首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The characteristics of photoaffinity labeling with the calcium agonist [3H]Bay K 8644 (Bay) and the calcium antagonists [3H]nitrendipine (Nit) and (+)PN200-110 (PN) of crude membranes from rat skeletal, cardiac, ileal, and uterine muscles and whole brain were investigated. In all these crude membranes, [3H](+)PN (20 nM) was mainly photoincorporated into one protein band with a molecular weight of 30,000 - 41,000 Da. It was also incorporated into some other bands of all these crude membranes. The photoincorporation of [3H](+)PN into these crude membranes was inhibited by the presence of 20 microM unlabeled (+)PN. The photoincorporation of [3H](+)PN into these crude membranes depended on its dose and on the time of UV irradiation. No incorporation of [3H](+)PN was observed in the absence of UV irradiation. The incorporation was not affected by the presence of 1 mM CaCl2 and/or 0.15 M NaCl, but was significantly decreased by 20 microM (+)PN and slightly decreased by 20 microM (-)PN, 20 microM Bay, 1 mM diltiazem, or 1 mM verapamil. Namely, enantiomers of PN caused various extents of stereoselective inhibition of photoaffinity labeling by [3H](+)PN of specific protein bands in these crude membranes. [3H]Nit was photoincorporated into these crude membranes in the same way as [3H](+)PN, but [3H]Bay was not photoincorporated. However, 20 microM unlabeled Nit did not consistently inhibit photoaffinity labeling with [3H]Nit. These findings suggested that measurement of photoaffinity of crude membranes from rat skeletal, cardiac, and uterine muscles and whole brain with [3H](+)PN by UV irradiation is a useful method for investigating the characteristics of the voltage-dependent calcium channels that are affected by 1,4-dihydropyridine derivatives.  相似文献   

2.
The synthesis and characterization of a novel opioid receptor photoaffinity probe [3H]naltrexyl urea phenylazido derivative ([3H]NUPA) is described. In the absence of light, [3H]NUPA binds with high affinity in a reversible and saturable manner to rat brain and guinea pig cerebellum membranes. Dissociation constants and binding capacities (Scatchard plots) are 0.11 nM and 250 fmol/mg of protein for rat brain and 0.24 nM and 135 fmol/mg of protein for guinea pig cerebellum. Competition experiments indicate that this ligand interacts with high affinity at both mu- and kappa-opioid binding sites while exhibiting low affinity at delta sites (Ki = 21 nM). On irradiation, [3H]NUPA incorporates irreversibly into rat brain and guinea pig cerebellum membranes. SDS gel electrophoresis of rat brain membranes reveals specific photolabeling of a 67-kDa molecular mass band. Conversely, a major component of 58 kDa and a minor component of 36 kDa are obtained from [3H]NUPA-labeled guinea pig cerebellum membranes. Different photolabeling patterns are obtained in rat brain (mu/delta/kappa, 4/5/1) and guinea pig cerebellum (mu+delta/kappa, 1,5/8,5) membranes in the presence of selective opioid ligands indicating labeling of mu and kappa sites, respectively. Thus, [3H]NUPA behaves as an efficient photoaffinity probe of mu- and kappa-opioid receptors, which are probably represented by distinct glycoproteins of 67 and 58 kDa, respectively.  相似文献   

3.
Irradiation of intact rat adipocytes with high intensity ultraviolet light in the presence of 0.5 microM [3H] cytochalasin B results in the labeling of Mr 43,000 and 46,000 proteins that reside in the plasma membrane fraction. In contrast to the Mr 46,000 protein, the Mr 43,000 component is not observed in the microsome fraction and exhibits lower affinity for [3H]cytochalasin B. Photolabeling of the Mr 43,000 protein is inhibited by cytochalasin D, indicating it is not a hexose transporter component. The Mr 46,000 protein exhibits characteristics expected for the glucose transporter such that D-glucose or 3-O-methylglucose but not cytochalasin D inhibits its photolabeling with [3H] cytochalasin B. Furthermore, insulin addition to intact cells either prior to or after photoaffinity labeling of the Mr 46,000 protein causes a redistribution of this component from the low density microsomes to the plasma membrane fraction, as expected for the hexose transporter. Photolabeling of transporters in both the low density microsome and plasma membrane fractions is inhibited when intact cells are equilibrated with 50 mM ethylidene glucose prior to irradiation with [3H]cytochalasin B. Incubation of intact cells with 50 mM ethylidene glucose for 1 min at 15 degrees C leads to an intracellular concentration of only 2 mM. Under these conditions, the photoaffinity labeling in intact cells of hexose transporters that fractionate with the low density microsomes is unaffected, indicating these transporters are not exposed to the extracellular medium. In contrast, photolabeling in intact insulin-treated cells of hexose transporters that fractionate with the plasma membrane is inhibited under these incubation conditions. The results demonstrate that insulin action results in the exposure to the extracellular medium of previously sequestered hexose transporters.  相似文献   

