首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Four gall midge species (Diptera: Cecidomyiidae) that induce leaf galls on Styrax japonicus (Styracaceae) were identified to generic level based on larval morphology. Three of these gall midges, which induce whitish hemiglobular galls, flattened subglobular galls, and purple globular galls, respectively, were identified as three genetically distinct species of Contarinia, and the remaining species, which induces globular galls with dense whitish hairs, was identified as a species of Dasineura. Field surveys in Fukuoka, Japan, revealed that adults of these gall midges emerged and oviposited in late March to mid‐April at Mount Tachibana (approximately 200 m a.s.l.) and in late April to early May at Mount Sefuri (about 1050 m a.s.l.), coinciding with the leaf‐opening season of S. japonicus. Larvae of these gall midges mostly developed into third instars by June and then left their galls and dropped to the ground. These species therefore have a life history strategy that differs from that of another S. japonicus‐associated gall midge, Oxycephalomyia styraci, which overwinters as the first instar in ovate swellings, matures rapidly in spring, and emerges directly from the galls.  相似文献   

3.
Different gall inducers belonging to distinct insect orders are rarely known to induce similarly shaped galls on the same host plant organs. We report that Asphondylia tojoi Elsayed & Tokuda sp. nov. (Diptera: Cecidomyiidae) and Ceratoneura sp. (Hymenoptera: Eulophidae) induce galls on leaf buds of Schoepfia jasminodora Sieb. et Zucc. (Schoepfiaceae). We describe the gall midge species as new to science and report a phylogenetic analysis for known Japanese Asphondylia species. We also describe life histories of the two species, based on monthly surveys during 2015–2017: although both species are multivoltine, A. tojoi overwinters as first instars in galls, whereas Ceratoneura sp. possibly does so as adults outside the galls. In addition, the internal structure of galls differed between the two species. Galls containing A. tojoi consist of a single chamber with inner walls clearly covered with whitish fungal mycelia after the gall midges develop into second instars. Those containing the Ceratoneura sp. have multiple chambers with hard black inner walls. Although some eulophids are known to be inquilines of galls induced by Asphondylia species, we consider that the Ceratoneura sp. is probably a true gall inducer because of the different gall structure and absence of fungal mycelia in their galls. This is the first report detailing the annual life history of a Ceratoneura species. Asphondylia tojoi represents the first example of monophagous Asphondylia species with a multivoltine life history on a deciduous tree.  相似文献   

4.
Abstract  Five new species and a new genus of gall midge are described from flower galls on native chenopod plants in Eyre Peninsula, South Australia. Asphondylia vesicaria sp. n. induces galls on Atriplex vesicaria ; A. mcneilli sp. n. on Sclerolaena diacantha ; and A. tonsura sp. n. on Enchylaena tomentosa . Infested flowers develop into galls and produce no seeds. DNA analysis of part of the cytochrome-c oxidase subunit I mitochondrial gene supported the morphological and biological differences between each of the new species and the previously described A. floriformis (Veenstra-Quah & Kolesik) and A. sarcocorniae (Veenstra-Quah & Kolesik) that induce galls on leaves and branches, respectively, of Sarcocornia quinqueflora (Chenopodiaceae) in Australian salt marshes. A new genus, Dactylasioptera gen. n. and two new species of Lasiopterini, D. adentata sp. n. and D. dentata sp. n. are described – both were reared from galls of A. mcneilli and A. tonsura .  相似文献   

5.
6.
In Australia, galls develop on Melaleuca quinquenervia (Cav.) S.T. Blake (Myrtaceae) as a result of the mutualistic association between the fly Fergusonina turneri Taylor (Diptera: Fergusoninidae) and its obligate nematode Fergusobia quinquenerviae Davies & Giblin-Davis (Tylenchida: Sphaerulariidae). The nematode induces gall formation, whereas the fly promotes gall maturation. Together they exploit M. quinquenervia buds and may inhibit stem elongation and flower formation. We delimited the physiological host range of this pair to determine their suitability as biological control agents of invasive M. quinquenervia populations in Florida, USA. Host use was assessed for eight species of Myrtaceae native to Florida, eight phylogenetically related ornamental species and oviposition alone on five non-myrtaceous species. Although oviposition was less specific, galls developed and matured only on M. quinquenervia. After establishment, galls are predicted to prevent flower and seed production, thereby reducing the regenerative potential of M. quinquenervia. This is the first example of an insect/nematode mutualism released as biological control agents of an invasive plant.  相似文献   

