共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Drosophila melanogaster DNA, together with λ and E. coli DNAs as controls, was digested with three different restriction endonucleases: EcoRI, Hind, and Hae. The size distributions of the segments were characterized by gel electrophoresis. More than 85% of the D. melanogaster DNA was found in a broad distribution of segment lengths consistent with random location of restriction sites. However, some DNA was spared and recovered in very long (≥20500bp) segments. These segments proved to be mostly simple sequence DNA. No complex spared segments could be found in Hind and Hae digests, while 50% of the spared EcoRI segments had a complexity exceeding that of the E. coli DNA spared by this enzyme. These data do not support the hypothesis that chromomeres contain long regions of purely tandemly repeating sequences. 相似文献
3.
Restriction endonucleases (13 out of 18 species used for the test) were certified to cleave single-stranded(ss)DNA. Such enzymes as AvaII, HaeII, DdeI, AluI, Sau3AI, AccII,TthHB8I and HapII were newly reported to cleave ssDNA. A model to account for the cleavage of ssDNA by restriction enzymes was proposed with supportive data. The essential part of the model was that restriction enzymes preferentially cleave transiently formed secondary structures (called canonical structures) in ssDNA composed of two recognition sequences with two fold rotational symmetry. This means that a restriction enzyme can cleave ssDNAs in general so far as the DNAs have the sequences of restriction sites for the enzyme, and that the rate of cleavage depends on the stabilities of canonical structures. 相似文献
4.
5.
Inactivation of RNA molecules by sequence-specific endoribonucleolytic cleavage is a subtle mechanism by which cells regulate gene expression. Sequence-specific endoribonucleases can recognize and cleave particular phosphodiester bonds confined within hundreds/thousands of chemically similar bonds. Here, we present a comparative analysis of the mechanisms used by endoribonucleases to select and cleave their target RNA molecules. This analysis is based on the very recent molecular details obtained from the structural and/or biochemical studies of nine sequence-specific ribonucleases that target messenger, ribosomal, and transfer RNA molecules. This analysis shows that despite the absence of sequence homologies and the wide diversity of biological sources (prokaryotes, archaea and eukaryotes), the sequence-specific ribonucleases studied here adopt limited structural folds, catalyze their cleavage reactions using a common chemistry and involve a very limited set of amino acids for both RNA binding and processing. 相似文献
6.
Isolation and characterization of two sequence-specific endonucleases from Anabaena variabilis. 总被引:11,自引:0,他引:11 下载免费PDF全文
Two endonucleases, AvaI and AvaII, were isolated from Anabaena variabilis on the basis of their ability to make a limited number of breaks at specific points in bacteriophage lambda DNA. Neither enzyme has cofactor requirements beyond Mg2+. Endonuclease AvaI makes eight breaks in the phage lambda chromosome at which the 5'-terminal sequence is pPy-C-G-N. AvaII endonuclease cuts phage lambda DNA more extensively, yielding fragments with the 5'-terminal sequence G-T-C-N or G-A-C-N. Neither enzyme generates cohesive ends. 相似文献
7.
Cleavage map of bacteriophage T4 cytosine-containing DNA by sequence-specific endonucleases SalI and KpnI. 下载免费PDF全文
Cytosine-containing T4 DNA from endoII- endoIV- dCTPase- alc2 phage grown in a sup+ rB- mB- host is cleaved by endo R.EcoRI and endo R.HindIII to greater than 40 fragments and by endo R.SalI and endo R.KpnI to 8 and 6 fragments, respectively. The latter two fragment sets have been correlated to each other to produce a cleavage map of the genome. The sum of the molecular weights of the fragments calculated from electrophoretic mobility in agarose gels yields a genome molecular weight for cytosine-containing T4 DNA of 105 x 10(6). 相似文献
8.
We used the sequence-specific endonucleases EcoRI, SmaI, BamHI, HsuI, and HaeIII as identification tools in following the conjugal transfer of the well-studied R plasmids Sa, R388, RP4, and R6K. Transfers were both intergeneric and intrageneric. Plasmid fingerprints were generated from both single- and combination-enzyme digests. The Sa transconjugants yielded plasmids showing consistent fingerprints for each of the respective endonucleases used, whereas the three other R-plasmid transconjugants showed fingerprint changes. 相似文献
9.
