首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the first time, glucosylation of alpha-butyl- and alpha-octylglucopyranoside was achieved using dextransucrase (DS) of various specificities, and alternansucrase (AS) from Leuconostoc mesenteroides. All the glucansucrases (GS) tested used alpha-butylglucopyranoside as acceptor; in particular, DS produced alpha-D-glucopyranosyl-(1-->6)-O-butyl-alpha-D-glucopyranoside and alpha-D-glucopyranosyl-(1-->6)-alpha-D-glucopyranosyl-(1-->6)-O-butyl-alpha-D-glucopyranoside. In contrast, alpha-octylglucopyranoside was glucosylated only by AS which was shown to be the most efficient catalyst. The conversion rates, obtained with this enzyme at sucrose to acceptor molar ratio of 2:1 reached 81 and 61% for alpha-butylglucopyranoside and alpha-octylglucopyranoside, respectively. Analyses obtained from liquid chromatography coupled with mass spectrometry revealed that different series of alpha-alkylpolyglucopyranosides regioisomers of increasing polymerization degree can be formed depending on the specificity of the catalyst.  相似文献   

2.
1,5-Anhydro-d-fructose (AF), a metabolite of starch/glycogen degradation, is a good antioxidant. With the prospect of increasing its applications and use as a food ingredient, AF glucosylation catalysed by the dextransucrase from Leuconostoc mesenteroides NRRL B-512F was performed in the presence of sucrose. This led to AF glucosylated derivatives containing alpha-(1-->6) linkages named 1,5-anhydro-d-fructo-glucooligosaccharides (AFGOS). LC-MS analyses showed that AFGOS with a degree of polymerisation (DP) of up to 7 were synthesised. The amount of AFGOS produced and the average DP increased by using a high sucrose/AF molar ratio and high total sugar concentration. AFGOS were proved to present antioxidant properties quite similar to AF.  相似文献   

3.
Zhang H  Hu Y  Zhu C  Zhu B  Wang Y 《Biotechnology letters》2008,30(8):1441-1446
The gene dexYG encoding the dextransucrase from an industrial strain of Leuconostoc mesenteroides 0326 was isolated by PCR. The nucleotide sequence of the dexYG gene consists of an open reading frame (ORF) of 4,584 bp, coding for a 1,527 aa protein with a Mr of 170 kDa. The results were analysed by a BLAST similarity search of the GenBank database, which revealed the amino acid sequence was similiar to dsrD derived from L. mesenteroides Lcc4. The dexYG gene was subcloned into the plasmid pET28a(+) and was expressed in E. coli BL21 (DE3) by IPTG induction. The pH value was one of the main reasons which caused the degradation of enzyme activity in the later stage of induction. The highest activity was reached 36 U/ml after 5 h induction in medium at pH 6.0. Biotransformation yield of the enzyme reached 65% and the molecular weight of transformed dextran was more than 68 kDa in 2 h.  相似文献   

4.
Multiple active lower molecular weight forms from Leuconostoc mesenteroides B512F dextransucrase have been reported. It has been suggested that they arise from proteolytic processing of a 170 kDa precursor. In this work, the simultaneous production of proteases and dextransucrase was studied in order to elucidate the dextransucrase proteolytic processing. The effect of the nitrogen source on protease and dextransucrase production was studied. Protease activity reaches a maximum early in the logarithmic phase of dextransucrase synthesis using the basal culture medium but the nitrogen source plays an important effect on growth: the highest protease concentration was obtained when ammonium sulfate, casaminoacids or tryptone were used. Two active forms of 155 and 129 kDa were systematically obtained from dextransucrase precursor by proteolysis. The amino termini of these forms were sequenced and the cleavage site deduced. Both forms of the enzyme obtained had the same cleavage site in the amino terminal region (F209–Y210). From dextransucrase analysis, various putative cleavage sites with the same sequence were found in the variable region and in the glucan binding domain. Although no structural differences were found in dextrans synthesized with both the precursor and the proteolyzed 155 kDa form under the same reaction conditions, their rheological behaviour was modified, with dextran of a lower viscosity yielded by the smaller form.Martha Argüello-Morales and Mónica Sánchez-González equally contributed to this work.  相似文献   