7.
The gall fly Cecidochares connexa (Diptera: Tephritidae) is a potential biological control agent for Chromolaena odorata in Australia. Its host specificity was determined against 18 species in the tribe Eupatorieae (Family Asteraceae) in which C. odorata belongs, in quarantine in Brisbane, Australia. Oviposition occurred and flies developed on only C. odorata and Praxelis clematidea, both of which are in the subtribe Praxelinae. P. clematidea is considered a weed outside tropical America. In both multiple-species-minus-C. odorata choice tests and single-species no-choice tests, the mean number of galls/plant was significantly greater on C. odorata (48 and 41, respectively) than on P. clematidea (2 and 9, respectively). There were also significantly more adults emerging from C. odorata (mean 129 and 169, respectively) in the two types of tests than from P. clematidea (1 and 8, respectively). Paired choice, multiple generation (continuation) and time dependent tests further clarified the extent that C. connexa could develop on P. clematidea. In these tests, the mean number of galls formed and the mean number of emerging adults were consistently less for P. clematidea than C. odorata and populations of C. connexa could not be maintained on P. clematidea. Galls were not seen on any other plant species tested. This study supports the results of host specificity testing conducted in seven other countries and confirms that C. connexa poses little risk to other plant species in Australia. C. connexa has been released in 10 countries and an application seeking approval to release in Australia has been submitted to the Australian Government.  相似文献   

8.
An Australian gall-inducing eulophid, Ophelimus eucalypti (Gahan) was first recorded on the foliage of Eucalyptus botryoides after it invaded New Zealand in 1987. It has spread throughout the eucalypt plantations in the North Island and in the northern parts of the South Island affecting several species of Eucalyptus in the section Transversaria (subgenus Symphyomyrtus). Because gall-inducing insects usually have extremely narrow host ranges, O. eucalypti that induces galls on E. saligna and E. botryoides is currently recognized as a biotype, O. eucalypti(Transversaria). Heavily galled leaves abscise from the plant. Repeated defoliation led to widespread die-back of susceptible eucalypt species in the 1990s. Female larvae of O. eucalypti induce circular, protruding galls on the leaves of E. botryoides and E. saligna, whereas the males induce pit galls on the same species. The biology of O. eucalypti females and the development of their galls are described. Adult female O. eucalypti antennate the leaf surface before inserting the ovipositor (otherwise concealed within the metasomal apex) into the young host leaf. The egg is inserted at approximately 45 degrees and discharged between differentiating palisade cells. Callus-type cells surround the egg chamber, but cytologically specialized nutritive cells appear once the egg hatches and the larva begins to feed. The gall also differentiates a multi-layered sclerenchymatous tissue around the nutritive tissue. After feeding for many months, the larva pupates and the active nutritive tissue degenerates. The adult wasp emerges after cutting an exit hole through to the outside of the gall. Abscission of heavily galled leaves results in widespread defoliation and loss of growth and vigour in susceptible trees in New Zealand.  相似文献   

9.
The Ralstonia solanacearum species complex includes R. solanacearum, R. syzygii, and the Blood Disease Bacterium (BDB). All colonize plant xylem vessels and cause wilt diseases, but with significant biological differences. R. solanacearum is a soilborne bacterium that infects the roots of a broad range of plants. R. syzygii causes Sumatra disease of clove trees and is actively transmitted by cercopoid insects. BDB is also pathogenic to a single host, banana, and is transmitted by pollinating insects. Sequencing and DNA-DNA hybridization studies indicated that despite their phenotypic differences, these three plant pathogens are actually very closely related, falling into the Phylotype IV subgroup of the R. solanacearum species complex. To better understand the relationships among these bacteria, we sequenced and annotated the genomes of R. syzygii strain R24 and BDB strain R229. These genomes were compared to strain PSI07, a closely related Phylotype IV tomato isolate of R. solanacearum, and to five additional R. solanacearum genomes. Whole-genome comparisons confirmed previous phylogenetic results: the three phylotype IV strains share more and larger syntenic regions with each other than with other R. solanacearum strains. Furthermore, the genetic distances between strains, assessed by an in-silico equivalent of DNA-DNA hybridization, unambiguously showed that phylotype IV strains of BDB, R. syzygii and R. solanacearum form one genomic species. Based on these comprehensive data we propose a revision of the taxonomy of the R. solanacearum species complex. The BDB and R. syzygii genomes encoded no obvious unique metabolic capacities and contained no evidence of horizontal gene transfer from bacteria occupying similar niches. Genes specific to R. syzygii and BDB were almost all of unknown function or extrachromosomal origin. Thus, the pathogenic life-styles of these organisms are more probably due to ecological adaptation and genomic convergence during vertical evolution than to the acquisition of DNA by horizontal transfer.  相似文献   