《Inorganica chimica acta》1986,124(1):5-11
The interaction of Cu(II), Ni(II), Zn(II), Co(II), Mg(II) and Ca(II) ions with substituted pyrimidines, such as 2-mercaptopyrimidine, 4,5-diamino-6- hydroxypyrimidine and 2,4-diamino-6-hydroxypyrimidine, has been investigated by potentiometric studies. The proton dissociation constants of the ligands and the stability constants of the complexes containing 1:1 and 2:1 molar ratios of the ligand to the metal ions have been reported at 45°C and 0.1 M(KNO3) ionic strength. 相似文献
10.
Nonspecific endonucleases hydrolyze DNA without sequence specificity but with sequence preference, however the structural basis for cleavage preference remains elusive. We show here that the nonspecific endonuclease ColE7 cleaves DNA with a preference for making nicks after (at 3′O-side) thymine bases but the periplasmic nuclease Vvn cleaves DNA more evenly with little sequence preference. The crystal structure of the ‘preferred complex’ of the nuclease domain of ColE7 bound to an 18 bp DNA with a thymine before the scissile phosphate had a more distorted DNA phosphate backbone than the backbones in the non-preferred complexes, so that the scissile phosphate was compositionally closer to the endonuclease active site resulting in more efficient DNA cleavage. On the other hand, in the crystal structure of Vvn in complex with a 16 bp DNA, the DNA phosphate backbone was similar and not distorted in comparison with that of a previously reported complex of Vvn with a different DNA sequence. Taken together these results suggest a general structural basis for the sequence-dependent DNA cleavage catalyzed by nonspecific endonucleases, indicating that nonspecific nucleases could induce DNA to deform to distinctive levels depending on the local sequence leading to different cleavage rates along the DNA chain. 相似文献
11.
Infrequent cleavage of cloned Anabaena variabilis DNA by restriction endonucleases from A. variabilis. 总被引:3,自引:5,他引:3 下载免费PDF全文
A cosmid vector has been constructed, using a lambda replicon. A library of cosmids from Anabaena variabilis ATCC 29413 based on use of this vector is shown to be highly deficient in sites for the two type II restriction endonucleases found in that organism. 相似文献
12.
The effects of DNA methylation by Hha I methylase on the cleavage reactions by Hae II, Aha II and Ban I endonucleases 总被引:3,自引:0,他引:3
The DNA methylated by Hha I methylase was resistant against cleavage of Hae II or Aha II endonuclease indicating that the methyl group of the C5 position of the inmost cytosine nucleotide interferes with the interaction between the enzyme and the hexameric recognition sequence. Considering that Hae II or Aha II methylase has not been isolated yet, the result explained above is a useful information for protecting a double stranded DNA from being cleaved by Hae II or Aha II endonuclease. In contrast to Hae II or Aha II endonuclease, Ban I endonuclease which also has Hha I sequence as its tetrameric core was able to cleave the same DNA normally. This result suggests that the C5 position of the inmost pyrimidine nucleotide is not an important contact point between Ban I endonuclease and its hexameric recognition sequence. 相似文献
13.
Effect of polyamines and basic proteins on cleavage of DNA by restriction endonucleases 总被引:5,自引:0,他引:5
We have investigated the effect of the polyamines spermine, spermidine, and putrescine and the prokaryotic histone-like proteins NS1 and NS2 on the restriction endonuclease EcoRI catalyzed cleavage of plasmid and bacteriophage DNAs. At low concentrations of spermine and spermidine, the rate of DNA cleavage by EcoRI is increased, while high concentrations of spermine as well as of spermidine are inhibitory. These phenomena are also observed with other restriction endonucleases. They are, therefore, probably due to the interaction of the polyamines with the DNA. Putrescine does not have such an effect within the concentration range investigated. Remarkably, low concentrations of spermine and spermidine very efficiently suppress EcoRI activity. An inhibition of the EcoRI-catalyzed cleavage of DNA is also observed with NS1 and NS2, an effect that can be mimicked with other basic proteins that interact with DNA. The results are discussed in terms of the mechanism of restriction in vivo. 相似文献
14.
