首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Species of the genus Drosophila, commonly known as "fruitflies," are good model systems for research in aging. Drosophila are extremely well-known genetically, developmentally, and otherwise. They are also genetically analogous to mammalian species in most important respects. Previous work with Drosophila has been hampered by inbreeding depression, but more recent work using selection has created Drosophila with postponed aging that is inherited normally. Genetic transformation has also increased Drosophila life spans in some cases. Several biologic approaches have been applied to the analysis of genetically postponed aging in Drosophila: quantitative genetics, organismal physiology, and protein electrophoresis. Ultimately, these different approaches will be integrated into an overall analysis of aging in Drosophila, one that could be valuable for research with other taxa as well.  相似文献   

2.
Trends in oxidative aging theories   总被引:17,自引:0,他引:17  
The early observations on the rate-of-living theory by Max Rubner and the report by Gershman that oxygen free radicals exist in vivo culminated in the seminal proposal in the 1950s by Denham Harman that reactive oxygen species are a cause of aging (free radical theory of aging). The goal of this review is to analyze recent findings relevant in evaluating Harman's theory using experimental results as grouped by model organisms (i.e., invertebrate models and mice). In this regard, we have focused primarily on recent work involving genetic manipulations. Because the free radical theory of aging is not the only theorem proposed to explain the mechanism(s) involved in aging at the molecular level, we also discuss how this theory is related to other areas of research in biogerontology, specifically, telomere/cell senescence, genomic instability, and the mitochondrial hypothesis of aging. We also discuss where we think the free radical theory is headed. It is now possible to give at least a partial answer to the question whether oxidative stress determines life span as Harman posed so long ago. Based on studies to date, we argue that a tentative case for oxidative stress as a life-span determinant can be made in Drosophila melanogaster. Studies in mice argue for a role of oxidative stress in age-related disease, especially cancer; however, with regard to aging per se, the data either do not support or remain inconclusive on whether oxidative stress determines life span.  相似文献   

3.
Mice are an ideal mammalian model for studying the genetics of aging: considerable resources are available, the generation time is short, and the environment can be easily controlled, an important consideration when performing mapping studies to identify genes that influence lifespan and age-related diseases. In this review we highlight some salient contributions of the mouse in aging research: lifespan intervention studies in the Interventions Testing Program of the National Institute on Aging; identification of the genetic underpinnings of the effects of calorie restriction on lifespan; the Aging Phenome Project at the Jackson Laboratory, which has submitted multiple large, freely available phenotyping datasets to the Mouse Phenome Database; insights from spontaneous and engineered mouse mutants; and complex traits analyses identifying quantitative trait loci that affect lifespan. We also show that genomewide association peaks for lifespan in humans and lifespan quantitative loci for mice map to homologous locations in the genome. Thus, the vast bioinformatic and genetic resources of the mouse can be used to screen candidate genes identified in both mouse and human mapping studies, followed by functional testing, often not possible in humans, to determine their influence on aging.  相似文献   

4.
In the last decade, research into the molecular determinants of aging has progressed rapidly and much of this progress can be attributed to studies in invertebrate eukaryotic model organisms. Of these, single-celled yeast is the least complicated and most amenable to genetic and molecular manipulations. Supporting the use of this organism for aging research, increasing evidence has accumulated that a subset of pathways influencing longevity in yeast are conserved in other eukaryotes, including mammals. Here we briefly outline aging in yeast and describe recent findings that continue to keep this “simple” eukaryote at the forefront of aging research.  相似文献   

5.
We review the definitions, determinants, and ways of enhancing successful cognitive and emotional aging. Objective definitions of successful aging based on physical health emphasize outcomes including freedom from disability and disease, whereas subjective definitions center on well-being, social connectedness, and adaptation. Most older people do not meet objective criteria for successful aging, while a majority meet the subjective criteria. Older people with severe mental illness are not excluded from successful aging. The determinants of successful aging include complex interactions of lifestyle behaviors and social environment with genes. Depression interferes with nearly all determinants of successful aging. Evidence-based means of enhancing successful aging include calorie restriction, physical exercise, cognitive stimulation, social support, and optimization of stress. Future directions for successful aging research and implications for geriatric psychiatry are discussed.  相似文献   