10.
A new species of gall midge, Schizomyia cryptostegiae Gagné, that forms leaf and bud galls on Cryptostegia grandiflora in Madagascar is described and its biology summarised. the gall midge is a candidate for the biological control of C. grandiflora in northern Queensland, Australia.  相似文献   

11.
  • 1 Eriophyoid mites are among the most ubiquitous gall‐inducing arthropods, and are adapted species‐specifically to a broad diversity of plants, although their life histories remain poorly studied outside agricultural systems.
  • 2 We examined the seasonal phenology of a leaf‐galling eriophyid mite, the maple spindle gall mite Vasates aceriscrumena (MSGM), in naturally occurring stands of sugar maple Acer saccharum in south‐central Ontario in 2007 and 2008.
  • 3 Galls were first induced in spring (mid‐May) and were devoid of mites by late August. In the study region, MSGM appears to have at least two generations, with overwintering, deutogyne females that initiate galls in spring (mid‐May) after leaf flush, giving rise to a generation of protogyne (primary) females and a few morphologically similar males (<1 for every 10 females) and, subsequently, to a new generation of deutogyne females in mid‐July to early August. In July, some galls can be highly crowded, with 50–200 individuals per gall.
  • 4 In addition, a tarsonemid mite, Tarsonemus acerbilis, was found in approximately 40% of MSGM galls examined. As much as 95.4% of galls in 2007 and 97.4% in 2008 that contained tarsonemid larvae did not contain MSGM eggs (by contrast, only 2.3% of tarsonemid‐free galls contained no MSGM eggs), suggesting that these juveniles feed, at least opportunistically, on MSGM eggs.
  • 5 Gall ostiole morphology appeared to influence both MSGM and Tarsonemus densities within galls, with ‘open’ ostioles (versus ‘closed’) being much more susceptible to invasion by the tarsonemid. The latter is likely to be an important regulator of MSGM populations. We hypothesize that the two ostiole types are the result of selection pressures on the gall inducer, favouring closed gall entrances for increased protection, and possibly also on the host tree, favouring open galls to increase predator access.
  相似文献   

12.
Females of Demotina fasciculata (Coleoptera: Chrysomelidae) were found to prefer to feed on galls induced by Andricus moriokae (Hymenoptera: Cynipidae) rather than on leaves of its host plant, Quercus serrata (Fagaceae). This is the first record of cecidophagy by adult chrysomelid beetles. Demotina fasciculata did not infest healthy galls induced by another unidentified cynipid species on the same host trees, but did feed on galls inhabited by an inquiline species Synergus quercicola (Hymenoptera: Cynipidae), presumably because such galls remained on the host trees longer than healthy galls. Galls of A. moriokae were infested more severely than cynipid galls inhabited by the inquiline. Therefore, higher density and thicker gall wall in A. moriokae galls seem to make them more suitable targets for D. fasciculata to attack. Larval chambers of A. moriokae galls were stripped by the infestation of gall walls and readily dropped to the ground, resulting in 100% death of cynipid larvae due to desiccation, while 62.5% of pupae survived when they had developed to the late stadium before the fall of larval chambers.  相似文献   

13.
  1. Leptocybe invasa is native to Australia and induces galls on various species of Eucalyptus. Two genetically distinct lineages of this wasp have been detected outside its native range, namely, Leptocybe Lineage A and Leptocybe Lineage B.
  2. The parasitoid Selitrichodes neseri was released in South Africa as a biological control agent against L. invasa. Another parasitoid of L. invasa, Quadrastichus mendeli, as well as Megastigmus zebrinus (parasitoid) and Megastigmus pretorianensis (role unknown), have also been recorded emerging from L. invasa galls. The objective of this study was to investigate the interactions between the different hymenopterans associated with L. invasa galls in South Africa.
  3. L. invasa galls were dissected and species-specific primers and restriction enzymes were used to identify the larvae where interactions were noted.
  4. S. neseri, Q. mendeli and M. zebrinus were confirmed to parasitize Leptocybe Lineage A, and S. neseri was confirmed to parasitize Leptocybe Lineage B. Furthermore, there were direct interactions between these parasitoids, where parasitoids were found parasitising each other. The gall forming experiment confirmed that M. pretorianensis is not a gall former, but other potential roles remain uncertain.
  相似文献   

