首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Fatty acid esters of 2-ethyl-1-hexanol were produced in a small pilot scale from rapeseed oil by Candida cylindracea lipase catalyzed transesterification (alcoholysis) without added solvent. Up to 90% conversion of rapeseed oil (97% of theoretical) was obtained in 8 h in 2 kg scale at 37° C with 3.4% (w/w) lipase immobilized on an anion exchange resin Amberlite XAD-7, rapeseed oil:2-ethyl-1-hexanol substrate molar ratio of 2.8, and 3% (w/w) of added water.  相似文献   

2.
A gene encoding an extracellular lipase (CaLIP4) from Candida albicans was successfully expressed in Saccharomyces cerevisiae after mutagenesis of its unusual CUG serine codon into a universal one. The ability of this lipase, which shares 60% sequence homology with the lipase/acyltransferase from Candida parapsilosis, to synthesise esters was investigated. CaLIP4 behaved as a true lipase, displaying activity towards insoluble triglycerides and having no activity in the presence of short-chain fatty acid (FA) esters and phosphatidylcholine. Methyl, ethyl and propyl esters were efficiently used. The lipase exhibited highest selectivity for unsaturated FA. With saturated FAs, C14–C16 acyl chains were preferred. In a biphasic aqueous/lipid system, CaLIP4 displayed a high alcoholysis activity with a range of alcohols (e.g. methanol, ethanol, propanol and isopropanol) as acyl acceptor. During the course of the alcoholysis reaction, new esters are produced at concentrations above the thermodynamic equilibrium of the esterification reaction, indicating that ester synthesis does not proceed by esterification but mainly by direct acyltransfer. Ester synthesis is under kinetic control due to the high rate of alcoholysis. Unwanted hydrolysis is limited by competition between the acyl acceptor (alcohol) and water for the acyltransfer reaction, favouring the alcohol.  相似文献   

3.
The optical resolution of (±)-2,2,2-trifluoro-1-(1-pyrenyl)ethanol was achieved by using lipases. In particular, Pseudomonas aeruginosa lipase (lipase LIP) showed high enantioselectivity (E = > 100) and reactivity in the alcoholysis of the chloroacetyl ester of the title compound. The reactivity of the lipase LIP-catalyzed enantioselective alcoholysis of the chloroacetate with 1-hexanol was much higher than that of the acetylating the alcohol with vinyl acetate.  相似文献   

4.
The aim of this work was to produce docosahexaenoic (DHA) and eicosapentaenoic acid (EPA) enriched acylglycerols by alcoholysis of tuna and sardine oils, respectively, using isobutanol and 1-butanol as acyl-acceptors. The alcoholysis reactions were catalyzed by lipases Lipozyme® TL IM from Thermomyces lanuginosus and lipase QLG® from Alcaligenes sp., because these lipases have shown selectivity towards DHA and EPA, respectively. Studies were made to determine the influence of reaction time, alcohol/oil molar ratio, lipase amount and temperature. In the optimized conditions for the alcoholysis of tuna and sardine oils catalyzed by Lipozyme TL IM and lipase QLG, respectively, the DHA and EPA contents were trebled (from 22 to 69% for DHA, and from 19 to 61% for EPA). The stability of both lipases was also determined. Although Lipozyme TL IM is much more stable in isobutanol than in ethanol, with the former the conversion attained after four reaction cycles was about 40% of the initial conversion. In similar conditions, the conversion obtained with lipase QLG was about 88% of the initial conversion. In addition, the separation of DHA enriched acylglycerols and isobutyl esters from an alcoholysis reaction was studied by liquid–liquid fractionation using the ethanol–water–hexane biphasic system. The DHA enriched acylglycerols obtained were 97.6% pure (64.4% DHA).  相似文献   