6.
Led by innovation, leadership, transparency and excellence, the Institute of Aging provides a focal point for Canadian research on aging and pursues the fundamental goal of advancing knowledge in the field of aging to improve the quality of life and health of older Canadians. The Institute has carried out a range of important national and international strategic initiatives in aging, and has become influential in leveraging funding, enhancing research capacity and creating a new impetus in research on aging in Canada. The Institute engages and supports the scientific community, encourages interdisciplinary and integrative health research and fosters not only on the creation of new knowledge, but also on the translation of that knowledge into improved health, a strengthened health care system, and new health products and services for Canadians. The IA focuses on five priority areas of research: healthy and successful aging, biological mechanisms of aging, cognitive impairment in aging, aging and maintenance of autonomy, and finally, health services and policies relating to older people. The efforts of the IA are guided by five strategic orientations: to lead in the development and definition of strategic directions for Canadian research on aging ; to build research capacity in the field of aging ; to foster the dissemination, transfer and translation of research findings in policies, interventions, services and products ; to promote the importance of, and the need for, a research community in aging ; and to develop and support capacity-building and strategic research initiatives in the field of aging.  相似文献   

7.
The mini-review stemmed from a recent meeting on national aging research strategies in China discusses the components and challenges of aging research in China. Highlighted are the major efforts of a number of research teams, funding situations and outstanding examples of recent major research achievements. Finally, authors discuss potential targets and strategies of aging research in China.  相似文献   

8.
As the human lifespan has increased dramatically in recent decades, the amount of aging research has correspondingly increased. To investigate mechanisms of aging, an efficient model system is required. Although mammalian animal models are essential for aging studies, they are sometimes inappropriate due to their long lifespans and high maintenance costs. In this regard, insects can be effective alternative model systems for aging studies, as insects have a relatively short lifespan and cost less to maintain. Many species of insects have been used as model systems for aging studies, especially fruit flies, silkworm moths and several social insects. Fruit flies are most commonly used for aging studies due to the wide availability of abundant resources such as mutant stocks, databases and genetic tools. Silkworm moths are also good tools for studying aging at the tissue level due to their relatively large size. Last, social insects such as ants and bees are good for investigating lifespan determinants, as their lifespans significantly differ according to caste despite a constant genotype among the population. In this review, we discuss the current status and future prospects of aging research using insect model systems.  相似文献   

9.
The programmed vs. non-programmed aging controversy has now existed in some form for at least 150 years. For much of the XX century, it was almost universally believed that evolution theory prohibited programmed (adaptive) aging in mammals and there was little direct experimental or observational evidence favoring it. More recently, multiple new evolutionary mechanics concepts that support programmed aging and steadily increasing direct evidence favoring it overwhelmingly support the existence of programmed aging in humans and other organisms. This issue is important because the different theories suggest very different mechanisms for the aging process that in turn suggest very different paths toward treating and preventing age-related diseases.  相似文献   

10.
Research on the biology of aging seeks to enhance understanding of basic mechanisms and thus support improvements in outcomes throughout the lifespan, including longevity itself, susceptibility to disease, and life-long adaptive capacities. The focus of this review is the use of rats as an animal model of cognitive change during aging, and specifically lessons learned from aging rats in behavioral studies of cognitive processes mediated by specialized neural circuitry. An advantage of this approach is the ability to compare brain aging across species where functional homology exists for specific neural systems; in this article we focus on behavioral assessments that target the functions of the medial temporal lobe and prefrontal cortex. We also take a critical look at studies using calorie restriction (CR) as a well-defined experimental approach to manipulating biological aging. We conclude that the effects of CR on cognitive aging in rats are less well established than commonly assumed, with much less supportive evidence relative to its benefits on longevity and susceptibility to disease, and that more research in this area is necessary.  相似文献   

11.
Invertebrate model systems, such as nematodes and fruit flies, have provided valuable information about the genetics and cellular biology involved in aging. However, limitations of these simple, genetically tractable organisms suggest the need for other model systems, some of them invertebrate, to facilitate further advances in the understanding of mechanisms of aging and longevity in mammals, including humans. This paper introduces 10 review articles about the use of invertebrate model systems for the study of aging by authors who participated in an ‘NIA-NIH symposium on aging in invertebrate model systems’ at the 2013 International Congress for Invertebrate Reproduction and Development. In contrast to the highly derived characteristics of nematodes and fruit flies as members of the superphylum Ecdysozoa, cnidarians, such as Hydra, are more ‘basal’ organisms that have a greater number of genetic orthologs in common with humans. Moreover, some other new model systems, such as the urochordate Botryllus schlosseri, the tunicate Ciona, and the sea urchins (Echinodermata) are members of the Deuterostomia, the same superphylum that includes all vertebrates, and thus have mechanisms that are likely to be more closely related to those occurring in humans. Additional characteristics of these new model systems, such as the recent development of new molecular and genetic tools and a more similar pattern to humans of regeneration and stem cell function suggest that these new model systems may have unique advantages for the study of mechanisms of aging and longevity.  相似文献   