14.
Abstract Aphis clerodendri Matsumura is newly recorded from Australia and is known from the Northern Territory, on islands in Torres Strait, and in rainforest in northern Queensland and New South Wales. It induces the formation of leaf pseudogalls on native species of Clerodendrum and is commonly attended by ants, which penetrate and may polydomously nest in the galls. Previously known only from eastern Asia, A. clerodendri can now be classified as native to Australia and Australasian in natural distribution. The species is also newly recorded from Papua New Guinea and Vietnam.  相似文献   

15.
Yu H  Compton SG 《PloS one》2012,7(1):e30833
Figs are the inflorescences of fig trees (Ficus spp., Moraceae). They are shaped like a hollow ball, lined on their inner surface by numerous tiny female flowers. Pollination is carried out by host-specific fig wasps (Agaonidae). Female pollinators enter the figs through a narrow entrance gate and once inside can walk around on a platform generated by the stigmas of the flowers. They lay their eggs into the ovules, via the stigmas and styles, and also gall the flowers, causing the ovules to expand and their pedicels to elongate. A single pollinator larva develops in each galled ovule. Numerous species of non-pollinating fig wasps (NPFW, belonging to other families of Chalcidoidea) also make use of galled ovules in the figs. Some initiate galls, others make use of pollinator-generated galls, killing pollinator larvae. Most NPFW oviposit from the outside of figs, making peripherally-located pollinator larvae more prone to attack. Style length variation is high among monoecious Ficus spp. and pollinators mainly oviposit into more centrally-located ovules, with shorter styles. Style length variation is lower in male (wasp-producing) figs of dioecious Ficus spp., making ovules equally vulnerable to attack by NPFW at the time that pollinators oviposit. We recorded the spatial distributions of galled ovules in mature male figs of the dioecious Ficus hirta in Southern China. The galls contained pollinators and three NPFW that kill them. Pollinators were concentrated in galls located towards the centre of the figs, NPFW towards the periphery. Due to greater pedicel elongation by male galls, male pollinators became located in more central galls than their females, and so were less likely to be attacked. This helps ensure that sufficient males survive, despite strongly female-biased sex ratios, and may be a consequence of the pollinator females laying mostly male eggs at the start of oviposition sequences.  相似文献   

16.
Pin oak, Quercus palustris Muenchhausen, is the primary host for the gall wasp Callirhytis cornigera (Osten Sacken). Woody stem galls formed by C. cornigera may be infested by the dogwood borer, Synanthedon scitula (Harris), an important pest of flowering dogwood, Cornus florida L. Previous research has shown that S. scitula has a bimodal seasonal flight pattern, with peaks in late spring and midsummer. We tested the hypothesis that moths emerging from dogwoods largely account for the first flight pulse, whereas emergence from stem galls contributes disproportionately to the second pulse. Seasonal flight activity of S. scitula was monitored with pheromone traps baited with Z,Z-3,13-octadecadien-1-ol acetate. Traps were hung near plantings of dogwoods in suburban landscapes or near heavily galled pin oaks. Borer emergence from dogwood was monitored by sampling infested trees for pupal exuviae, and from galls that were collected and held in outdoor rearing cages. The impact of S. scitula on C. cornigera larvae was assessed by weighing, measuring, and dissecting galls. Flight activity of S. scitula began on 5 May and ended on 13 October 1999, with peaks in late May and in late July to early August. The flight pattern was similar for the two types of trapping sites, and moths emerged from both hosts during both flight periods. Proportionately more moths emerged from dogwoods during the first flight pulse than during the second, but emergence from galls was nearly evenly divided between the two flight peaks. We therefore reject the hypothesis that emergence of borers from galls contributes disproportionately to the second flight period. Approximately 12-15% of stem galls (2-3 yr old) contained S. scitula larvae. Feeding and tunneling by borers contributed to gall desiccation and reduced horn development, but rarely killed C. cornigera larvae. This study has implications for management of S. scitula because borers emerging from horned oak galls may represent a threat to dogwood.  相似文献   

