首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic control of chromosome synapsis in yeast meiosis   总被引:17,自引:0,他引:17  
Both meiosis-specific and general recombination functions, recruited from the mitotic cell cycle, are required for elevated levels of recombination and for chromosome synapsis (assembly of the synaptonemal complex) during yeast meiosis. The meiosis-specific SPO11 gene (previously shown to be required for meiotic recombination) has been isolated and shown to be essential for synaptonemal complex formation but not for DNA metabolism during the vegetative cell cycle. In contrast, the RAD52 gene is required for mitotic and meiotic recombination but not for synaptonemal complex assembly. These data suggest that the synaptonemal complex may be necessary but is clearly not sufficient for meiotic recombination. Cytological analysis of spread meiotic nuclei demonstrates that chromosome behavior in yeast is comparable with that observed in larger eukaryotes. These spread preparations support the immunocytological localization of specific proteins in meiotic nuclei. This combination of genetic, molecular cloning, and cytological approaches in a single experimental system provides a means of addressing the role of specific gene products and nuclear structures in meiotic chromosome behavior.  相似文献   

2.
徐婉约  王应祥 《植物学报》2019,54(5):620-624
减数分裂指DNA复制1次, 细胞核分裂2次, 产生染色体数目减半的单倍体配子, 是真核生物有性生殖所必需的环节。拟南芥(Arabidopsis thaliana)是分子遗传学研究的传统模式生物。近年来, 随着显微镜技术的快速发展, 利用细胞学方法观察拟南芥减数分裂过程中的染色体形态和同源染色体互作事件, 将有助于深入认识减数分裂的分子遗传机制。该文详细描述了染色体展片法观察拟南芥雄性减数分裂细胞中的染色体形态。  相似文献   

3.
徐婉约  王应祥 《植物学报》1983,54(5):620-624
减数分裂指DNA复制1次, 细胞核分裂2次, 产生染色体数目减半的单倍体配子, 是真核生物有性生殖所必需的环节。拟南芥(Arabidopsis thaliana)是分子遗传学研究的传统模式生物。近年来, 随着显微镜技术的快速发展, 利用细胞学方法观察拟南芥减数分裂过程中的染色体形态和同源染色体互作事件, 将有助于深入认识减数分裂的分子遗传机制。该文详细描述了染色体展片法观察拟南芥雄性减数分裂细胞中的染色体形态。  相似文献   

4.
Meiosis is essential for sexual reproduction and recombination is a critical step required for normal meiosis. Understanding the underlying molecular mechanisms that regulate recombination is important for medical, agricultural and ecological reasons. Readily available molecular and cytological tools make Arabidopsis an excellent system to study meiosis. Here we review recent developments in molecular genetic analyses on meiotic recombination. These include studies on plant homologs of yeast and animal genes, as well as novel genes that were first identified in plants. The characterizations of these genes have demonstrated essential functions from the initiation of recombination by double-strand breaks to repair of such breaks, from the formation of doubie-HoUiday junctions to possible resolution of these junctions, both of which are critical for crossover formation. The recent advances have ushered a new era in plant meiosis, in which the combination of genetics, genomics, and molecular cytology can uncover important gene functions.  相似文献   

5.
Meiosis is a fundamental and evolutionarily conserved process that is central to the life cycles of all sexually reproducing eukaryotes. An understanding of this process is critical to furthering research on reproduction, fertility, genetics and breeding. Plants have been used extensively in cytogenetic studies of meiosis during the last century. Until recently, our knowledge of the molecular and functional aspects of meiosis has emerged from the study of non-plant model organisms, especially budding yeast. However, the emergence of Arabidopsis thaliana as the model organism for plant molecular biology and genetics has enabled significant progress in the characterisation of key genes and proteins controlling plant meiosis. The development of molecular and cytological techniques in Arabidopsis, besides allowing investigation of the more conserved aspects of meiosis, are also providing insights into features of this complex process which may vary between organisms. This review highlights an example of this recent progress by focussing on ASY1, a meiosis-specific Arabidopsis protein which shares some similarity with the N-terminus region of the yeast axial core-associated protein, HOP1, a component of a multiprotein complex which acts as a meiosis-specific barrier to sister-chromatid repair in budding yeast. In the absence of ASY1, synapsis is interrupted and chiasma formation is dramatically reduced. ASY1 protein is initially detected during early meiotic G2 as numerous foci distributed over the chromatin. As G2 progresses the signal appears to be increasingly continuous and is closely associated with the axial elements. State-of-the-art cytogenetic techniques have revealed that initiation of recombination is synchronised with the formation of the chromosome axis. Furthermore, in the context of the developing chromosome axes, ASY1 plays a crucial role in co-ordinating the activity of a key member of the homologous recombination machinery, AtDMC1.  相似文献   