12.
Approaches to teaching the cell biology of aging (cytogerontology), within the appropriate agreements by scientists of the Biological Faculty of Moscow State University and at the Department of Life Science and Engineering of Harbin Institute of Technology (China), are described. The authors draw attention to certain differences in teaching biology between the two institutions and emphasize the significance of a system approach to teaching cytogerontology. This approach makes it absolutely necessary to introduce the course on the basics of biology of aging. It is concluded that full perception of the data from modern molecular cell cytogerontological research, by the students from both institutions, is impossible without understanding the fundamental notions and definitions used in both theoretical and experimental gerontology.  相似文献   

13.
Very little is known about the molecular mechanisms of human aging. This, at least in part, derives from a paucity of appropriate animal models of aging. Until recently, the senescence-accelerated mouse was the only mammalian model of aging. However, novel mouse models that exhibit multiple aging phenotypes have been developed in the past few years by disruption of the klotho gene, the telomerase gene and the genes involved in premature aging syndromes. These mouse models are expected to be important tools for aging research.  相似文献   

14.
种子老化的生理生化与分子机理研究进展   总被引:2,自引:0,他引:2  
刘娟  归静  高伟  马俊峰  王佺珍 《生态学报》2016,36(16):4997-5006
种子作为植物遗传资源的有效保存体以及重要的种质创新原料,其老化或者劣变将直接导致发芽率、活力、生活力降低,抑制种胚正常发育以及幼苗生长,由此造成植物生产水平及其品质大幅下降。这也将进一步涉及因种质资源匮乏、土壤种子库系统功能紊乱所引发的全球生物多样性减小、草地退化和荒漠化加剧等生态危机问题。对种子老化生理生化特性和分子机理等研究进行了综述。总结了近年来关于种子老化涉及的理化反应包括保护酶活性的改变、核酸以及蛋白质的分解、内源激素的消长、质膜完整性降低等相关研究;并从蛋白代谢、核酸代谢、种子含水量以及基因重组等多角度总结和阐述了与老化机理有关的最新研究观点,以期为种子老化、种子活力修复和种子寿命延长等机理研究提供基础理论参考。目前对种子老化的研究多集中于传统的生理生化过程和内外影响因子相对独立变化的片段性研究,缺乏系统综合的多层面体系研究。种子作为生命体,随着探讨生命衰老机理的生物技术日新月异,通过蛋白组学、酶学、基因工程技术、转录组测序等新技术的应用,必将对未来种子老化机理机制的揭示有突破性推进作用。  相似文献   

15.
Over a century ago, the zoologist Emile Maupas first identified the nematode, Rhabditis elegans, in the soil in Algiers. Subsequent work and phylogenic studies renamed the species Caenorhabditis elegans or more commonly referred to as C. elegans; (Caeno meaning recent; rhabditis meaning rod; elegans meaning nice). However, it was not until 1963, when Sydney Brenner, already successful from his work on DNA, RNA, and the genetic code, suggested the future of biological research lay in model organisms. Brenner believed that biological research required a model system that could grow in vast quantities in the lab, were cheap to maintain and had a simple body plan, and he chose the nematode C. elegans to fulfill such a role. Since that time, C. elegans has emerged as one of the premiere model systems for aging research. This paper reviews some initial identification of mutants with altered lifespan with a focus on genetics and then discusses advantages and disadvantages for using C. elegans as a model system to understand human aging. This review focuses on molecular genetics aspects of this model organism.  相似文献   

16.
Tissue banking is a complex operation concerned with the organisation and coordination of all the steps, that is, from donor selection up to storage and distribution of the final products for therapeutic, diagnostic, instruction and research purposes. An appropriate quality framework should be established in order to cover all the specific methodology as well as the general aspects of quality management, such as research and development, design, instruction and training, specific documentation, traceability, corrective action, client satisfaction, and the like. Such a framework can be obtained by developing a quality management system (QMS) in accordance with a suitable international standard: ISO 9001:2000. This paper presents the implementation process of the tissue bank QMS at the Instituto Nacional de Investigaciones Nucleares in Mexico. Objective: The objective of the paper is to share the experience gained by the tissue bank personnel [radiosterilised tissue bank (BTR)] at the Instituto Nacional de Investigaciones Nucleares (ININ, National Institute of Nuclear Research), during implementation of the ISO 9001:2000 certification process. At present, the quality management system (QMS) of ININ also complies with the Mexican standard NMX-CC-9001:2000. The scope of this QMS is Research, Development and Processing of Biological Tissues Sterilised by Gamma Radiation, among others.  相似文献   