5.
This paper studies the synthesis of structured triacylglycerols (STAGs) by a four-step process: (i) obtaining 2-monoacylglycerols (2-MAGs) by alcoholysis of cod liver oil with several alcohols, catalyzed by lipases Novozym 435, from Candida antartica and DF, from Rhizopus oryzae, (ii) purification of 2-MAGs, (iii) formation of STAGs by esterification of 2-MAGs with caprylic acid catalyzed by lipase DF, from R. oryzae, and (iv) purification of these STAGs. For the alcoholysis of cod liver oil, absolute ethanol, ethanol 96% (v/v) and 1-butanol were compared; the conditions with ethanol 96% were then optimized and 2-MAG yields of around 54-57% were attained using Novozym 435. In these 2-MAGs, DHA accounted for 24-31% of total fatty acids. In the operational conditions this lipase maintained a stable level of activity over at least 11 uses. These results were compared with those obtained with lipase DF, which deactivated after only three uses. The alcoholysis of cod liver oil and ethanol 96% catalyzed by Novozym 435 was scaled up by multiplying the reactant amounts 100-fold and maintaining the intensity of treatment constant (IOT=3g lipase h/g oil). In these conditions, the 2-MAG yield attained was about 67%; these 2-MAGs contained 36.6% DHA. The synthesized 2-MAGs were separated and purified from the alcoholysis reaction products by solvent extraction using solvents of low toxicity (ethanol and hexane); 2-MAG recovery yield and purity of the target product were approximately 96.4% and 83.9%, respectively. These 2-MAGs were transformed to STAGs using the optimal conditions obtained in a previous work. After synthesis and purification, 93% pure STAGs were obtained, containing 38% DHA at sn-2 position and 60% caprylic acid (CA) at sn-1,3 positions (of total fatty acids at these positions), i.e. the major TAG is the STAG with the structure CA-DHA-CA.  相似文献   

6.
《Process Biochemistry》2007,42(3):409-414
The monoethyl esters of the long chain fatty acids (biodiesel) were prepared by alcoholysis of Jatropha oil, a non-edible oil, by a lipase. The process optimization consisted of (a) screening of various commercial lipase preparations, (b) pH tuning, (c) immobilization, (d) varying water content in the reaction media, (e) varying amount of enzyme used, and (f) varying temperature of the reaction. The best yield 98% (w/w) was obtained by using Pseudomonas cepacia lipase immobilized on celite at 50 °C in the presence of 4–5% (w/w) water in 8 h. It was found that yields were not affected if analytical grade alcohol was replaced by commercial grade alcohol. This biocatalyst could be used four times without loss of any activity.  相似文献   

7.
Two screenings of commercial lipases were performed to find a lipase with superior performance for the integrated production of biodiesel and monoglycerides. The first screening was carried out under alcoholysis conditions using ethanol as acyl acceptor to convert triglycerides to their corresponding ethyl esters (biodiesel). The second screening was performed under glycerolysis conditions to yield monoglycerides (MG). All lipases were immobilized on silica–PVA composite by covalent immobilization. The assays were performed using babassu oil and alcohols (ethanol or glycerol) in solvent free systems. For both substrates, lipase from Burkholderia cepacia (lipase PS) was found to be the most suitable enzyme to attain satisfactory yields. To further improve the process, the Response Surface Methodology (RSM) was used to determine the optima operating conditions for each biotransformation. For biodiesel production, the highest transesterification yield (>98%) was achieved within 48 h reaction at 39 °C using an oil-to-ethanol molar ratio of 1:7. For MG production, optima conditions corresponded to oil-to-glycerol molar ratio of 1:15 at 55 °C, yielding 25 wt.% MG in 6 h reaction. These results show the potential of B. cepacia lipase to catalyze both reactions and the feasibility to consider an integrated approach for biodiesel and MG production.  相似文献   

8.
This paper studies the synthesis of structured triacylglycerols (STAGs), rich in polyunsaturated fatty acids (PUFAs) by a two-step enzymatic process: (i) alcoholysis of fish oils (cod liver and tuna oils) with ethanol to obtain 2-monoacylglycerols (2-MAGs), catalyzed by 1,3 specific lipases and (ii) esterification of these 2-MAGs with caprylic acid (CA, 8:0), also catalyzed by a 1,3 specific lipase, to produce STAGs of structure CA–PUFA–CA. As regards the alcoholysis reaction, three factors have been studied: the influence of the type of lipase used (lipase D from Rhizopus oryzae, immobilized on Accurel MP1000, and Novozym 435 from Candida antarctica), the operational mode of a stirred tank reactor (STR operating in discontinuous and continuous mode) and the intensity of treatment (IOT = lipase amount × reaction time/oil amount). Although higher 2-MAG yields were obtained with lipase D, Novozym 435 was selected due to its greater stability in the operational conditions. The highest 2-MAG yield (63%) was attained in the STR operating in discontinuous mode at an IOT of 1 g lipase × h g oil?1 (at higher IOT the 2-MAGs were degraded to glycerol). This system was scaled up to 100 times the initial volume, achieving a similar yield (65%) at the same IOT. The 2-MAGs in the final alcoholysis reaction mixture were separated from ethyl esters by solvent extraction using solvents of low toxicity (ethanol and hexane); the 2-MAG recovery yield was over 90% and the purity was approximately 87–90%. Regarding the esterification of the 2-MAGs, the following factors were studied: the influence of the lipase type used, the presence or absence of solvent (hexane) and the reaction time or intensity of treatment (IOT = lipase amount × reaction time/2-MAG amount). Of the five lipases tested, the highest STAG percentages (over 90%) were attained with lipases D and DF, immobilized on Accurel MP1000. These STAGs contain 64% CA, of which 98% is at positions 1 and 3. Position 2 contains 5% CA and 45% PUFAs, which means that all the PUFAs that were located at position 2 in the original oil remain in that position in the final STAGs. The lipase D immobilized on Accurel MP1000 is stable in the operational conditions used in the esterification reaction. Finally the purification of STAGs was carried out by neutralization of free fatty acids with hydroethanolic solution of KOH and extraction of STAGs with hexane. By this method purity was over 95% and separation yields were about 80%.  相似文献   