4.
To compare surface sarcolemmal with T-tubular distributions of [3H]saxitoxin (STX)- and [3H]nitrendipine (NTD)-binding sites, we centrifuged membrane vesicles from sheep and bovine ventricles on a 10-40% linear sucrose gradient from which fractions were assayed for STX and NTD binding; for markers of surface sarcolemma (ouabain-sensitive Na,K-ATPase activity, [3H]quinuclidinyl benzilate binding); and for markers of junctional sarcoplasmic reticulum known to be preferentially associated with T-tubules (ryanodine-sensitive Ca2+ uptake, calsequestrin, an Mr 300,000 putative phosphorylatable "foot" protein, and electron microscopically visible junctional sarcoplasmic reticulum-plasmalemma complexes). We identified three distinct peaks in the sucrose gradient, each characterized by significant high and low affinity STX- and high affinity NTD-binding: Peak I (approximately 19% sucrose), highly enriched in surface sarcolemma; Peak III (approximately 36% sucrose), enriched in junctional sarcoplasmic reticulum markers and hence in junctional sarcoplasmic reticulum complexes with T-tubule; and Peak II (approximately 27% sucrose), showing greatest specific STX binding and only moderate NTD binding, enriched in T-tubular membrane, unassociated with junctional sarcoplasmic reticulum. For ventricular myocytes, the ratio NTD sites/STX sites was 2.5 for surface sarcolemma, but only approximately 1.0 for T-tubules. Unlike data published for mammalian skeletal muscle, sheep and beef cardiac NTD receptors were not significantly more concentrated in T-tubular than in surface plasmalemma.  相似文献   

5.
Doxorubicin, an anticancer drug, induces Ca2+ release from the terminal cisternae (TC) of skeletal muscle (Zorzato, F., Salviati, G., Facchinetti, T., and Volpe, P. (1985) J. Biol. Chem. 260, 7349-7355). Long wave ultraviolet irradiation of a TC fraction with morphologically intact feet structures (Saito, A., Seiler, S., Chu, A., and Fleischer, S. (1984) J. Cell Biol. 99, 875-885) in the presence of [14C]doxorubicin, led to covalent photolabeling of two proteins that exhibited apparent Mr values of 350,000 and 170,000. Such proteins were found to be absent in a fraction of longitudinal sarcoplasmic reticulum but enriched in junctional face membranes obtained by Triton X-100 treatment of the TC fraction. Three additional proteins with Mr values of 80,000, 60,000, and 30,000 were also faintly labeled in the junctional face membrane fraction. On a molar basis the highest level of incorporation was found in the 170,000-Da protein, probably a Ca2+-binding protein (Campbell, K. P., MacLennan, D. H., and Jorgensen, A. O. (1983) J. Biol. Chem. 258, 11267-11273). A lower level of labeling was observed in the 350,000-Da protein, tentatively identified as a component of the feet structures (Cadwell, J. J. S., and Caswell, A. H. (1982) J. Cell Biol. 93, 543-550). Photolabeling of junctional TC proteins did not occur if a 10-50-fold excess cold doxorubicin was included in the assay medium, indicating that it was displaceable and specific, and if ultraviolet irradiation was omitted. Photolabeling was inhibited by caffeine or ruthenium red, i.e. by an activator and an inhibitor of Ca2+ release from TC, respectively. Furthermore, photolabeling was prevented by [ethylenebis(oxyethylenenitrilo)]tetraacetic acid suggesting that doxorubicin binding is Ca2+-dependent. Doxorubicin-binding proteins are constituents of the junctional sarcoplasmic reticulum and might be involved in modulating Ca2+ release from TC.  相似文献   

