNAc-transferase activity because mutants with substitutions at E369 or D370 possessed only GlcUA-transferase activity. Type F P. multocida synthesizes an unsulfated chondroitin (beta3GalNAc-beta4GlcUA) capsule. A chimeric enzyme consisting of residues 1-427 of pmHAS and residues 421-704 of pmCS, the homologous chondroitin synthase, was an active HA synthase. The converse chimeric enzyme consisting of residues 1-420 of pmCS and residues 428-703 of pmHAS was a functional chondroitin synthase. Analyses of a panel of pmHAS/pmCS chimeric enzymes identified a 44-residue region, corresponding to pmHAS residues 225-265, involved in UDP-hexosamine selectivity. Overall, these findings further support the model of two independent transferase sites within a single polypeptide.  相似文献   

5.
Neuroglycan C (NGC), a brain-specific transmembrane proteoglycan, is thought to bear not only chondroitin sulfate but also N- and O-linked oligosaccharides on its core protein. In this study, we isolated and purified NGC from rat brains at various developmental stages by immunoaffinity column chromatography or by immunoprecipitation, and examined the structural characters of its carbohydrate moiety. The chondroitin sulfate disaccharide composition of NGC at postnatal day 10 was significantly different from those of two secreted chondroitin sulfate proteoglycans, neurocan and phosphacan, purified from the brain at the same developmental stage; higher levels of 4-sulfate unit and E unit, a disulfated disaccharide unit, and a lower level of 6-sulfate unit. The levels of both 6-sulfate and E units decreased with a compensatory increase of 4-sulfate unit with postnatal development of the brain. Lectin-blot analysis of the NGC core glycoprotein prepared by chondroitinase digestion confirmed that NGC actually bore both N- and O-linked carbohydrates, and also revealed that lectin-species reactive with NGC did not always recognize other brain-specific proteoglycans, neurocan and phosphacan, and vice versa, even though they were isolated from the brain at the same stage. The reactivity of NGC with lectins and with the HNK-1 antibody markedly changed as the brain matured. These findings indicate that the structure of the carbohydrate moiety of NGC is developmentally regulated, and differs from those of neurocan and phosphacan. The developmentally-regulated structural change of the carbohydrates on NGC may be partly implicated in the modulation of neuronal cell recognition during brain development. Published in 2004. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
In mammals, the adhesion and fusion of the palatal shelves are essential mechanisms in the development of the secondary palate. Failure of any of these processes leads to the formation of cleft palate. The mechanisms underlying palatal shelf adhesion are poorly understood, although the presence of filopodia on the apical surfaces of the superficial medial edge epithelial (MEE) cells seems to play an important role in the adhesion of the opposing MEE. We demonstrate here the appearance of chondroitin sulphate proteoglycan (CSPG) on the apical surface of MEE cells only immediately prior to contact between the palatal shelves. This apical CSPG has a functional role in palatal shelf adhesion, as either the alteration of CSPG synthesis by beta-D-Xyloside or its specific digestion by chondroitinase AC strikingly alters the in vitro adhesion of palatal shelves. We also demonstrate the absence of this apical CSPG in the clefted palates of transforming growth factor beta 3 (TGF-beta(3)) null mutant mice, and its induction, together with palatal shelf adhesion, when TGF-beta(3) is added to TGF-beta(3) null mutant palatal shelves in culture. When chick palatal shelves (that do not adherein vivo nor express TGF-beta(3), nor CSPG in the MEE) are cultured in vitro, they do not express CSPG and partially adhere, but when TGF-beta(3) is added to the media, they express CSPG and their adhesion increases strikingly. We therefore conclude that the expression of CSPG on the apical surface of MEE cells is a key factor in palatal shelf adhesion and that this expression is regulated by TGF-beta(3).  相似文献   

7.
Although the intermediates for sulfation of proteochondroitin and proteodermatan have been known for several decades, organizational aspects of this formation have not been clearly defined. Work in several laboratories, including our own, have indicated a pattern which strongly suggests that sulfation ordinarily takes place together with glycosaminoglycan polymerization in the same Golgi sites, and with close relationship to aspects of polymer elongation, polymer modification and polymer termination. the organization of sulfation together with polymerization may be a major factor controlling the location, type, and degree of sulfation, which in turn may direct specific functions of these proteoglycans.  相似文献   