5.
Two arbutin glucosides were synthesized via the acceptor reaction of a glucansucrase from Leuconostoc mesenteroides B-1299CB with arbutin and sucrose. The glucosides were purified by Bio-gel P-2 column chromatography and high-performance liquid chromatography, and the structures were elucidated as 4-hydroxyphenyl β-isomaltoside (arbutin-G1), 4-hydroxyphenyl β-isomaltotrioside (arbutin-G2), according to the results of 1H, 13C, heteronuclear single-quantum coherence, 1H-1H COSY, and heteronuclear multiple-bond correlation analyses. Arbutin glucoside (4-hydroxyphenyl β-isomaltoside) exhibited slower effects on 1,1-diphenyl-2-picrylhydrazyl radical scavenging and similar effects on tyrosinase inhibition, and increased inhibitory effect on matrix metalloproteinase-1 production induced by UVB than arbutin. Young Hwan Moon and Seung Hee Nam contributed equally to this work.  相似文献   

6.
Kim D  Robyt JF  Lee SY  Lee JH  Kim YM 《Carbohydrate research》2003,338(11):1183-1189
Reactions of Leuconostoc mesenteroides B-512FMCM dextransucrase with increasing concentrations of sucrose, from 0.1 to 4.0 M, gave a decreasing amount of high-molecular weight dextran (HMWD) (>10(6) Da) with a concomitant increase in low-molecular weight dextran (LMWD) (<10(5) Da). At 0.1 M sucrose, pH 5.5, and 28 degrees C, 99.8% of the dextran had a MW>10(6) Da and at 4.0 M sucrose, 69.9% had a MW<10(5) Da and 30.1% had a MW>10(6) Da, giving a bimodal distribution. The degree of branching increased from 5% for 0.1 M sucrose to 16.6% for 4.0 M sucrose. The temperature had very little effect on the size of the dextran, which was >10(6) Da, but it had a significant effect on the degree of branching, which was 4.8% at 4 degrees C and increased to 14.7% at 45 degrees C. Both the molecular weight (MW) and the degree of branching were not significantly affected by different pH values between 4.5 and 6.0.  相似文献   

7.
Amino acid analysis of purified dextransucrase (sucrose: 1,6-α-D-glucan 6-α-D-glucosyltransferase EC 2.4.1.5) from Leuconostoc mesenteroides NRRL B-512F was carried out. The enzyme is virtually devoid of cysteine residue there being only one cysteine residue in the whole enzyme molecule comprising over 1500 amino acid residues. The enzyme is rich in acidic amino acid residues. The number of amino acid residues was calculated based on the molecular weight of 188,000 (Goyal and Katiyar 1994). Amino sugars were not found, implying that the enzyme is not a glycoprotein. It has been shown earlier that the cysteine residue in dextransucrase is not essential for enzyme activity (Goyal and Katiyar 1998). The presence of only one cysteine residue per enzyme molecule illustrates that its tertiary structure is solely dependent on other types of non-covalent interactions such as hydrogen bonding, ionic and nonpolar hydrophobic interactions.  相似文献   

8.
Dynamic oscillatory testing has been used to study the rheology of water-insoluble dextran. The rheological properties (storage and loss moduli) of dextran gel were measured and dextran was found to be neither a strong gel nor a weak gel, but an entanglement network at a concentration of 250 mg/ml. The extent of gelation, illustrated by the gel elastic modulus G′, is found to decrease with increasing concentration of calcium ions. This was confirmed by shift of crossover frequencies towards higher values on the dynamic spectra and lower yield stress τ values obtained from stress ramp experiments. Finally, a comparison between gelation of dextran and alginate (a similar biopolymer) was made for clear understanding of effect of calcium ions on the dextran gelation.  相似文献   

9.
A process for the production of mannitol from fructose (5% to 25%) usingLeuconostoc mesenteroides NRRL B-1149 was investigated. Fermentations were carried out in batch or fed-batch fermentations without aeration at 28°C, pH 5.0. When 5% fructose was used in batch culture fermentation, the yield of mannitol was 78% of that expected theoretically. When the fructose concentration was increased to 10%, the yield dropped to 59.6% of the theoretical value. However, in the fed-batch culture, using 10% fructose, the yield was 81.9% of the theoretical value. In a 15% fructose fed-batch culture, with 5% fructose being added initially and the other 10% fructose being added as a continuous supply, the final yield was 83.7% of the theoretical yield. When 20% fructose was used in the same manner, the yield was 89.5% of theoretical yield.  相似文献   