6.
The formation of haploid gametes in organisms with sexual reproduction requires regular bivalent chromosome pairing in meiosis. In many species, homologous chromosomes occupy separate territories at the onset of meiosis. To be paired at metaphase I, they need to be brought into a close proximity for interactions that include homology recognition and the establishment of some form of bonds. How homologues find each other is one of the least understood meiotic events. Plant species with large or medium sized genomes, such as wheat or maize, are excellent materials for the cytological analysis of chromosome dynamics at early meiosis, but genes that control meiosis have been identified mainly in small genome species such as Arabidopsis thaliana. This review is focused on the contribution studies on plants are providing to the knowledge of the initial steps of the meiotic process.  相似文献   

7.
The synaptonemal complex (SC) is a proteinaceous structure that mediates homolog engagement and genetic recombination during meiosis. In budding yeast, Zip-Mer-Msh (ZMM) proteins promote crossover (CO) formation and initiate SC formation. During SC elongation, the SUMOylated SC component Ecm11 and the Ecm11-interacting protein Gmc2 facilitate the polymerization of Zip1, an SC central region component. Through physical recombination, cytological, and genetic analyses, we found that ecm11 and gmc2 mutants exhibit chromosome-specific defects in meiotic recombination. CO frequencies on a short chromosome (chromosome III) were reduced, whereas CO and non-crossover frequencies on a long chromosome (chromosome VII) were elevated. Further, in ecm11 and gmc2 mutants, more double-strand breaks (DSBs) were formed on a long chromosome during late prophase I, implying that the Ecm11–Gmc2 (EG) complex is involved in the homeostatic regulation of DSB formation. The EG complex may participate in joint molecule (JM) processing and/or double-Holliday junction resolution for ZMM-dependent CO-designated recombination. Absence of the EG complex ameliorated the JM-processing defect in zmm mutants, suggesting a role for the EG complex in suppressing ZMM-independent recombination. Our results suggest that the SC central region functions as a compartment for sequestering recombination-associated proteins to regulate meiosis specificity during recombination.  相似文献   

8.
In haploid and diploid organisms of the plant kingdom, meiotic division of diploid cells proceeds in two consecutive stages, with DNA replicating only once. In amphihaploids (interspecific or intergeneric hybrids), where homologs are absent, the reduction of the chromosome number does not occur, meiosis is abnormal, and the plants are sterile. Gamete viability in F1 hybrids is ensured by a single division when chromosomes are separated into sister chromatids in either the first or the second division. Such gametes ensure partial fertility of amphihaploids, thereby facilitating their survival and stabilization of the polygenome. The frequency of the formation of viable gametes varies from a few cases to 98.8% in different anthers of the hybrids. Here, studies on the cytological mechanisms and genetic control of chromosome unreduction or restitution in different amphihaploids of the tribe Triticeae are reviewed. The current notions on the control of formation of restitution nuclei based on the principles of a prolonged metaphase I and different types of meiocytes. The main terms used for systematization of restitution mechanisms are first-division restitution (FDR), single-division meiosis (SDM), and unreductional meiotic cell division (UMCD). It has been assumed that archesporial cells of wide hybrids may have two cell division programs, the meiotic and the mitoyic ones The possible approaches to the analysis of the genetic control of chromosome restitution in amphihaploids are discussed.  相似文献   