17.
有机污染物在土壤中老化行为的研究进展   总被引:2,自引:0,他引:2  
赵青  李培军 《生态学杂志》2008,27(3):476-479
有机污染物在土壤中的老化行为是目前有机污染研究的一个热点问题.通过对其机理的研究,可以达到调控污染物的目的.本文介绍了有机污染物在土壤中的老化行为和国内外研究现状,指出老化的实质包括有机污染物在土壤中的慢吸附和锁定,总结了土壤性质、化合物性质和环境因素对老化的影响,同时介绍了老化的评价方法,并在此基础上提出了目前研究有机物在土壤老化过程中所存在的问题,并对老化行为的未来研究方向进行了展望.  相似文献   

18.
Physiological removal of old erythrocytes from the circulation by macrophages is initiated by binding of autologous IgG to senescent cell antigen (SCA). SCA is generated from the anion exchanger band 3. This process is accompanied by a number of alterations in the function and structure of band 3. We measured these aging-related parameters in erythrocytes from individuals with sickle cell anemia. Most sickle erythrocytes have characteristics that are also found in senescent normal erythrocytes, such as an increased density and considerable concentrations of cell-bound IgG. Together with the concomitant changes in structure and function of band 3, these data suggest that most sickle erythrocytes have undergone a process of accelerated aging. Preliminary results indicate that this process is reversed upon vitamin E supplementation. These data show that the erythrocyte aging paradigm may provide a useful conceptual framework for the study of the pathophysiology and the evalution of therapeutic intervention in sickle cell disease, and support the view that oxidation can generate neoantigens that are recognized by autoantibodies.  相似文献   

19.
Muscle-specific atrophy of the quadriceps femoris with aging.   总被引:6,自引:0,他引:6  
We examined the size of the four muscles of the quadriceps femoris in young and old men and women to assess whether the vastus lateralis is an appropriate surrogate for the quadriceps femoris in human studies of aging skeletal muscle. Ten young (24 +/- 2 yr) and ten old (79 +/- 7 yr) sedentary individuals underwent magnetic resonance imaging of the quadriceps femoris after 60 min of supine rest. Volume (cm3) and average cross-sectional area (CSA, cm2) of the rectus femoris (RF), vastus lateralis (VL), vastus intermedius (VI), vastus medialis (VM), and the total quadriceps femoris were decreased (P < 0.05) in older compared with younger women and men. However, percentage of the total quadriceps femoris taken up by each muscle was similar (P > 0.05) between young and old (RF: 10 +/- 0.3 vs. 11 +/- 0.4; VL: 33 +/- 1 vs. 33 +/- 1; VI: 31 +/- 1 vs. 31 +/- 0.4; VM: 26 +/- 1 vs. 25 +/- 1%). These results suggest that each of the four muscles of the quadriceps femoris atrophy similarly in aging men and women. Our data support the use of vastus lateralis tissue to represent the quadriceps femoris muscle in aging research.  相似文献   

20.
Nonhuman primate (NHP) aging research has traditionally relied mainly on the rhesus macaque. But the long lifespan, low reproductive rate, and relatively large body size of macaques and related Old World monkeys make them less than ideal models for aging research. Manifold advantages would attend the use of smaller, more rapidly developing, shorter-lived NHP species in aging studies, not the least of which are lower cost and the ability to do shorter research projects. Arbitrarily defining "small" primates as those weighing less than 500 g, we assess small, relatively short-lived species among the prosimians and callitrichids for suitability as models for human aging research. Using the criteria of availability, knowledge about (and ease of) maintenance, the possibility of genetic manipulation (a hallmark of 21st century biology), and similarities to humans in the physiology of age-related changes, we suggest three species--two prosimians (Microcebus murinus and Galago senegalensis) and one New World monkey (Callithrix jacchus)--that deserve scrutiny for development as major NHP models for aging studies. We discuss one other New World monkey group, Cebus spp., that might also be an effective NHP model of aging as these species are longer-lived for their body size than any primate except humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号