首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New artificial ribonucleases, conjugates of short oligodeoxyribonucleotides with peptides containing alternating arginine and leucine, were synthesized and characterized in terms of their catalytic activity and specificity of RNA cleavage. The conjugates efficiently cleave different RNAs within single-stranded regions. Depending on the sequence and length of the oligonucleotide, the conjugates display either G–X>>Pyr–A or Pyr–A>>G–X cleavage specificity. Preferential RNA cleavage at G–X phosphodiester bonds was observed for conjugate NH2-Gly-[ArgLeu]4-CCAAACA. The conjugates function as true catalysts, exhibiting reaction turnover up to 175 for 24 h. Our data show that in the conjugate the oligonucleotide plays the role of a factor which provides an ‘active‘ conformation of the peptide via intramolecular interactions, and that it is the peptide residue itself which is responsible for substrate affinity and catalysis.  相似文献   

2.
Oligonucleotides composed of 2′-O-methyl and locked nucleic acid residues complementary to HIV-1 trans-activation responsive element TAR block Tat-dependent trans-activation in a HeLa cell assay when delivered by cationic lipids. We describe an improved procedure for synthesis and purification under highly denaturing conditions of 5′-disulphide-linked conjugates of 3′-fluorescein labelled oligonucleotides with a range of cell-penetrating peptides and investigate their abilities to enter HeLa cells and block trans-activation. Free uptake of 12mer OMe/LNA oligonucleotide conjugates to Tat (48–58), Penetratin and R9F2 was observed in cytosolic compartments of HeLa cells. Uptake of the Tat conjugate was enhanced by N-terminal addition of four Lys or Arg residues or a second Tat peptide. None of the conjugates entered the nucleus or inhibited trans-activation when freely delivered, but inhibition was obtained in the presence of cationic lipids. Nuclear exclusion was seen for free delivery of Tat (48–58), Penetratin and R9 conjugates of 16mer phosphorothioate OMe oligonucleotide. Uptake into human fibroblast cytosolic compartments was seen for Tat, Penetratin, R9F2 and Transportan conjugates. Large enhancements of HeLa cell uptake into cytosolic compartments were seen when free Tat peptide was added to Tat conjugate of 12mer OMe/LNA oligonucleotide or Penetratin peptide to Penetratin conjugate of the same oligonucleotide.  相似文献   

3.
Cleavage of phosphodiester bonds by small ribonuclease mimics within different bulge-loops of RNA was investigated. Bulge-loops of different size (1–7 nt) and sequence composition were formed in a 3′ terminal fragment of influenza virus M2 RNA (96 nt) by hybridization of complementary oligodeoxynucleotides. Small bulges (up to 4 nt) were readily formed upon oligonucleotide hybridization, whereas hybridization of the RNA to the oligonucleotides designed to produce larger bulges resulted in formation of several alternative structures. A synthetic ribonuclease mimic displaying Pyr–Pu cleavage specificity cleaved CpA motifs located within bulges faster than similar motifs within the rest of the RNA. In the presence of 10 mM MgCl2, 75% of the cleavage products resulted from the attack of this motif. Thus, selective RNA cleavage at a single target phosphodiester bond was achieved by using bulge forming oligonucleotides and a small ribonuclease A mimic.  相似文献   

4.
RNase T1 mimicking artificial ribonuclease   总被引:1,自引:0,他引:1       下载免费PDF全文
Recently, artificial ribonucleases (aRNases)—conjugates of oligodeoxyribonucleotides and peptide (LR)4-G-amide—were designed and assessed in terms of the activity and specificity of RNA cleavage. The conjugates were shown to cleave RNA at Pyr-A and G–X sequences. Variations of oligonucleotide length and sequence, peptide and linker structure led to the development of conjugates exhibiting G–X cleavage specificity only. The most efficient catalyst is built of nonadeoxyribonucleotide of unique sequence and peptide (LR)4-G-NH2 connected by the linker of three abasic deoxyribonucleotides (conjugate pep-9). Investigation of the cleavage specificity of conjugate pep-9 showed that the compound is the first single-stranded guanine-specific aRNase, which mimics RNase T1. Rate enhancement of RNA cleavage at G–X linkages catalysed by pep-9 is 108 compared to non-catalysed reaction, pep-9 cleaves these linkages only 105-fold less efficiently than RNase T1 (kcat_RNase T1/kcat_pep-9 = 105).  相似文献   