9.
In meiosis of human males DNA is packaged along pachytene chromosomes about 20 time more compactly than in meiosis of yeast. Nevertheless, a human-derived yeast artificial chromosome (YAC) shows the same degree of compaction of DNA as endogenous chromosomes in meiotic prophase nuclei of yeast. This suggests that in yeast meiosis, human and yeast DNA adopt a similar organization of chromatin along the pachytene chromosome cores. Therefore meiotic chromatin organization does not seem to be an inherent chromosomal property but is governed by the host-specific cellular environment. We suggest that there is a correlation between the less dense DNA packaging and the increased rate of recombination that has been reported for human-derived YACs as compared with human DNA in its natural environment.  相似文献   

10.
A. M. Villeneuve 《Genetics》1994,136(3):887-902
This study reports the characterization of a cis-acting locus on the Caenorhabditis elegans X chromosome that is crucial for promoting normal levels of crossing over specifically between the X homologs and for ensuring their proper disjunction at meiosis I. The function of this locus is disrupted by the mutation me8, which maps to the extreme left end of the X chromosome within the region previously implicated by studies of X;A translocations and X duplications to contain a meiotic pairing site. Hermaphrodites homozygous for a deletion of the locus (Df/Df) or heterozygous for a deletion and the me8 mutation (me8/Df) exhibit extremely high levels of X chromosome nondisjunction at the reductional division; this is correlated with a sharp decrease in crossing over between the X homologs as evidenced both by reductions in genetic map distances and by the presence of achiasmate chromosomes in cytological preparations of oocyte nuclei. Duplications of the wild-type region that are unlinked to the X chromosome cannot complement the recombination and disjunction defects in trans, indicating that this region must be present in cis to the X chromosome to ensure normal levels of crossing over and proper homolog disjunction. me8 homozygotes exhibit an altered distribution of crossovers along the X chromosome that suggests a defect in processivity along the X chromosome of an event that initiates at the chromosome end. Models are discussed in which the cis-acting locus deleted by the Dfs functions as a meiotic pairing center that recruits trans-acting factors onto the chromosomes to nucleate assembly of a crossover-competent complex between the X homologs. This pairing center might function in the process of homolog recognition, or in the initiation of homologous synapsis.  相似文献   

11.
Tomkiel JE  Wakimoto BT  Briscoe A 《Genetics》2001,157(1):273-281
In recombination-proficient organisms, chiasmata appear to mediate associations between homologs at metaphase of meiosis I. It is less clear how homolog associations are maintained in organisms that lack recombination, such as male Drosophila. In lieu of chiasmata and synaptonemal complexes, there must be molecules that balance poleward forces exerted across homologous centromeres. Here we describe the genetic and cytological characterization of four EMS-induced mutations in teflon (tef), a gene involved in this process in Drosophila melanogaster. All four alleles are male specific and cause meiosis I-specific nondisjunction of the autosomes. They do not measurably perturb sex chromosome segregation, suggesting that there are differences in the genetic control of autosome and sex chromosome segregation in males. Meiotic transmission of univalent chromosomes is unaffected in tef mutants, implicating the tef product in a pairing-dependent process. The segregation of translocations between sex chromosomes and autosomes is altered in tef mutants in a manner that supports this hypothesis. Consistent with these genetic observations, cytological examination of meiotic chromosomes suggests a role of tef in regulating or mediating pairing of autosomal bivalents at meiosis I. We discuss implications of this finding in regard to the evolution of heteromorphic sex chromosomes and the mechanisms that ensure chromosome disjunction in the absence of recombination.  相似文献   