The 5-methyl group of thymidine residues protrudes into the major groove of double helical DNA. The structural influence of this exocyclic substituent has been examined using a PCR-made 160 bp fragment in which thymidine residues were replaced with uridine residues. We show that the dT-->dU substitution and the consequent deletion of the methyl group affects the cleavage of DNA by deoxyribonuclease I and micrococcal nuclease. Analysis of the DNase I cleavage sites, in terms of di and trinucleotides, indicates that homopolymeric tracts of d(AT) become significantly more susceptible to DNase I cleavage when uridine is substituted for thymidine residues. The results indicate that removal of the thymidine methyl groups from the major groove at AT tracts induces structural perturbations that transmit into the opposite minor groove, where they can be detected by endonuclease probing. In contrast, DNase I footprinting experiments with different mono and bis-intercalating drugs reveal that dT-->dU substitution does not markedly affect sequence-specific drug-DNA recognition in the minor or major groove of the double helix. The consequences of demethylation of thymidine residues are discussed in terms of changes in the minor groove width connected to variations in the flexibility of DNA and the intrinsic curvature associated with AT tracts. The study identifies the methyl group of thymine as an important molecular determinant controlling the width of the minor groove and/or the flexibility of the DNA. 相似文献
15.
16.
Protection of particular cleavage sites of restriction endonucleases by distamycin A and actinomycin D. 总被引:5,自引:5,他引:5 下载免费PDF全文
V V Nosikov E A Braga A V Karlishev A L Zhuze O L Polyanovsky 《Nucleic acids research》1976,3(9):2293-2301
It is shown here that distamycin A and actinomycin D can protect the recognition sites of endo R.EcoRI, EcoRII, HindII, HindIII, HpaI and HpaII from the attack of these restriction endonucleases. At proper distamycin concentrations only two endo R.EcoRI sites of phage lambda DNA are available for the restriction enzyme--sRI1 and sRI4. This phenomenon results in the appearance of larger DNA fragments comprising several consecutive fragments of endo R.EcoRI complete cleavage. The distamycin fragments isolated from the agarose gels can be subsequently cleaved by endo R.EcoRI with the yield of the fragments of complete digestion. We have compared the effect of distamycin A and actinomycin D on a number of restriction endonucleases having different nucleotide sequences in the recognition sites and established that antibiotic action depends on the nucleotide sequences of the recognition sites and their closest environment 相似文献
17.
Molecular biological analysis of sequence-specific DNA recognition and cleavage by metallobleomycins
The DNase I footprinting analysis shows binding sites of approximately two or three base pairs, in particular 5'-XGC sequences, for the green-colored Co(III) and fully oxidized Fe(III) complexes of bleomycin (BLM). In contrast to covalent attachment of guanine N-7 with aflatoxin B1 or dimethyl sulfate, the modification of guanine 2-amino group with anthramycin remarkably inhibits the DNA cleavages at 5'-GC and 5'-GT sites by the iron and cobalt complex systems of BLM. The present results strongly indicate that metallobleomycin binds in minor groove of B-DNA and that the 2-amino group of guanine adjacent to 5'-side of the cleaved pyrimidine base is one key element of specific 5'-GC or 5'-GT recognition by metallobleomycin. On the basis of these experimental data, possible binding mode of metallobleomycin in B-DNA helix has been proposed by computer-constructed model building. 相似文献
18.
19.
Eva Foerg Laura Saporito Sheila Huang Joy Yang Mary M. Allen 《FEMS microbiology letters》1990,69(1-2):105-108
The first two restriction endonucleases to be characterized in the cyanobacterium Synechocystis sp. PCC 6308 are described. SynI, an AvaII isoschizomer, recognizes the base sequence 5-GG[AT]CC-3. SynII, an XmnI isoschizomer, recognizes the sequence 5-GAANNNNTTC-3. 相似文献
20.
5-Hydroxymethylcytosine reacted with bisulfite and, instead of undergoing usual deamination process, gave cytosine 5-methylenesulfonate as the product. The conversion was rapid and quantitative, and the optimum pH was 4.5. The product was isolated as crystals and characterized. Cytosine 5-methylenesulfonate was only very slowly deaminated by treatment with bisulfite. 5-Hydroxymethyl-2'-deoxycytidine 5'-phosphate reacted with bisulfite in the same way as 5-hydroxymethylcytosine. Residues of 5-hydroxymethylcytosine in native as well as denatured T2 DNA were convertible to those of cytosine 5-methylenesulfonate by treatment of the DNA with bisulfite. While it is known that the 5-hydroxy-methyl groups of T-even bacteriophage DNA can be enzymatically glucosylated, this observation offers chemical evidence that the 5-hydrozymethyl groups in DNA are situated in such a way that they can readily react with external agents. 5-Hydroxymethyluracil gave uracil 5-methylenesulfonate on treatment with bisulfite. This reaction was much slower than that of 5-hydroxymethylcytosine, and the optimum pH was between 6 and 7. 相似文献