10.
Cells of Leuconostoc mesenteroides were immobilized within porus, stainless-steel (SS) supports and used for dextransucrase (DS) and dextran production. The pore size of the support significantly affected the dextran yields, which were greatest with average pore sizes of 2-5 mum. All immobilized-cell biocatalysts in porous stainless steel produced higher yields than free cells, with the exception of cells confined in submicrometer pores (0.5 mum). Coating supports of larger pore size (40 and 100 mum) with calcium alginate enhanced the cell-loading capacity of the supports and increased dextran and fructose yields in the cell-free broth. Controlled, fed-batch, DS production (activation), as a step preliminary to dextran production, significantly improved the subsequent dextran and fructose yields and shortened the time required to attain the maximum such yields. Scanning electron microscopy (SEM) of immobilized L. mesenteroides in stainless steel shows an irregular pattern of the microorganism inside the pores of the solid supports. Coating the porous solid supports with a cell-free calcium alginate layer led to an increase in the cell density inside the support. Cell growth inside the coated, porous stainless steel had no distinct growth form. (c) 1992 John Wiley & Sons, Inc.  相似文献   

11.
Yoon SH  Robyt JF 《Carbohydrate research》2002,337(24):2427-2435
Two new acarbose analogues were synthesized by the reaction of acarbose with sucrose and dextransucrases from Leuconostoc mesenteroides B-512FMC and B-742CB. The major products for each reaction were subjected to yeast fermentation, and then separated and purified by Bio-Gel P2 gel permeation chromatography and descending paper chromatography. The structures of the products were determined by one- and two-dimensional 1H and 13C NMR spectroscopy and by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). B-512FMC-dextransucrase produced one major acarbose product, 2(I)-alpha-D-glucopyranosylacarbose and B-742CB-dextransucrase produced two major acarbose products, 2(I)-alpha-D-glucopyranosylacarbose and 3(IV)-alpha-D-glucopyranosylacarbose.  相似文献   

12.
On the basis of high enzyme activity a newly isolated strain of L. mesenteroides CMG713 was selected for dextran production. For maximum yield of dextran, effects of various parameters such as pH, temperature, sucrose concentration and incubation period were studied. L. mesenteroides CMG713 produced maximum dextran after 20 hours of incubation at 30 masculineC with 15% sucrose at pH 7.0. The molecular mass distribution of dextran produced by this strain showed that its molecular mass was about 2.0 million Da. Dextran analysis by (13)C-NMR spectrometry showed no signals corresponding to any other linkages except alpha-(1-->6) glycosidic linkage in the main chain, which has not been reported before. Physico-chemical properties of this unique dextran were also studied. These optimised conditions could be used for the commercial production of this unique high molecular weight dextran, which have significant industrial perspectives.  相似文献   

13.
14.
Leuconostoc mesenteroides NRRL B-1426 dextransucrase synthesized a high molecular mass dextran (>2 × 106 Da) with ~85.5% α-(1→6) linear and ~14.5% α-(1→3) branched linkages. This high molecular mass dextran containing branched α-(1→3) linkages can be readily hydrolyzed for the production of enzyme-resistant isomalto-oligosaccharides. The acceptor specificity of dextransucrase for the transglycosylation reaction was studied using sixteen different acceptors. Among the sixteen acceptors used, isomaltose was found to be the best, having 89% efficiency followed by gentiobiose (64%), glucose (30%), cellobiose (25%), lactose (22.5%), melibiose (17%), and trehalose (2.3%) with reference to maltose, a known best acceptor. The β-linked disaccharide, gentiobiose, showed significant efficiency for oligosaccharide production that can be used as a potential prebiotic.  相似文献   

15.
The enzymatic glucosylation of luteolin was attempted using two glucansucrases: the dextransucrase from Leuconostoc mesenteroides NRRL B-512F and the alternansucrase from L. mesenteroides NRRL B-23192. Reactions were carried out in aqueous-organic solvents to improve luteolin solubility. A molar conversion of 44% was achieved after 24h of reaction catalysed by dextransucrase from L. mesenteroides NRRL B-512F in a mixture of acetate buffer (70%)/bis(2-methoxyethyl) ether (30%). Two products were characterised by nuclear magnetic resonance (NMR) spectroscopy: luteolin-3'-O-alpha-d-glucopyranoside and luteolin-4'-O-alpha-d-glucopyranoside. In the presence of alternansucrase from L. mesenteroides NRRL B-23192, three additional products were obtained with a luteolin conversion of 8%. Both enzymes were also able to glucosylate quercetin and myricetin with conversion of 4% and 49%, respectively.  相似文献   