12.
The developments of molecular marker-based genetic linkage maps are now routine. Physical maps based on contigs of large insert genomic clones have been established in several plant species. However, integration of genetic, physical, and cytological maps is still a challenge for most plant species. Here we present an integrated map of rice (Oryza sativa L.) chromosome 5, developed by fluorescence in situ hybridization mapping of 18 bacterial artificial chromosome (BAC) clones or PI-derived artificial chromosome (PAC) clones on meiotic pachytene chromosomes. Each BAC/PAC clone was anchored by a restriction fragment length polymorphism marker mapped to the rice genetic linkage map. This molecular cytogenetic map shows the genetic recombination and sequence information of a physical map, correlated to the cytological features of rice chromosome 5. Detailed comparisons of the distances between markers on genetic, cytological, and physical maps, revealed the distributions of recombination events and molecular organization of the chromosomal features of rice chromosome 5 at the pachytene stage. Discordance of distances between the markers was found among the different maps. Our results revealed that neither the recombination events nor the degree of chromatin condensation were evenly distributed along the entire length of chromosome 5. Detailed comparisons of the correlative positions of markers on the genetic, cytological, and physical maps of rice chromosome 5 provide insight into the molecular architecture of rice chromosome 5, in relation to its cytological features and recombination events on the genetic map. The prospective applications of such an integrated cytogenetic map are discussed.  相似文献   

13.
14.
Summary In the alkane yeast Saccharomycopsis lipolytica (formerly: Candida lipolytica) the variability in the ascospore number is caused by the absence of a correlation between the meiotic divisions and spore wall formation. In four spored yeasts, after meiosis II, a spore wall is formed around each of the four nuclei produced by meiosis II. However, in the most frequently occurring two spored asci of S. lipolytica, the two nuclei are already enveloped by the spore wall after meiosis I due to a delay of meiosis II. This division takes place within the spore during the maturation of the ascus. In this case germination of the binucleate ascospore is not preceded by a mitosis. It follows that the cells of the new haploid clones are mononucleate. In the three spored asci, which occur rarely, only one nucleus is surrounded by a spore wall after meiosis I; the other nucleus undergoes meosis II before the onset of spore wall formation. The result is one binucleate and two mononucleate spores. In the one spored asci the two meiotic divisions occur within the young ascospore, i.e. spore wall formation starts immediately after development of the ascus. These cytological observations were substantiated by genetic data, which in addition confirmed the prediction that binucleate spores may be heterokaryotic. This occurs when there is a postreduction of at least one of the genes by which the parents of the cross differ. This also explains the high frequency of prototrophs in the progeny on non-allelic auxotrophs since random spore isolates are made without distinguishing between mono-and binucleate spores. The possibility of analysing offspring of binucleate spores by tetrad analysis is discussed. These findings enable us to understand the life cycle of S. lipolytica in detail and we are now in a position to start concerted breeding for strain improvement especially with respect to single cell protein production.  相似文献   

15.
The F-box DNA helicase Fbh1 constrains homologous recombination in vegetative cells, most likely through an ability to displace the Rad51 recombinase from DNA. Here, we provide the first evidence that Fbh1 also serves a vital meiotic role in fission yeast to promote normal chromosome segregation. In the absence of Fbh1, chromosomes remain entangled or segregate unevenly during meiosis, and genetic and cytological data suggest that this results in part from a failure to efficiently dismantle Rad51 nucleofilaments that form during meiotic double-strand break repair.  相似文献   

16.
Wan L  Zhang C  Shokat KM  Hollingsworth NM 《Genetics》2006,174(4):1767-1774
Genetic studies in budding yeast have provided many fundamental insights into the specialized cell division of meiosis, including the identification of evolutionarily conserved meiosis-specific genes and an understanding of the molecular basis for recombination. Biochemical studies have lagged behind, however, due to the difficulty in obtaining highly synchronized populations of yeast cells. A chemical genetic approach was used to create a novel conditional allele of the highly conserved protein kinase Cdc7 (cdc7-as3) that enables cells to be synchronized immediately prior to recombination. When Cdc7-as3 is inactivated by addition of inhibitor to sporulation medium, cells undergo a delayed premeiotic S phase, then arrest in prophase before double-strand break (DSB) formation. The arrest is easily reversed by removal of the inhibitor, after which cells rapidly and synchronously proceed through recombination and meiosis I. Using the synchrony resulting from the cdc7-as3 system, DSB-dependent phosphorylation of the meiosis-specific chromosomal core protein, Hop1, was shown to occur after DSBs. The cdc7-as3 mutant therefore provides a valuable tool not only for understanding the role of Cdc7 in meiosis, but also for facilitating biochemical and cytological studies of recombination.  相似文献   