5.
Based on our recent studies of RNA cleavage by oligonucleotide–terpyridine·Cu(II) complex 5′- and/or 3′-conjugates, we designed 2′-O-methyloligonucleotides with two terpyridine-attached nucleosides at contiguous internal sites. To connect the 2′-terpyridine-modified uridine residue at the 5′-side to the 5′-O-terpyridyl nucleoside residue at the 3′-side, a dimethoxytrityl derivative of 5-hydroxypropyl-5′-O-terpyridyl-2′-deoxyuridine-3′-phosphoramidite was newly synthesized. Using this unit, we constructed two terpyridine conjugates, with either an unusual phophodiester bond or the bond extended by a propanediol(s)-containing linker. Cleavage reactions of the target RNA oligomer, under the conditions of conjugate excess in the presence of Cu(II), indicated that the conjugates precisely cleaved the RNA at the predetermined site and that one propanediol-containing linker was the most appropriate for inducing high cleavage activity. Furthermore, a comparison of the activity of the propanediol agent with those of the control conjugates with one complex confirmed that the two complexes are required for efficient RNA cleavage. The reaction of the novel cleaver revealed a bell-shaped pH–rate profile with a maximum at pH ~7.5, which is a result of the cooperative action of the complexes. In addition, we demonstrated that the agent catalytically cleaves an excess of the RNA, with the kinetic parameter kcat/Km = 0.118 nM–1 h–1.  相似文献   

6.
Triple helix-forming oligonucleotides covalently linked to topoisomerase I inhibitors, in particular the antitumor agent camptothecin, trigger topoisomerase I-mediated DNA cleavage selectively in the proximity of the binding site of the oligonucleotide vector. In the present study, we have performed a systematic analysis of the DNA cleavage efficiency as a function of the positioning of the camptothecin derivative, either on the 3′ or the 5′ side of the triplex, and the location of the cleavage site. A previously identified cleavage site was inserted at different positions within two triplex site-containing 59 bp duplexes. Sequence-specific DNA cleavage by topoisomerase I occurs only with triplex conjugates bearing the inhibitor at the 3′-end of the oligonucleotide and on the oligopyrimidine strand of the duplex. The lack of targeted cleavage on the 5′ side is attributed to the structural differences of the 3′ and 5′ duplex–triplex DNA junctions. The changes induced in the double helix by the triple-helical structure interfere with the action of the enzyme according to a preferred spatial organization. Camptothecin conjugates of oligonucleotides provide efficient tools to probe the organization of the topoisomerase I–DNA complex and will be useful to understand the functioning of topoisomerase I in living cells.  相似文献   

7.
The inhibitory potency of an antisense oligonucleotide depends critically on its design and the accessibility of its target site. Here, we used an RNA interference-guided approach to select antisense oligonucleotide target sites in the coding region of the highly structured hepatitis C virus (HCV) RNA genome. We modified the conventional design of an antisense oligonucleotide containing locked nucleic acid (LNA) residues at its termini (LNA/DNA gapmer) by inserting 8-oxo-2’-deoxyguanosine (8-oxo-dG) residues into the central DNA region. Obtained compounds, designed with the aim to analyze the effects of 8-oxo-dG modifications on the antisense oligonucleotides, displayed a unique set of properties. Compared to conventional LNA/DNA gapmers, the melting temperatures of the duplexes formed by modified LNA/DNA gapmers and DNA or RNA targets were reduced by approximately 1.6-3.3°C per modification. Comparative transfection studies showed that small interfering RNA was the most potent HCV RNA replication inhibitor (effective concentration 50 (EC50): 0.13 nM), whereas isosequential standard and modified LNA/DNA gapmers were approximately 50-fold less efficient (EC50: 5.5 and 7.1 nM, respectively). However, the presence of 8-oxo-dG residues led to a more complete suppression of HCV replication in transfected cells. These modifications did not affect the efficiency of RNase H cleavage of antisense oligonucleotide:RNA duplexes but did alter specificity, triggering the appearance of multiple cleavage products. Moreover, the incorporation of 8-oxo-dG residues increased the stability of antisense oligonucleotides of different configurations in human serum.  相似文献   