8.
9.
To determine if the amount of chondroitin sulfate proteoglycan (CSPG) in human colorectal tumor tissue correlates with the tumor's aggressiveness we immunochemically determined the CSPG levels in colorectal carcinomas at different stages. A total of 50 specimens--4 polyps, 15 stage B tumors, 9 stage C tumors, 12 stage D tumors, 7 liver metastases, and 3 lymph node metastases--were examined. Tumor tissues were extracted with 4 M guanidine hydrochloride containing protease inhibitors. The extracts were serially diluted and blotted onto nitrocellulose membranes. Reactivity of a chondroitin sulfate-specific mouse monoclonal antibody (CS-56) was determined by biotinylated goat antimouse Ig and avidin-biotin-peroxidase complex. After comparing tissues from tumors at different stages (classified by the presence or absence of metastasis), we could not find a positive or negative correlation between the amount of CSPG in primary colorectal carcinoma tissues and the tumor's metastatic potential. However, the metastatic foci in the liver or lymph node contained higher amounts of CSPG than the primary tumors did. Immunohistochemical staining of colon carcinoma tissue with CS-56 revealed that CSPG is predominantly localized in fibrotic portions in the tumor tissues. Two-year follow-up studies indicated that a high level of CSPG in primary tumors was not predictive of recurrence.  相似文献   

10.
Heparan sulfate proteoglycans are ubiquitously located on cell surfaces and in the extracellular matrices. The negatively charged heparan sulfate chains interact with a multitude of different proteins, thereby influencing a variety of cellular and developmental processes, for example cell adhesion, migration, tissue morphogenesis, and differentiation. The human exostosin (EXT) family of genes contains five members: the heparan sulfate polymerizing enzymes, EXT1 and EXT2, and three EXT-like genes, EXTL1, EXTL2, and EXTL3. EXTL2 has been ascribed activities related to the initiation and termination of heparan sulfate chains. Here we further investigated the role of EXTL2 in heparan sulfate chain elongation by gene silencing and overexpression strategies. We found that siRNA-mediated knockdown of EXTL2 in human embryonic kidney 293 cells resulted in increased chain length, whereas overexpression of EXTL2 in the same cell line had little or no effect on heparan sulfate chain length. To study in more detail the role of EXTL2 in heparan sulfate chain elongation, we tested the ability of the overexpressed protein to catalyze the in vitro incorporation of N-acetylglucosamine and N-acetylgalactosamine to oligosaccharide acceptors resembling unmodified heparan sulfate and chondroitin sulfate precursor molecules. Analysis of the generated products revealed that recombinant EXTL2 showed weak ability to transfer N-acetylgalactosamine to heparan sulfate precursor molecules but also, that EXTL2 exhibited much stronger in vitro N-acetylglucosamine-transferase activity related to elongation of heparan sulfate chains.  相似文献   

11.
Neuroglycan C (NGC) is a transmembrane-type of chondroitin sulfate proteoglycan with an epidermal growth factor (EGF)-like module that is exclusively expressed in the CNS. Because ectodomain shedding is a common processing step for many transmembrane proteins, we examined whether NGC was subjected to proteolytic cleavage. Western blotting demonstrated the occurrence of a soluble form of NGC with a 75 kDa core glycoprotein in the soluble fraction of the young rat cerebrum. In contrast, full-length NGC with a 120 kDa core glycoprotein and its cytoplasmic fragment with a molecular size of 35 kDa could be detected in the membrane fraction. The soluble form of NGC was also detectable in culture media of fetal rat neurons, and the full-length form existed in cell layers. The amount of the soluble form in culture media was decreased by adding a physiological protease inhibitor such as a tissue inhibitor of metalloproteinase (TIMP)-2 or TIMP-3, but not by adding TIMP-1. Both EGF-like and neurite outgrowth-promoting activity of the NGC ectodomain may be regulated by this proteolytic processing.  相似文献   

12.
Working with Mel-85 (a human melanoma cell line), we have been able to detect a laminin-binding molecule with an apparent molecular mass of 100/110 kDa (Mel-85-LBM). Reduction with -mercaptoethanol decreases its molecular mass but does not affect its ability to bind laminin. This laminin interaction seems to be very specific since Mel-85-LBM binds laminin, but not fibronectin, vitronectin or type I collagen in affinity chromatography experiments. The molecule has a negative net charge at physiological pH and binds laminin in a divalent cation dependent way. Mel-85-LBM was metabolically radiolabeled with sodium [35S]-sulfate and chemical -elimination of purified Mel-85-LBM releases chondroitin sulfate chains. Mel-85-LBM is also sensitive to chondroitinase ABC digestion. These findings show that this molecule is a chondroitin sulfate proteoglycan. The location of this proteoglycan at the cell surface is evidenced by experiments using a polyclonal antiserum raised against purified Mel-85LBM, that specifically reacts with just one molecule by western blotting among Mel-85 total cell extract as well as produces a positive signal by flow cytometry and a fluorescence profile of Mel-85 cells adhered on laminin.  相似文献   