16.
Alternan is a unique α-D-glucan of potential commercial interest, produced by rare strains of Leuconostoc mesenteroides. Natural isolates that produce alternan, such as NRRL B-1355, also produce dextran as a troublesome contaminant. We previously isolated mutants of strain NRRL B-1355 that are deficient in dextran production, including the highly stable strain NRRL B-21138. In the current work, we mutagenized strain NRRL B-21138 and screened survivors for further alterations in production of alternansucrase, the enzyme that catalyzes the synthesis of alternan from sucrose. Second generation mutants included highly stable strain NRRL B-21297, which produced four-fold elevated levels of alternansucrase without an increase in the proportion of dextransucrase activity. Such alternansucrase overproducing strains will facilitate studies of this enzyme, and may become valuable for the enzymatic production of alternan. Another highly stable mutant strain, NRRL B-21414, grew slowly on sucrose with negligible production of glucan or extracellular glucansucrase activity. This strain may prove useful as an expression host for glucansucrase genes. Received 30 July 1996/ Accepted in revised form 15 December 1996  相似文献   

17.
18.
Recombinant expression of the dextransucrase dsrS gene by Escherichia coli was optimized to produce 5850 U L(-1) (culture) of DSR-S, corresponding to a 30-fold increase compared with previous studies. Rational deletions of the signal peptide, the beginning of the variable region and the last four repeats of the C-terminal end caused no loss of activity. This new variant successfully purified was remarkably stable. With a k(cat) of 584 s(-1), it is the most efficient recombinant glucansucrase described to date. The synthesized polymer possesses more than 95% of alpha-1,6 links, like the dextran produced by the native enzyme, and innovative gel properties were obtained.  相似文献   

19.
When Leuconostoc mesenteroides NCDO 523 was grown in MRS browth, electron microscopy of cells fixed in the presence of ruthenium red showed that the cell wall was covered with a thin layer of filamentous material. When MRS-grown cells were resuspended in the same medium supplemented with 3.6% sucrose, this surface coat doubled in thickness and a number of radial thickenings appeared within it. After 3 h the filamentous component of the surface coat had disappeared leaving only the radial projections. The progressive accumulation of polymer to produce a capsule visible by light microscopy was observed in only about 20% of the population. In this minority of cells, a dense globular dextran composed of fibrillar and particulate elements was always produced in the initial stages of synthesis. After 18 h, the dextran capsule was generally composed of an inner globular and outer fibrillar layer. It appeared that the outer layer was derived from the globular dextran of the capsule by a process of dispersion.  相似文献   

20.
Summary Bacteriocin ST33LD, produced by Leuconostoc mesenteroides subsp. mesenteroides, is approximately 2.7 kDa in size and inhibits Enterococcus faecalis, Escherichia coli, Lactobacillus casei and Pseudomonas aeruginosa. Good growth was recorded in the presence of 10% (w/v) soy milk or 10% (w/v) molasses, but there was no bacteriocin production. Growth in MRS broth adjusted to pH 4.5 yielded low bacteriocin levels (800 AU/ml). However, the same medium adjusted to pH 5.0, 5.5 and 6.5, respectively, yielded 3200 AU/ml. Tween 80 decreased bacteriocin production by more than 50%. Growth in the presence of tryptone yielded maximal activity (12,800 AU/ml), whereas different combinations of tryptone, meat extract and yeast extract produced activity levels of 1600 AU/ml and less. Growth in the presence of 2.0% (w/v) sucrose, or maltose, yielded much higher levels of bacteriocin activity (12,800 AU/ml) compared to growth in the presence of 2.0% (w/v) glucose or lactose (6400 AU/ml). Lower yields were also recorded in the presence of fructose and mannose. KH2PO4 at 10.0% (w/v) stimulated bacteriocin production. Glycerol concentrations of 0.5% (w/v) and higher (up to 5.0%, w/v) repressed bacteriocin production by 50%. The addition of cyanocobalamin, thiamine and L-ascorbic acid to MRS broth (1.0 ppm) yielded 12,800 AU/ml bacteriocin, whereas the addition of DL-6,8-thioctic acid yielded only 6 400 AU/ml.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号