8.
2′-O-(2-methoxyethyl) (2′-MOE) RNA possesses favorable pharmocokinetic properties that make it a promising option for the design of oligonucleotide drugs. Telomerase is a ribonucleoprotein that is up-regulated in many types of cancer, but its potential as a target for chemotherapy awaits the development of potent and selective inhibitors. Here we report inhibition of human telomerase by 2′-MOE RNA oligomers that are complementary to the RNA template region. Fully complementary oligomers inhibited telomerase in a cell extract with IC50 values of 5–10 nM at 37°C. IC50 values for mismatch-containing oligomers varied with length and phosphorothioate substitution. After introduction into DU 145 prostate cancer cells inhibition of telomerase activity persisted for up to 7 days, equivalent to six population doublings. Inside cells discrimination between complementary and mismatch-containing oligomers increased over time. Our results reveal two oligomers as especially promising candidates for initiation of in vivo preclinical trials and emphasize that conclusions regarding oligonucleotide efficacy and specificity in cell extracts do not necessarily offer accurate predictions of activity inside cells.  相似文献   

9.
Design of antisense oligonucleotides stabilized by locked nucleic acids   总被引:24,自引:14,他引:10  
The design of antisense oligonucleotides containing locked nucleic acids (LNA) was optimized and compared to intensively studied DNA oligonucleotides, phosphorothioates and 2′-O-methyl gapmers. In contradiction to the literature, a stretch of seven or eight DNA monomers in the center of a chimeric DNA/LNA oligonucleotide is necessary for full activation of RNase H to cleave the target RNA. For 2′-O-methyl gapmers a stretch of six DNA monomers is sufficient to recruit RNase H. Compared to the 18mer DNA the oligonucleotides containing LNA have an increased melting temperature of 1.5–4°C per LNA depending on the positions of the modified residues. 2′-O-methyl nucleotides increase the Tm by only <1°C per modification and the Tm of the phosphorothioate is reduced. The efficiency of an oligonucleotide in supporting RNase H cleavage correlates with its affinity for the target RNA, i.e. LNA > 2′-O-methyl > DNA > phosphorothioate. Three LNAs at each end of the oligonucleotide are sufficient to stabilize the oligonucleotide in human serum 10-fold compared to an unmodified oligodeoxynucleotide (from t1/2 = ~1.5 h to t1/2 = ~15 h). These chimeric LNA/DNA oligonucleotides are more stable than isosequential phosphorothioates and 2′-O-methyl gapmers, which have half-lives of 10 and 12 h, respectively.  相似文献   

10.
Oligonucleotide conjugates bearing two pyrene residues attached to 5′-phosphate through a phosphoramide bond were synthesised. Fluorescence spectra of the conjugates show a peak typical of monomer emission (λmax 382 nm) and a broad emission peak with λmax 476 nm, which indicates the excimer formation between the two pyrene residues. Conjugation of these two pyrene residues to the 5′-phosphate of oligonucleotides does not affect the stabilities of heteroduplexes formed by conjugates with the corresponding linear strands. A monomer fluorescence of the conjugates is considerably affected by the heteroduplex formation allowing the conjugates to be used as fluorescent hybridisation probes. The 5′-bis-pyrenylated oligonucleotides have been successfully used for investigation of affinity and kinetics of antisense oligonucleotides binding to the multidrug resistance gene 1 (PGY1/MDR1) mRNA. The changes of excimer fluorescence of the conjugates occurring during hybridisation depended on the structure of the binding sites: hybridisation to heavily structured parts of RNA resulted in quenching of the excimer fluorescence, while binding to RNA regions with a loose secondary structure was accompanied by an enhancement of the excimer fluorescence. Potentially, these conjugates may be considered as fluorescent probes for RNA structure investigation.  相似文献   