13.
The intestinal subepithelial myofibroblasts (ISEMFs) are located in the lamina propria under the epithelial cells. ISEMFs are thought to have an important role in protecting and maintaining the integrity of the epithelial cell layer and also in the process of wound healing. In this study, we report that the membrane-bound proteoglycan NG2 is abundantly distributed in the ISEMF layer of the mouse and human intestines. NG2 immunostaining in this layer is distributed with similar intensity from the crypt to villi. NG2 is also immunolocalized along the membranes of smooth muscle cells in the intestinal muscle layer. However, skeletal and cardiac muscles are not immunostained for NG2, demonstrating selective expression of the proteoglycan by smooth muscle cells. Using electron microscopy, NG2 immunoreactivity was strongly observed along the cell membranes of ISEMF, with weak diffusion into the neighboring matrix, indicative of the presence of some “shed” NG2. This first report of NG2 proteoglycan expression by ISEMF provides insights into the nature of the interaction of these cells with extracellular matrix and/or intestinal epithelial cells.  相似文献   

14.
Bikunin is a small chondroitin sulfate proteoglycan that occurs in blood as the light chain of inter--trypsin inhibitor (ITI) family members. The relatively short chondroitin sulfate chain of bikunin shows a characteristic pattern of sulfation in both the linkage region and the chondroitin sulfate backbone. To the internal N-acetylgalactosamines in the lower sulfated portion near the non-reducing end, up to two side proteins could bind covalently via a unique ester bond to form core protein-glycosaminoglycan-side protein complexes, the ITI family. ITI molecules are synthesized in hepatocytes, and then secreted into circulation at high concentrations. In the presence of yet unidentified factors, the side proteins are transferred from chondroitin sulfate to hyaluronan by a transesterification reaction to form what has been described as the Serum-derived Hyaluronan-Associated Protein (SHAP)-hyaluronan complex. The formation of this complex is required for the stabilization of the extracellular matrix of fibroblasts, mesothelial cells, and cumuli oophori. When the gene for bikunin is inactivated, female mice exhibit severe infertility as a consequence of a defect of the side protein precursor in forming a complex with the hyaluronan in cumulus oophorus before ovulation. Therefore, the chondroitin sulfate moiety of bikunin is essential for presenting SHAP to hyaluronan, which is indispensable for ovulation and fertilization in mammals. Published in 2003.  相似文献   

15.
The canine 3'-phosphoadenosine 5'-phosphosulfate (PAPS) transporter1 fused to GFP was stably expressed with a typical Golgi localizationin MDCK II cells (MDCK II-PAPST1). The capacity for PAPS uptakeinto Golgi vesicles was enhanced to almost three times thatof Golgi vesicles isolated from untransfected cells. We havepreviously shown that chondroitin sulfate proteoglycans (CSPGs)are several times more intensely sulfated in the basolateralthan the apical secretory pathway in MDCK II cells (Tveit H,Dick G, Skibeli V, Prydz K. 2005. A proteoglycan undergoes differentmodifications en route to the apical and basolateral surfacesof Madin-Darby canine kidney cells. J Biol Chem. 280:29596–29603).Here we demonstrate that increased availability of PAPS in theGolgi lumen enhances the sulfation of CSPG in the apical pathwayseveral times, while sulfation of CSPGs in the basolateral pathwayshows minor changes. Sulfation of heparan sulfate proteoglycansis essentially unchanged. Our data indicate that CSPG sulfationin the apical pathway of MDCK II cells occurs at suboptimalconditions, either because the sulfotransferases involved havehigh Km values, or there is a lower PAPS concentration in thelumen of the apical secretory route than in the basolateralcounterpart.  相似文献   

16.
Yamaguchi T  Ohtake S  Kimata K  Habuchi O 《Glycobiology》2007,17(12):1365-1376
N-Acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST) transfers sulfate to position 6 of GalNAc(4SO(4)) residues in chondroitin sulfate (CS). We previously purified squid GalNAc4S-6ST and cloned a cDNA encoding the partial sequence of squid GalNAc4S-6ST. In this paper, we cloned squid GalNAc4S-6ST cDNA containing a full open reading frame and characterized the recombinant squid GalNAc4S-6ST. The cDNA predicts a Type II transmembrane protein composed of 425 amino acid residues. The recombinant squid GalNAc4S-6ST transferred sulfate preferentially to the internal GalNAc(4SO(4)) residues of chondroitin sulfate A (CS-A); nevertheless, the nonreducing terminal GalNAc(4SO(4)) could be sulfated efficiently when the GalNAc(4SO(4)) residue was included in the unique nonreducing terminal structure, GalNAc(4SO(4))-GlcA(2SO(4))-GalNAc(6SO(4)), which was previously found in CS-A. Shark cartilage chondroitin sulfate C (CS-C) and chondroitin sulfate D (CS-D), poor acceptors for human GalNAc4S-6ST, served as the good acceptors for the recombinant squid GalNAc4S-6ST. Analysis of the sulfated products formed from CS-C and CS-D revealed that GalNAc(4SO(4)) residues included in a tetrasaccharide sequence, GlcA-GalNAc(4SO(4))-GlcA(2SO(4))-GalNAc(6SO(4)), were sulfated efficiently by squid GalNAc4S-6ST, and the E-D hybrid tetrasaccharide sequence, GlcA-GalNAc(4,6-SO(4))-GlcA(2SO(4))-GalNAc(6SO(4)) was generated in the resulting sulfated glycosaminoglycans. These observations indicate that the recombinant squid GalNAc4S-6ST is a useful enzyme for preparing a unique chondroitin sulfate containing the E-D hybrid tetrasaccharide structure.  相似文献   