17.
Abstract Weiria australis gen. n and sp. n. (type locality Western Australia, Kimberley Region, CALM Site 25/1, Synnot Ck.), a myrmecoid (ant-like body form) aleocharine staphylinid, is described, and habitus and line illustrations are provided for its recognition. The species is tentatively placed in the tribe Aenictoteratini; similarities and differences to tribal characters shared by other members of the Aenictoteratini, and similarities and differences to other aenictoteratine genera are discussed. This is the first fully myrmecoid aleocharine, and the first member of the tribe Aenictoteratini, known from Australia. Association of Weiria gen. n. with the ant genus Aenictus Shuckard is postulated.  相似文献   

18.
Alstonia scholaris (Dr C. Alston, 1685–1760) (Family Apocynaceae) (Chattim tree), commonly known as devil tree, is an evergreen tropical tree. The tree is native to India and also found in Sri Lanka, Southern China, throughout Malaysia to northern Australia. This plant is seriously damaged by formation of tumor like galls across the Kolkata city,West Bengal which affects its ornamental and medicinal value. Gall is formed by ovipositing adults of Pseudophacopteron alstonium Yang et Li 1983 (Hemiptera: Psyllidae: Phacopteronidae) and results in destruction of host plant. The nymphal stage undergoes moulting through first instar to third instar to reach the adult within galls. It is observed that highly infested leaves can bear 60–80 galls. The gallmaker Pseudophacopteron sp. stresses the host organ, and the host counters it with physiological activities supplemented by newly differentiated tissues. In infested leaves, chlorophyll and carbohydrate contents decreased sequentially with the age of the gall. There were no significant changes in protein and total amino acid content in gall tissue. But total lipid content was highest in mature galled leaves. Increased phenolic content after psylloid herbivory, which exerted oxidative stress on the host plants, was observed in gall infested leaves as compared to fresh ungalled leaves of Alstonia scholaris. Moisture content was highest in ungalled healthy leaves than the young galled, mature galled and perforated galled leaves.  相似文献   

19.
  • Several studies have suggested reasons why galls have conspicuous colours, but none of the ideas have been confirmed. However, what if the vibrant colours of some galls are explained simply by the effect of light exposure? This may lead to anthocyanin accumulation, functioning as a defence mechanism against the effects of high light.
  • We studied the globoid galls induced by Cecidomyiidae (Diptera) on Qualea parviflora (Vochysiaceae), relating anthocyanin accumulation and chlorophyll fluorescence parameters to light incidence in abaxial and adaxial galls. We also tested if the anthocyanin accumulation patterns apply to another Cecidomyiidae‐induced gall morphotype (intralaminar) within the same plant.
  • Adaxial galls are exposed to higher incident light, with more anthocyanin accumulation and therefore red coloration. In galls from angled leaves, the greater the angle of the leaf, the higher the difference between anthocyanins on the sun and shade sides of galls. Photosynthetic pigment concentrations did not differ between abaxial and adaxial galls. However, we found higher (Fm′ ? F′)/Fm′ and Fv/Fm in the abaxial galls. Conversely, NPQ and Rfd were higher in adaxial galls. Finally, the pattern of anthocyanin accumulation was not found in the intralaminar gall.
  • Anthocyanin accumulation in galls functions as a photoprotective strategy, maintaining tissue vitality in regions exposed to high light conditions. However, this mechanism may vary even among galls within the same host, indicating idiosyncrasy when it comes to coloration in galls. To date, this is the first study to demonstrate quantitatively why the galls of a specific species may be coloured: the variation in light regimes creates differential anthocyanin accumulation, influencing coloration.
  相似文献   

20.
Infection of annual ryegrass (Lolium rigidum) by Anguina sp. resulted in replacement of seeds by bottle-shaped galls, each containing several hundred quiescent, second-stage larvae. The biology of the nematodes, including the emergence of larvae from galls, survival in soil, and movement into and development within the host plant, has been examined. Larvae were not able to leave the galls during the dry summer, but emerged within soil 2–6 wk after normal autumn rains and following partial decay of the gall rind. Emergence took place over several months, and not all larvae emerged in any one year; they were able to survive over summer in soil both within and outside the galls. Under suitable moisture conditions, host plants were infested by larvae which climbed up the outer surfaces, became lodged within leaf sheaths, and then gradually moved towards the centre of the plant. Larvae which reached the central or axillary meristems prior to flowering were carried up with the elongating inflorescence, and attacked developing floret primordia. The nematodes developed rapidly to the adult stage, and eggs were being laid within galls by the time the inflorescence had emerged. Second-stage larvae hatched quickly and were the only live stage remaining after the ryegrass had died.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号