11.
Abstract

We report the synthesis of oligonucleotide conjugates engineered to allow discriminative hybridization at temperatures around physiological. Two types of structural modifications were introduced: 1) internal oligomethylene and oligoethylene glycol spacers, and 2) terminal phenazinium residues. The thermal denaturation behaviour of the complexes formed by these oligonucleotide conjugates with a target sequence is compared to that of natural duplexes. We observed a lowering of the Tm of the duplexes formed by the internal modified oligonucleotides, whilst the terminal phenazinium residues enhance their stability. The effect of the spacers is modulated by their length and hydrophobic or hydrophilic nature. Alkylating substituents, which modify the target DNA strand on hybridization, were introduced on all conjugates, and the target cleavage obtained after piperidine treatment used as a further indicator of hybridization.  相似文献   

12.
We have previously shown that RNA cleaving reagents with imidazole and primary amine groups on the 5'-end of antisense oligodeoxyribonucleotides could site-specifically cleave CpA as the target sequence of the substrate tRNA in vitro. In this study, a RNA cleaving reagent, composed of imidazole and primary amine groups on an antisense phosphorothioate oligonucleotide (Im-anti-s-ODN), was synthesized and evaluated for anti-HIV-1 activity in MT-4 cells. The sequence of the Im-anti-s-ODN was designed to be complementary to the HIV-1 gag-mRNA and to bind adjacent to the CpA cleavage site position. Im-anti-s-ODN encapsulated with the transfection reagent, DMRIE-C, had higher anti-HIV-1 activity than the unmodified antisense phosphorothioate oligonucleotide (anti-s-ODN) at a 2 microM concentration. Furthermore, the Im-anti-ODN encapsulated with DMRIE-C conferred sequence-specific inhibition.  相似文献   

13.
Biological catalysis hinges on the precise structural integrity of an active site that binds and transforms its substrates and meeting this requirement presents a unique challenge for RNA enzymes. Functional RNAs, including ribozymes, fold into their active conformations within rugged energy landscapes that often contain misfolded conformers. Here we uncover and characterize one such “off-pathway” species within an active site after overall folding of the ribozyme is complete. The Tetrahymena group I ribozyme (E) catalyzes cleavage of an oligonucleotide substrate (S) by an exogenous guanosine (G) cofactor. We tested whether specific catalytic interactions with G are present in the preceding E•S•G and E•G ground-state complexes. We monitored interactions with G via the effects of 2′- and 3′-deoxy (–H) and −amino (–NH2) substitutions on G binding. These and prior results reveal that G is bound in an inactive configuration within E•G, with the nucleophilic 3′-OH making a nonproductive interaction with an active site metal ion termed MA and with the adjacent 2′-OH making no interaction. Upon S binding, a rearrangement occurs that allows both –OH groups to contact a different active site metal ion, termed MC, to make what are likely to be their catalytic interactions. The reactive phosphoryl group on S promotes this change, presumably by repositioning the metal ions with respect to G. This conformational transition demonstrates local rearrangements within an otherwise folded RNA, underscoring RNA''s difficulty in specifying a unique conformation and highlighting Nature''s potential to use local transitions of RNA in complex function.  相似文献   