17.
Sequestration of Plasmodium falciparum-infected red blood cells (IRBCs) in the human placenta is mediated by chondroitin 4-sulfate (C4S). A cytoadherence assay using chondroitin sulfate proteoglycans (CSPGs) is widely used for studying C4S-IRBC interactions. Bovine tracheal chondroitin sulfate A (CSA) preparation lacking a major portion of core protein has been frequently used for the assay. Here the CSPG purified from bovine trachea and CSA were assessed for IRBC binding and the CS chains studied in detail for structure-activity relationship. The IRBCs bound at significantly higher density to the CSPG than CSA. The CS chains of CSPG/CSA are heterogeneous with varying levels of 4- and 6-sulfates, which are distributed such that approximately 80% of the 4-sulfated disaccharides are present as single and blocks of two or three separated by one to three 6-sulfated disaccharides. The remainder of the 4-sulfated disaccharides is present in blocks composed of 4-12 units, separated by 6-sulfated disaccharides. In the IRBC adherence inhibition analysis, CSA fragments with 88%-92% 4-sulfate were significantly less inhibitory than the intact CSA, indicating that the regions consisting of shorter 4-sulfated blocks efficiently bind IRBCs despite the presence of relatively high levels of 6-sulfate. This is because the 6-sulfated disaccharides have unsubstituted C-4 hydroxyls that are crucial for IRBC binding. The presence of high levels of 6-sulfate, however, significantly interfere with the IRBC binding activity of CSA, which otherwise would more efficiently bind IRBCs. Thus our study revealed the distribution pattern of 4- and 6-sulfate in bovine tracheal CSA and structural basis for IRBC binding.  相似文献   

18.
19.
More than 60% of brain chondroitin sulfate proteoglycans were extracted from 10-day-old rat brains by homogenization in ice-cold phosphate-buffered saline containing protease inhibitors. Although the soluble proteoglycan preparation was a mixture of chondroitin sulfate proteoglycans with a different hydrodynamic size as well as a different molecular density, each subfraction of the proteoglycans contained chondroitin sulfate side chains with virtually identical molecular weight (approximately 15,000) and chondroitin sulfate disaccharide composition (high content of 4-sulfate unit). Digestion of the purified proteoglycan preparation with protease-free chondroitinase ABC produced five core proteins with Mr = 250,000 (designated as 250K protein), 220,000 (220K), 150,000 (150K), 130,000 (130K), and 93,000 (93K). All these core proteins were obtained from chondroitin sulfate proteoglycan preparations extracted from various regions of the brain, but their composition varied among different brain regions. Analysis for amino acid composition of these core proteins and two-dimensional mapping of their proteolytic peptides revealed that three major core proteins (250K, 220K, and 150K proteins) were structurally different. These observations indicate that at least three distinct types of chondroitin sulfate proteoglycan occur in the developing rat brain.  相似文献   

20.
Chondroitin sulfate proteoglycans (CSPGs) are major components of the extracellular matrix (ECM) in the brain. In the adult cerebral cortex, there are special CSPG-containing structures known as perineuronal nets (PNNs), which are highly condensed ECM structures. Here, we report a novel CSPG-containing structure distinct from PNNs in the adult mouse cerebral cortex. An anti-chondroitin sulfate antibody CS56 delineated a structure with a unique morphology like a dandelion clock. Accordingly, we named it DAndelion Clock-like Structure (DACS). Immunohistochemical evidence showed that DACSs surrounded a group of NeuN-positive/GABA-negative neurons. At ultrastructural level, CS56-immunoreactivities were localized in the cytoplasm and on the membrane of astrocytes. As the postnatal cerebral cortex matured, DACSs became visible around the end of the critical period. This is the first report demonstrating the presence of an ECM structure DACS composed of CSPGs around a group of cortical neurons in the adult cerebral cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号