17.
Non-isotopic high resolution in sity hybridization was applied to cytological preparations of sporulating yeast cells. Ribosomal DNA (rDNA) and chromosome V-specific recombinant lambda clones were used to tag individual chromosomes and chromosome subregions. This allowed the study of chromosome behaviour during early meiotic prophase. It was found that chromatin becomes condensed and homologous DNA sequences then appear to become aligned prior to synaptonemal complex formation.by E.R. Schmidt  相似文献   

18.
Faithful chromosome segregation during meiosis is indispensable to prevent birth defects and infertility. Canonical genetic manipulations have not been very useful for studying meiosis II, since mutations of genes involved in cell cycle regulation or chromosome segregation may affect meiosis I, making interpretations of any defects observed in meiosis II complicated. Here we present a powerful strategy to dissect meiosis I and meiosis II, using chemical inhibitors in genetically tractable model organism fission yeast (Schizosaccharomyces pombe). As various chemical probes are not active in fission yeast, mainly due to an effective multidrug resistance (MDR) response, we have recently developed a drug-hypersensitive MDR-sup strain by suppression of the key genes responsible for MDR response. We further developed the MDR-supML (marker-less) strain by deleting 7 MDR genes without commonly used antibiotic markers. The new strain makes fluorescent tagging and gene deletion much simpler, which enables effective protein visualization in varied genetic backgrounds. Using the MDR-supML strain with chemical inhibitors and live cell fluorescence microscopy, we established cell cycle arrest at meiosis I and meiosis II and examined Aurora-dependent spindle assembly checkpoint (SAC) regulation during meiosis. We found that Aurora B/Ark1 kinase activity is required for recruitment of Bub1, an essential SAC kinase, to unattached kinetochore in prometaphase I and prometaphase II as in mitosis. Thus, Aurora’s role in SAC activation is likely conserved in mitosis, meiosis I, and meiosis II. Together, our MDR-supML strain will be useful to dissect complex molecular mechanisms in mitosis and 2 successive meiotic divisions.  相似文献   

19.
The frequencies of recovered disomy among the meiotic segregants of yeast (Saccharomyces cerevisiae) triploids were assessed under conditions in which all 17 yeast chromosomes were monitored simultaneously. The studies employed inbred triploids, in which all homologous centromeres were identical by descent, and single haploid testers carrying genetic markers for all 17 linkage groups. The principal results include: (1) Ascospores from triploid meiosis germinate at frequencies comparable to those from normal diploids, but most fail to produce visible colonies due to the growth-retarding effects of high multiple disomy. (2) The probability of disome formation during triploid meiosis is the same for all chromosomes; disomy for any given chromosome does not exclude simultaneous disomy for any other chromosome. (3) The 17 yeast chromosomes fall into three frequency classes in terms of disome recovery. The results support the idea that multiply disomic meiotic segregants of the triploid experience repeated, nonrandom, post-germination mitotic chromosome losses (N + 1 leads to N) and that the observed variations in individual disome recovery are wholly attributable to inherent differences in disome mitotic stability.  相似文献   

20.
Recent studies of meiotic recombination in the budding yeast and the model plant Arabidopsis thaliana indicate that meiotic crossovers (COs) occur through two genetic pathways: the interference-sensitive pathway and the interference-insensitive pathway. However, few genes have been identified in either pathway. Here, we describe the identification of the PARTING DANCERS (PTD) gene, as a gene with an elevated expression level in meiocytes. Analysis of two independently generated transferred DNA insertional lines in PTD showed that the mutants had reduced fertility. Further cytological analysis of male meiosis in the ptd mutants revealed defects in meiosis, including reduced formation of chiasmata, the cytological appearance of COs. The residual chiasmata in the mutants were distributed randomly, indicating that the ptd mutants are defective for CO formation in the interference-sensitive pathway. In addition, transmission electron microscopic analysis of the mutants detected no obvious abnormality of synaptonemal complexes and apparently normal late recombination nodules at the pachytene stage, suggesting that the mutant's defects in bivalent formation were postsynaptic. Comparison to other genes with limited sequence similarity raises the possibility that PTD may present a previously unknown function conserved in divergent eukaryotic organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号