14.
To elucidate the contribution of pyrimidine in DNA strand breaks caused by low-energy electrons (LEEs), theoretical investigations of the LEE attachment-induced C3′–O3′, and C5′–O5′ σ bond as well as N-glycosidic bond breaking of 2′-deoxycytidine-3′,5′-diphosphate and 2′-deoxythymidine-3′,5′-diphosphate were performed using the B3LYP/DZP++ approach. The base-centered radical anions are electronically stable enough to assure that either the C–O or glycosidic bond breaking processes might compete with the electron detachment and yield corresponding radical fragments and anions. In the gas phase, the computed glycosidic bond breaking activation energy (24.1 kcal/mol) excludes the base release pathway. The low-energy barrier for the C3′–O3′ σ bond cleavage process (∼6.0 kcal/mol for both cytidine and thymidine) suggests that this reaction pathway is the most favorable one as compared to other possible pathways. On the other hand, the relatively low activation energy barrier (∼14 kcal/mol) for the C5′–O5′ σ bond cleavage process indicates that this bond breaking pathway could be possible, especially when the incident electrons have relatively high energy (a few electronvolts). The presence of the polarizable medium greatly increases the activation energies of either C–O σ bond cleavage processes or the N-glycosidic bond breaking process. The only possible pathway that dominates the LEE-induced DNA single strands in the presence of the polarizable surroundings (such as in an aqueous solution) is the C3′–O3′ σ bond cleavage (the relatively low activation energy barrier, ∼13.4 kcal/mol, has been predicted through a polarizable continuum model investigation). The qualitative agreement between the ratio for the bond breaks of C5′–O5′, C3′–O3′ and N-glycosidic bonds observed in the experiment of oligonucleotide tetramer CGAT and the theoretical sequence of the bond breaking reaction pathways have been found. This consistency between the theoretical predictions and the experimental observations provides strong supportive evidences for the base-centered radical anion mechanism of the LEE-induced single-strand bond breaking around the pyrimidine sites of the DNA single strands.  相似文献   

15.
The syntheses and RNA cleavage efficiencies of a new series of oligonucleotide conjugates of Cu(II)-serinol-terpyridine and 1,3-propanediol are reported. These reagents, termed ribozyme mimics, were designed such that they would yield multiple unpaired RNA residues directly opposite the site of the RNA cleavage catalyst upon ribozyme mimic-RNA duplex formation. This design effect was implemented using the 1,3-propanediol linker 3, which mimics the three-carbon spacing between the 5'- and 3'-hydroxyls of a natural nucleotide. Incorporation of one or more of these 1,3-propanediol linkers at positions directly adjacent to the serinol-terpyridine modification in the ribozyme mimic DNA strand resulted in cleavage at multiple phosphates in a complementary 31-mer RNA target sequence. The linkers effectively created artificial mismatches in the RNA-DNA duplexes, rendering the opposing RNA residues much more susceptible to cleavage via the transesterification/hydrolysis pathway. The RNA cleavage products produced by the various mimics correlated directly with the number and locations of the linkers in their DNA strands, and the most active ribozyme mimic in the series exhibited multiple turnover in the presence of excess 31-mer RNA target.  相似文献   

16.
RNase H mediated cleavage of RNA by cyclohexene nucleic acid (CeNA)   总被引:1,自引:1,他引:0       下载免费PDF全文
Cyclohexene nucleic acid (CeNA) forms a duplex with RNA that is more stable than a DNA–RNA duplex (ΔTm per modification: +2°C). A cyclohexenyl A nucleotide adopts a 3′-endo conformation when introduced in dsDNA. The neighbouring deoxynucleotide adopts an O4′-endo conformation. The CeNA:RNA duplex is cleaved by RNase H. The Vmax and Km of the cleavage reaction for CeNA:RNA and DNA:RNA is in the same range, although the kcat value is about 600 times lower in the case of CeNA:RNA.  相似文献   

17.
RNA cleaving conjugates have been prepared by attachment of oligodeoxyribonucleotide TTTT to peptides containing arginine, leucine, proline and serine residues. The highest activity was displayed by the conjugates containing peptides with alternating arginine and leucine residues (LR)4G‐amide. Ribonuclease activity of the conjugates pep‐T4 decreases in the order T4‐(LR)4G > T4‐(LR)2G > T4‐(LLRR)2G > T4‐(LR)2PRLRG > S2R3‐Hmda‐T4 ≥ R5 ≠ (LR)3. According to CD spectra, the free peptide (LR)4G‐amide in water solution at neutral pH and physiological ionic strength has no pronounced secondary structure whereas conjugated to oligonucleotide it acquires a folding similar to α‐helix.  相似文献   