6.
The high affinity ryanodine receptor of the Ca2+ release channel from junctional sarcoplasmic reticulum of rabbit skeletal muscle has been identified and characterized using monoclonal antibodies. Anti-ryanodine receptor monoclonal antibody XA7 specifically immunoprecipitated [3H]ryanodine-labeled receptor from digitonin-solubilized triads in a dose-dependent manner. [3H]Ryanodine binding to the immunoprecipitated receptor from unlabeled digitonin-solubilized triads was specific, Ca2+-dependent, stimulated by millimolar ATP, and inhibited by micromolar ruthenium red. Indirect immunoperoxidase staining of nitrocellulose blots of various skeletal muscle membrane fractions has demonstrated that anti-ryanodine receptor monoclonal antibody XA7 recognizes a high molecular weight protein (approximately 350,000 Da) which is enriched in isolated triads but absent from light sarcoplasmic reticulum vesicles and transverse tubular membrane vesicles. Thus, our results demonstrate that monoclonal antibodies to the approximately 350,000-Da junctional sarcoplasmic reticulum protein immunoprecipitated the ryanodine receptor with properties identical to those expected for the ryanodine receptor of the Ca2+ release channel.  相似文献   

7.
The sarcoplasmic reticulum (S.R.) of rabbit skeletal muscle has been found to contain a single, high affinity binding site for the Ca antagonist drug [3H] -nitrendipine. Two subfractions of the reticulum were studied, the heavy (HSR) and light (LSR) preparations, which exhibited similar nitrendipine equilibrium dissociation constants (KD) of 1nM. Crude cardiac and brain membranes assayed under the same conditions exhibited KD values of 0.2–0.3nM. The concentration of binding sites per mg. protein (Bmax) in HSR was found to be very high, namely 6.7 picomoles/mg, some four times greater than that of LSR. [3H] -nitrendipine binding to HSR was reversible and inhibited by the Ca antagonists flunarizine and verapamil, and by the intracellular Ca release antagonist TMB-8 (8-diethylamino-octyl 3,4,5- trimethylbenzoate hydrochloride). However, unlabelled nitrendipine at 2 × 10?5M had no effect on contraction of isolated electrically stimulated rabbit lumbrical or rat diaphragm muscles, nor did it affect the neuromuscular junction as studied in rat phrenic nerve-diaphragm preparations. Also, little effect of 2 × 10?5M nitrendipine was seen on net 45Ca uptake by HSR. These results suggest that [3H] -nitrendipine binding to skeletal muscle S.R. resembles that of brain membranes, which also contain a high affinity binding site for [3H] -nitrendipine and which similarly are pharmacologically insensitive to this dihydropyridine type of Ca channel blocking agent. Since HSR is also enriched in calsequestrin and terminal cysternae from which Ca is released in vivo, it seems likely that the [3H]- nitrendipine binding sites in S.R. are associated with Ca channels in the S.R.  相似文献   

8.
Subfractionation of cardiac sarcolemma with wheat-germ agglutinin.   总被引:1,自引:0,他引:1       下载免费PDF全文
The properties of highly purified bovine cardiac sarcolemma subfractionated with the lectin, wheat-germ agglutinin (WGA) were studied. Two different membrane subfractions were isolated, one which was agglutinated in the presence of 1.0 mg of WGA/mg of protein (WGA+ vesicles) and a second fraction which failed to agglutinate (WGA- vesicles). These two membrane fractions had quantitatively different rates of Na+/K+-dependent, ouabain-sensitive ATPase and Na+/Ca2+ exchange activities, yet a similar protein composition, which suggests that they were both derived from the plasma membrane. WGA- vesicles had a decreased number of [3H]quinuclidinyl benzilate-binding sites and no detectable [3H]nitrendipine-binding sites. Electron-microscopic and freeze-fracture analysis showed that the WGA+ fraction was composed of typical spherical sarcolemmal vesicles, whereas the WGA- fraction primarily contained elongated tubular structures suggestive of the T-tubule vesicles which were previously isolated from skeletal muscle. Assays of marker enzymes revealed that these fractions were neither sarcoplasmic reticulum nor plasma membrane from endothelial cells. Moreover, WGA agglutination did not result in the separation of right-side-out and inside-out vesicles. On the basis of these findings we propose that the WGA+ fraction corresponds to highly purified sarcolemma, whereas the WGA- fraction may be derived from T-tubule membranes.  相似文献   