9.
Lipase (triacylglycerol acylhydrolase) is a unique enzyme which can catalyze various types of reactions such as hydrolysis, esterification, alcoholysis etc. In particular, hydrolysis of vegetable oil with lipase as a catalyst is widely studied. Free lipase, lipase immobilized on suitable support, lipase encapsulated in a reverse micelle and lipase immobilized on a suitable membrane to be used in membrane reactor are the most common ways of employing lipase in oil hydrolysis. Castor oil is a unique vegetable oil as it contains high amounts (90%) of a hydroxy monounsaturated fatty acid named ricinoleic acid. This industrially important acid can be obtained by hydrolysis of castor oil. Different conventional hydrolysis processes have certain disadvantages which can be avoided by a lipase-catalyzed process. The degree of hydrolysis varies widely for different lipases depending on the operating range of process variables such as temperature, pH and enzyme loading. Immobilization of lipase on a suitable support can enhance hydrolysis by suppressing thermal inactivation and estolide formation. The presence of metal ions also affects lipase-catalyzed hydrolysis of castor oil. Even a particular ion has different effects on the activity of different lipases. Hydrophobic organic solvents perform better than hydrophilic solvents during the reaction. Sonication considerably increases hydrolysis in case of lipolase. The effects of additives on the same lipase vary with their types. Nonionic surfactants enhance hydrolysis whereas cationic and anionic surfactants decrease it. A single variable optimization method is used to obtain optimum conditions. In order to eliminate its disadvantages, a statistical optimization method is used in recent studies. Statistical optimization shows that interactions between any two of the following pH, enzyme concentration and buffer concentration become significant in presence of a nonionic surfactant named Span 80.  相似文献   

10.
This paper describes the fish oil hydrolysis performed to obtain Omega-3 fatty acids using Candida rugosa lipase (CRL) immobilized and stabilized on different supports. The enzyme was successfully immobilized, presenting higher thermal stability than the free enzyme. Besides, the cationic derivatives were more stable than the others derivatives and free enzyme in methanol, propanol and cyclohexane. Reactions of fish oil hydrolysis were carried out in organic aqueous medium using 10?U of biocatalyst per gram of oil, at 37?°C. After 96?h, the CRL immobilized on cyanogen bromide agarose rendered the lower fish oil hydrolysis, producing 218?μM of Omega-3, which was 1.1-fold more than the hydrolysis catalyzed by free enzyme, while the ionic derivatives rendered the highest fish oil hydrolysis producing 582 and 577?μM of Omega-3 using the carboxymethyl and sulfopropyl derivatives, respectively. The carboxymethyl and the sulfopropyl derivatives resulted in a 2.9-fold increase in the hydrolysis of fish oil, making these derivatives attractive for industrial applications.  相似文献   