18.
Recently, we synthesized pyrimidine derivatives of the 2′-O,4′-C-methylenoxymethylene-bridged nucleic-acid (2′,4′-BNACOC) monomer, the sugar conformation of which is restricted in N-type conformation by a seven-membered bridged structure. Oligonucleotides (BNACOC) containing this monomer show high affinity with complementary single-stranded RNA and significant resistance to nuclease degradation. Here, BNACOC consisting of 2′,4′-BNACOC monomers bearing all four bases, namely thymine, 5-methylcytosine, adenine and guanine was efficiently synthesized and properties of duplexes containing the 2′,4′-BNACOC monomers were investigated by UV melting experiments and circular dichroism (CD) spectroscopy. The UV melting curve analyses showed that the BNACOC/BNACOC duplex possessed excellent thermal stability and that the BNACOC increased thermal stability with a complementary RNA strand. On the other hand, BNACOC/DNA heteroduplexes showed almost the same thermal stability as RNA/DNA heteroduplexes. Furthermore, mismatched sequence studies showed that BNACOC generally improved the sequence selectivity with Watson–Crick base-pairing compared to the corresponding natural DNA and RNA. A CD spectroscopic analysis indicated that the BNACOC formed duplexes with complementary DNA and RNA in a manner similar to natural RNA.  相似文献   

19.
Loria A  Pan T 《Nucleic acids research》2001,29(9):1892-1897
The bacterial RNase P holoenzyme catalyzes the formation of the mature 5′-end of tRNAs and is composed of an RNA and a protein subunit. Among the two folding domains of the RNase P RNA, the catalytic domain (C-domain) contains the active site of this ribozyme. We investigated specific binding of the Bacillus subtilis C-domain with the B.subtilis RNase P protein and examined the catalytic activity of this C-domain–P protein complex. The C-domain forms a specific complex with the P protein with a binding constant of ~0.1 µM. The C-domain–P protein complex and the holoenzyme are equally efficient in cleaving single-stranded RNA (~0.9 min–1 at pH 7.8) and substrates with a hairpin–loop 3′ to the cleavage site (~40 min–1). The holoenzyme reaction is much more efficient with a pre-tRNA substrate, binding at least 100-fold better and cleaving 10–500 times more efficiently. These results demonstrate that the RNase P holoenzyme is functionally constructed in three parts. The catalytic domain alone contains the active site, but has little specificity and affinity for most substrates. The specificity and affinity for the substrate is generated by either the specificity domain of RNase P RNA binding to a T stem–loop-like hairpin or RNase P protein binding to a single-stranded RNA. This modular construction may be exploited to obtain RNase P-based ribonucleoprotein complexes with altered substrate specificity.  相似文献   

20.
Hepatitis C is a major public health concern, with an estimated 170 million people infected worldwide and an urgent need for new drug development. An attractive therapeutic approach is to prevent the ‘cap-independent’ translation initiation of the viral proteins by interfering with both the structure and function of the hepatitis C viral internal ribosomal entry site (HCV IRES). Towards this goal, we report the design, synthesis and purification of novel bi-functional molecules containing DNA or RNA antisenses attached to functional groups performing RNA hydrolysis. These 5′ or 3′-coupled conjugates bind the HCV IRES with affinity and specificity and elicit targeted hydrolysis of the viral genomic RNA after short (1 h) incubation at low (500 nM) concentration at 37°C in vitro. Additional secondary cleavage sites are induced and their mapping within the RNA structure indicates that functional domains IIIb-e are excised from the IRES that, based on cryo-EM studies, becomes incapable of binding the small ribosomal subunit and initiation factor 3 (eIF3). All these molecules inhibit, in a dose-dependent manner, the ‘IRES-dependent’ translation in vitro. The 5′-coupled imidazole conjugate reduces viral protein synthesis by half at a 300 nM concentration (IC50), corresponding to a 4-fold increase of activity when compared to the naked oligonucleotide. These new conjugates are now being tested for activity on infected hepatic cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号