9.
Photoaffinity labeling of isolated triads and purified dihydropyridine receptor with [3H]azidopine and (+)-[3H]PN200-110 has been used to identify and characterize the dihydropyridine-binding subunit of the 1,4-dihydropyridine receptor of rabbit skeletal muscle. The 1,4-dihydropyridine receptor purified from rabbit skeletal muscle triads contains four protein subunits of 175,000, 170,000, 52,000, and 32,000 Da (Leung, A., Imagawa, T., and Campbell, K. P. (1987) J. Biol. Chem. 262, 7943-7946). Photoaffinity labeling of isolated triads with [3H]azidopine resulted in specific and covalent incorporation of [3H]azidopine into only the 170,000-Da subunit of the dihydropyridine receptor and not into the 175,000-Da glycoprotein subunit of the receptor. The [3H]azidopine-labeled 170,000-Da subunit was separated from the 175,000-Da glycoprotein subunit by sequential elution from a wheat germ agglutinin-Sepharose column with 1% sodium dodecyl sulfate followed by 200 mM N-acetylglucosamine. Photoaffinity labeling of purified dihydropyridine receptor with [3H]azidopine or (+)-[3H]PN200-110 also resulted in the specific and covalent incorporation of either ligand into only the 170,000-Da subunit. Therefore, our results show that the dihydropyridine-binding subunit of the skeletal muscle 1,4-dihydropyridine receptor is the 170,000-Da subunit and not the 175,000-Da glycoprotein subunit.  相似文献   

10.
The taurocholate transport system in normal and transformed hepatocytes has been characterized using transport kinetics and photoaffinity labeling procedures. A photoreactive diazirine derivative of taurocholate, (7,7-azo-3 alpha,12 alpha-dihydroxy-5 beta-cholan-24-oyl)-2-amino [ 1,2-3H ]ethanesulfonic acid (7-ADTC), which has been shown to be a substrate for the bile acid carrier system, was photolyzed in the presence of intact hepatocytes, hepatoma tissue culture (HTC) cells, and plasma membranes derived from the hepatocyte sinusoidal surface. Irradiation of membranes in the presence of 7-ADTC resulted in the incorporation of the photoprobe into two proteins with Mr = 68,000 and 54,000. The specificity of labeling was confirmed by the significant inhibition of labeling observed when photolysis was carried out in the presence of taurocholate. The 68,000-Da protein was easily extracted with water and was shown to exhibit electrophoretic properties identical with rat serum albumin. The 54,000-Da protein required Triton X-100 for solubilization, indicating a strong association with the plasma membrane. Labeling of intact hepatocytes also resulted in specific labeling of the 54,000-Da protein. In contrast to hepatocytes, HTC cells derived from Morris hepatoma 7288C as well as H4-II-E cells derived from Reuber hepatoma H-35 exhibited a total loss of mediated bile acid uptake. Photolysis of 7-ADTC in the presence of HTC cells did not result in the labeling of any proteins, a result consistent with the loss of transport activity, and further supporting the specificity of the labeling reaction. The anion transport inhibitor N-(4-azido-2-nitrophenyl)-2-aminoethyl-[ 35S ]sulfonate, which has been shown to be a substrate for the bile acid carrier system also labeled the 54,000-Da plasma membrane protein when photolyzed in the presence of intact hepatocytes. These results suggest that the 54,000-Da protein is a component of the hepatocyte bile acid transport system and that the activity of this system is greatly reduced in several hepatoma cell lines.  相似文献   

11.
The ryanodine receptor of rabbit skeletal muscle sarcoplasmic reticulum was purified by immunoaffinity chromatography as a single approximately 450,000-Da polypeptide and it was shown to mediate single channel activity identical to that of the ryanodine-treated Ca2+ release channel of the sarcoplasmic reticulum. The purified receptor had a [3H]ryanodine binding capacity (Bmax) of 280 pmol/mg and a binding affinity (Kd) of 9.0 nM. [3H]Ryanodine binding to the purified receptor was stimulated by ATP and Ca2+ with a half-maximal stimulation at 1 mM and 8-9 microM, respectively. [3H]Ryanodine binding to the purified receptor was inhibited by ruthenium red and high concentrations of Ca2+ with an IC50 of 2.5 microM and greater than 1 mM, respectively. Reconstitution of the purified receptor in planar lipid bilayers revealed the Ca2+ channel activity of the purified receptor. Like the native sarcoplasmic reticulum Ca2+ channels treated with ryanodine, the purified receptor channels were characterized by (i) the predominance of long open states insensitive to Mg2+ and ruthenium red, (ii) a main slope conductance of approximately 35 pS and a less frequent 22 pS substate in 54 mM trans-Ca2+ or Ba2+, and (iii) a permeability ratio PBa or PCa/PTris = 8.7. The approximately 450,000-Da ryanodine receptor channel thus represents the long-term open "ryanodine-altered" state of the Ca2+ release channel from sarcoplasmic reticulum. We propose that the ryanodine receptor constitutes the physical pore that mediates Ca2+ release from the sarcoplasmic reticulum of skeletal muscle.  相似文献   