11.
Yan J  Liu S  Hu J  Gui X  Wang G  Yan Y 《Bioresource technology》2011,102(14):7154-7158
Novel modification methods for lipase biocatalysts effective in hydrolysis of fish oil for enrichment of polyunsaturated fatty acids (PUFAs) were described. Based on conventional immobilization in single aqueous medium, immobilization of lipase in two phase medium composed of buffer and octane was employed. Furthermore, immobilization (in single aqueous or in two phase medium) coupled to fish oil treatment was integrated. Among these, lipase immobilized in two phase medium coupled to fish oil treatment (IMLAOF) had advantages over other modified lipases in initial reaction rate and hydrolysis degree. The hydrolysis degree increased from 12% with the free lipase to 40% with IMLAOF. Strong polar and hydrophobic solvents had negative impact on immobilization-fish oil treatment lipases, while low polar solvents were helpful to maintain the modification effect of immobilization-fish oil treatment. After five cycles of usage, the immobilization-fish oil treatment lipases still maintained more than 80% of relative hydrolysis degree.  相似文献   

12.
The aim of this work was to produce structured triacylglycerols (STAGs), with caprylic acid located at positions 1 and 3 of the glycerol backbone and docosohexaenoic acid (DHA) at position 2, by acidolysis of tuna oil and caprylic acid (CA) catalyzed by lipases Rd, from Rhizopus delemar, and Palatase 20000L from Mucor miehei immobilized on Accurel MP1000 in a packed bed reactor (PBR), working in continuous and recirculation modes. First, different lipase/support ratios were tested for the immobilization of lipases and the best results were obtained with ratios of 0.67 (w/w) for lipase Rd and 6.67 (w/w) for Palatase. Both lipases were stable for at least 4 days in the operational conditions. In the storage conditions (5 °C) lipases Rd and Palatase maintained constant activity for 5 months and 1 month, respectively.These catalysts have been used to obtain STAGs by acidolysis of tuna oil and CA in a PBR operating with recirculation of the reaction mixture through the lipase bed. Thus, STAGs with 52–53% CA and 14–15% DHA were obtained. These results were the basis for establishing the operational conditions to obtain STAGs operating in continuous mode. These new conditions were established maintaining constant intensity of treatment (IOT, lipase amount × reaction time/oil amount). In this way STAGs with 44–50% CA and 17–24% DHA were obtained operating in continuous mode. Although the compositions of STAGs obtained with both lipases were similar, Palatase required an IOT about four times higher than lipase Rd.To separate the acidolysis products (free fatty acids, FFAs, and STAGs) an extraction method of FFAs by water–ethanol solutions was tested. The following variables were optimized: water/ethanol ratio (the best results were attained with a water/ethanol ratio of 30:70, w/w), the solvent/FFA–STAG mixture ratio (3:1, w/w) and the number of extraction steps (3–5). In these conditions highly pure STAGs (93–96%) were obtained with a yield of 85%. The residual FFAs can be eliminated by neutralization with a hydroethanolic KOH solution to obtain pure STAGs. The positional analysis of these STAGs, carried out by alcoholysis catalyzed by lipase Novozym 435, has shown that CA represents 55% of fatty acids located at positions 1 and 3 and DHA represents 42% of fatty acids at position 2.  相似文献   

13.
Various fish protein hydrolysates (FPH) from sardinella (Sardinella aurita) were used as nitrogen sources for the production of extracellular lipase by the filamentous fungus Rhizopus oryzae. The best results were obtained with defatted meat–fish protein hydrolysates (DMFPH), indicating the presence in the lipid fraction of some constituents which may repress lipase synthesis. Furthermore, it was found that the extensive hydrolysis of fish proteins resulted in a higher lipase production. The use of 40 g DMFPH l–1 for the growth of Rhizopus oryzae in medium R1 resulted in a lipase production of 394 U ml–1, higher than the yield obtained with standard soy peptone as nitrogen source (373 U ml–1). The most appropriate medium for the growth and the production of lipase is composed only of 24 g DMFPH l–1 and 10 g glucose l–1, indicating that the strain can obtain its nitrogen and salts requirements directly from fish substrate.  相似文献   

14.
Lipase-catalyzed alcoholysis of triolein dissolved in ethanol or isopropanol for the formation of ethyl and isopropyl esters was investigated. Of 16 lipases screened, Amano lipase from P. fluorescens was selected for investigation of the effects of basic reaction conditions on alcoholysis yields. Ethanolysis yields were only slightly affected by water additions to immobilized lipase preparations. Isopropyl ester yields decreased with water addition. Good operational stability was observed over 17 days. Changes in initial triolein concentration in the range 5–50 mM had very little effect on ester yields. The ionic strength of the phosphate buffer used in lipase immobilization affected ethanolysis and isopropanolysis yields in opposite ways. The highest ethanolysis yields were obtained with lipases immobilized from 250 mM buffer, while isopropyl ester yields were highest with lipases immobilized from water. In addition, the quantities and isomers of monoglyceride intermediates in ethanolysis were affected by the immobilization buffer strength. Larger quantities of 2-monoglycerides were formed in ethanolysis reactions with lipase preparations immobilized from water.  相似文献   