12.
Purified rat liver glucocorticoid receptor was covalently charged with [3H]glucocorticoid by photoaffinity labeling (UV irradiation of [3H]triamcinolone acetonide-glucocorticoid receptor) or affinity labeling (incubation with [3H]dexamethasone mesylate). After labeling, separate samples of the denatured receptor were cleaved with trypsin (directly or after prior succinylation), chymotrypsin, and cyanogen bromide. Labeled residues in the peptides obtained were identified by radiosequence analysis. The peaks of radioactivity corresponded to Met-622 and Cys-754 after photoaffinity labeling with [3H]triamcinolone acetonide and Cys-656 after affinity labeling with [3H]dexamethasone mesylate. The labeled residues are all positioned within hydrophobic segments of the steroid-binding domain. The patterns of hydropathy and secondary structure for the glucocorticoid receptor are highly similar to those for the progestin receptor and similar but less so to those for the estrogen receptor and to those for c-erb A.  相似文献   

13.
5-Hydroxytryptamine1A (5-HT1A) receptor proteins were identified by a novel approach in which photoaffinity labeling technique was used in conjunction with affinity column chromatography. 5-HT1A receptors were solubilized from bovine frontal cortical membranes with 0.3% digitonin and 0.1% Nonidet P-40, and bound effectively to 1-[2-(4-aminophenyl)ethyl]-4-(3-trifluoromethylphenyl)piperazine (PAPP)-coupled Affi-Gel 10 in a time-dependent manner. PAPP was shown previously to be a selective ligand for the 5-HT1A receptor. Two protein bands with molecular masses of approximately 55,000 and 38,000 daltons revealed on sodium dodecyl sulfate-polyacrylamide gel electrophoresis were eluted from the affinity column with either 1 mM 5-HT or 1 microM [3H]1-[2-(4-azidophenyl)ethyl]-4-(3-trifluoromethyl-phenyl)piperazine ([3H]p-azido-PAPP). [3H]p-Azido-PAPP is a selective photoaffinity labeling probe for the 5-HT1A receptor. The intensity of these two protein bands and the incorporation of [3H]p-azido-PAPP into these two proteins decreased significantly when the solubilized fraction was preincubated with excess 5-HT or PAPP (saturating all 5-HT1A receptors) prior to affinity column chromatography. These results suggest strongly that these two proteins are related to the 5-HT1A receptor protein. The isoelectric points of the photolabeled 5-HT1A receptor proteins were 6.0 and 6.5.  相似文献   

14.
The effects of GTP analogues and conditions in which various endogenous protein kinases were activated on photoaffinity labeling with [3H](+)PN200-110 (PN) of crude membranes from rat cardiac muscle and whole brain were investigated. Photoaffinity labeling with 20 nM [3H](+)PN of these crude membranes was decreased by 100 microM GTP-gamma-S, but not by 100 microM GTP or 100 microM GDP-beta-S. Similar results were obtained on the effects of GTP and its analogues on the specific binding of 20 nM [3H](+)PN to these crude membranes under the same conditions. Activation of endogenous protein kinases in these crude membranes did not influence the photoaffinity labeling with [3H](+)PN. These results suggested the binding sites, or DPH-sensitive, or L-type, calcium channels in curde membranes from rat cardiac muscle and whole brain are directly or indirectly modulated by endogenous GTP-binding protein, but not by various endogenous protein kinases in these crude membranes.  相似文献   