15.
The monoacylation of (η6-1,2-benzenedimethanol)tricarbonylchromium (2) by vinyl acetate, palmitate and benzoate, alcoholysis of the corresponding diesters of 2 in n-butanol, and acylation of (η6-benzyl alcohol) tricarbonylchromium by (±)-vinyl 2-phenoxypropanoate and 2-phenylpropanoate were accomplished with lipase P (from P. fluorescens) and lipase CC (from C. cylindracea) to give optically active organometallic esters. Their configurations indicated that the stereoselectivity of each of these two lipases was in marked contrast. An active site model for them is proposed.  相似文献   

16.
Long chain 3-O-acylcatechins were prepared in high yield by alcoholysis with n-butanol of the corresponding pentaacylderivatives in the presence of lipase from Mucor miehei (immobilised, Lipozyme® IM). In an alternative procedure, the mixed ester, tetraacetyl-3-O-acylcatechin, was synthesised and used as substrate for the same alcoholysis process that proceeds with higher reaction rate. The obtained 3-O-acyl derivatives are more lipophilic than the parent catechin and thus suitable for a possible application of their antioxidative properties in hydrophobic matrices.  相似文献   

17.
Rhizopus arrhizus lipase immobilized on celite was used to prepare isomerically pure 2-monoglycerides by alcoholysis of triglycerides in organic media. Reaction parameters such as choice of solvent, choice of alcohol, and alcohol concentration were studied. When 12.5 mM tripalmitin was used as substrate, methyl-tert-butyl ether was the best solvent for alcoholysis at water activity 0.11. Ethanol gave the highest yield (97%) at an optimal ethanol concentration of 200–300 mM. At higher alcohol concentrations, the enzyme activity was substantially lowered. The enzyme preparation showed high stability in repeated-batch reactions.  相似文献   

18.
The efficacy of lipase from Aspergillus niger MTCC 2594 as an additive in laundry detergent formulations was assessed using response surface methodology (RSM). A five-level four-factorial central composite design was chosen to explain the washing protocol with four critical factors, viz. detergent concentration, lipase concentration, buffer pH and washing temperature. The model suggested that all the factors chosen had a significant impact on oil removal and the optimal conditions for the removal of olive oil from cotton fabric were 1.0% detergent, 75 U of lipase, buffer pH of 9.5 and washing temperature of 25°C. Under optimal conditions, the removal of olive oil from cotton fabric was 33 and 17.1% at 25 and 49°C, respectively, in the presence of lipase over treatment with detergent alone. Hence, lipase from A. niger could be effectively used as an additive in detergent formulation for the removal of triglyceride soil both in cold and warm wash conditions.  相似文献   

19.
Lipase-catalyzed transesterification of soybean oil and methanol for biodiesel production in tert-amyl alcohol was investigated. The effects of different organic medium, molar ratio of substrate, reaction temperature, agitation speed, lipase dosage and water content on the total conversion were systematically analyzed. Under the optimal conditions identified (6 mL tert-amyl alcohol, three molar ratio of methanol to oil, 2% Novozym 435 lipase based on the soybean oil weight, temperature 40°C, 2% water content based on soybean oil weight, 150 rpm and 15 h), the highest biodiesel conversion yield of 97% was obtained. With tert-amyl alcohol as the reaction medium, the negative effects caused by excessive molar ratio of methanol to oil and the by-product glycerol could be reduced. Furthermore, there was no evident loss in the lipase activity even after being repeatedly used for more than 150 runs.  相似文献   

20.
Lipase-catalyzed alcoholysis of soybean oil deodorizer distillate (SODD) for biodiesel production was studied. During this system both free fatty acids and glycerides could be converted to biodiesel simultaneously. tert-Butanol has been adopted as the reaction medium, in which both the negative effects caused by excessive methanol and by-product glycerol could be eliminated completely. There was no obvious loss in lipase activity even after being repeatedly used for 120 cycles. Fine-pored silica gel and 3 Å molecular were found to be effective to control by-product water concentration and much higher biodiesel yield could be achieved with those adsorbents present in the reaction system. The highest biodiesel yield of 97% could be achieved with 3 Å molecular sieve as the adsorbent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号