15.
Photoaffinity labeling of alpha 1-adrenergic receptors of rat heart   总被引:1,自引:0,他引:1  
The photoaffinity probe [125I]aryl azidoprazosin was used to examine structural aspects of rat left ventricular alpha 1-adrenergic receptor. Autoradiography of sodium dodecyl sulfate-polyacrylamide gel electrophoresis-resolved proteins from photoaffinity-labeled membranes revealed a specifically labeled protein of mass 77 kDa. Adrenergic drugs competed with the photoaffinity probe for binding to the receptor in a manner expected of an alpha 1-adrenergic antagonist. Because the autoradiographic pattern was unaltered by incubating labeled membranes in gel sample buffer containing high concentrations of reducing agents, the binding component of the cardiac alpha 1-adrenergic receptor appears to be a single polypeptide chain. The photoaffinity probe specifically labeled a single protein of approximately 68 kDa in membranes of cardiac myocytes prepared from rat left ventricles. The role played by sulfhydryls in receptor structure and function was also studied. Dithiothreitol (DTT) inhibited [3H]prazosin binding to left ventricular membranes and altered both the equilibrium dissociation constant and maximal number of [3H]prazosin-binding sites but not the ability of the guanine nucleotide guanyl-5'-yl imidodiphosphate to decrease agonist affinity for the receptors. When photoaffinity-labeled membranes were incubated with 40 mM DTT for 30 min at room temperature, two specifically labeled proteins of 77 and 68 kDa were identified. The DTT-induced conversion of the 77-kDa protein to 68 kDa was irreversible with washing, but the effect of DTT on [3H]prazosin binding was reversible. Both 77- and 68-kDa proteins were observed with liver membranes even in the absence of reducing agent. We suggest that the DTT-induced conversion of the 77-kDa protein to 68 kDa is due to enhancement in protease activity by the reductant. These results document that the cardiac alpha 1-adrenergic receptor is a 77-kDa protein, similar in mass to the receptor in liver and other sites. Proteolysis likely accounts for lower Mr forms of this receptor found in cardiac myocytes and in previous publications on hepatic alpha 1-receptors.  相似文献   

16.
[3H]2-Nitroimipramine ([3H]2-NI), a compound with high affinity for the serotonin uptake system, is shown to be an effective photoaffinity probe which incorporates covalently into membrane homogenates prepared from human platelets, as well as rat brain and liver. In all cases, [3H]2-NI preferentially incorporated into a minor membrane component of 30 kd protein, as determined by SDS-polyacrylamide gel electrophoresis and subsequent fluorography. A number of selective and general serotonin uptake inhibitors quantitatively chased labeling of the 30-kd band at nanomolar concentrations. Pharmacological characterizing agents unrelated to the serotonin uptake system generally had little effect on labeling. In platelet membranes, a broad band of approximately 35-kd protein was also labeled by [3H]2-NI, but this labeling was not inhibited by any of the selective serotonin uptake blockers. Interestingly, serotonin itself increased incorporation into the 30-kd band and selectively decreased labeling of the 35-kd band. Photolytic incorporation into the 30-kd band was of high affinity, saturable, and Scatchard analyses of irreversible labeling were linear. In contrast, Scatchard transformations of [3H]2-NI equilibrium binding saturation isotherms were markedly curvilinear. Cross-linking unlabeled 2-NI to intact platelets, followed by extensive dialysis, decreased the maximal velocity (Vmax) of platelet serotonin uptake, but did not alter the affinity (Km) of serotonin for its transport site. These results are noteworthy since current theories implicate prejunctional allosteric interactions between serotonin and imipramine at serotonergic synapses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Spinach chloroplast RNA was translated in a wheat germ cell-freesystem in the presence of [35S]methionine or [3H]lysine, andthe products were analyzed by SDS polyacrylamide gel electrophoresisand fluorography. A polypeptide with molecular mass of 2,000-Dalarger than the 32,000-Da thylakoid protein was detected asa major product labeled by [35S]methionine but not by [3H]lysine.Peptide mapping of this polypeptide showed a pattern very closeto that of the 32,000-Da protein synthesized in isolated chloroplasts.A better separation of this polypeptide from the 32,000-Da proteinwas observed in the electrophoresis on polyacrylamide gel includingurea at 8 M. Pulse-labeling of the isolated chloroplasts showedthe occurrence of the larger molecular weight form, which wasconverted to the mature size by a chasing incubation with coldmethionine. These results suggested that the 32,000-Da proteinof spinach is translated primarily as a high molecular weightprecursor in the chloroplasts, as has been reported for otherplant species. (Received March 30, 1985; Accepted April 23, 1985)  相似文献   

18.
A high affinity [3H]ryanodine receptor has been solubilized from rabbit brain membranes and biochemically characterized. [3H]Ryanodine binding to rabbit brain membranes is specific and saturable, with a Kd of 1.3 nM. [3H]Ryanodine binding is enriched in membranes from the hippocampus but is significantly lower in membranes from the brain stem and spinal cord. Approximately 60% of [3H]ryanodine-labeled receptor is solubilized from brain membranes using 2.5% CHAPS and 10 mg/ml phosphatidylcholine containing 1 M NaCl. The solubilized brain [3H]ryanodine receptor sediments through sucrose gradients like the skeletal receptor as a large (approximately 30 S) complex. Solubilized receptor is specifically immunoprecipitated by sheep polyclonal antibodies against purified skeletal muscle ryanodine receptor coupled to protein A-Sepharose. [3H]Ryanodine-labeled receptor binds to heparin-agarose, and a protein of approximately 400,000 Da, which is cross-reactive with two polyclonal antibodies raised against the skeletal muscle ryanodine receptor, elutes from the column and is enriched in peak [3H]ryanodine binding fractions. These results suggest that the approximately 400,000-Da protein is the brain form of the high affinity ryanodine receptor and that it shares several properties with the skeletal ryanodine receptor including a large oligomeric structure composed of approximately 400,000-Da subunits.  相似文献   

19.
Renal cortical plasma membranes were solubilized with sodium deoxycholate. The membrane-bound cyclic AMP receptors retained biologic activity in the detergent-dispersed state exhibiting the properties of high affinity for cyclic AMP, saturability and specificity. Half-maximal binding of cycle [3H]-AMP to these receptors was found to occur at 0.06 muM and 1.5 pmol of cyclic [3H]AMP was bound per mg membrane protein at saturation (0.5 muM cyclic [3H]AMP). Sodium deoxycholate-solubilized membrane proteins were chromatographed on Biogel A-5m. Cyclic [3H]AMP receptors eluted in the internal volume at positions equivalent to molecular sizes of 50 000 and 20 000 daltons and in the void volume at molecular size greater than 450 000. After photoaffinity labeling the renal membrane receptors with cyclic [3H]AMP, we found peaks of tritium radioactivity which eluted at similar molecular size positions on this Bogel A-5m column. Further treatment of photoaffinity labeled membranes with sodium dodecyl sulfate, mercaptoethanol and urea, followed by polyacrylamide gel electrophoresis, showed bands of tritium-labeled receptor protein with relative mobilities corresponding to molecular sizes of 26 000 and 21 000 daltons. This study shows that porcine renal cortical membranes contain at least two molecular species of cyclic AMP receptors which may be associated with regulation of the membrane-bound cyclic AMP-dependent protein kinase.  相似文献   

20.
Ryanodine at concentrations of 0.01-10 microM increased, while greater concentrations of 10-300 microM decreased the calcium permeability of both rabbit fast twitch skeletal muscle junctional and canine cardiac sarcoplasmic reticulum membranes. Ryanodine did not alter calcium binding by either sarcoplasmic reticulum membranes or the calcium binding protein, calsequestrin. Therefore, the effects by this agent appear to involve only changes in membrane permeability, and the characteristics of the calcium permeability pathway affected by ryanodine were those of the calcium release channel. Consistent with this, the actions by ryanodine were localized to junctional sarcoplasmic reticulum membranes and were not observed with either longitudinal sarcoplasmic reticulum or transverse tubular membranes. In addition, passage of the junctional sarcoplasmic reticulum membranes through a French press did not diminish the effects of ryanodine indicating that intact triads were not required. Under the conditions used for the permeability studies, the binding of [3H]ryanodine to skeletal junctional sarcoplasmic reticulum membranes was specific and saturable, and Scatchard analyses indicated the presence of a single binding site with a Kd of 150-200 nM and a maximum capacity of 10.1-18.9 pmol/mg protein. [3H]ryanodine binding to this site and the increase in membrane calcium permeability caused by low concentrations of ryanodine had similar characteristics suggesting that actions at this site produce this effect. Depending on the assay conditions used, ryanodine (100-300 microM) could either increase or decrease ATP-dependent calcium accumulation by skeletal muscle junctional sarcoplasmic reticulum membranes indicating that the alterations of sarcoplasmic reticulum membrane calcium permeability caused by this agent can be determined in part by the experimental environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号