首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The in vivo activity of nitrate reductase (NR, E.C. 1.6.6.1 [EC] )in the roots, stem and leaves of bean (Phaseolus vulgaris L.)was measured at different ages of seedlings. The leaves alwayshad higher levels of the enzyme than the roots or stem. Thelevel of the enzyme in the very young leaves were low, increasingto a maximum by day 10 to 11 of seedling growth at 26°C,after which it start to decline. The level of the enzyme in7 dayold decotyledonized leaves was about 2.5 times higher thanthat in leaves from intact seedlings. A supply of exogenousnitrate caused a considerable increase in the total organicnitrogen in the leaf only after day 9, when the nitrogen supplyfrom the cotyledons presumably is low. (Received March 22, 1975; )  相似文献   

2.
Methyl jasmonate (JA-Me) at concentrations of 0.1, 0.5 and 1.0 % (w/w) greatly stimulated anthocyanins accumulation in shoots of young plants of Kalanchoe blossfeldiana when it was applied around the stem as a lanolin paste. Stimulatory effect of JA-Me was evidently observed as early as two days after treatment. Anthocyanins were formed in the main and lateral shoots, including petioles, both below and above portions of the treatment. When leaves were removed from the plant, almost no anthocyanin formation was observed. It should be mentioned that leaves are necessary for the anthocyanin accumulation in stems induced by JA-Me.  相似文献   

3.
四种旱生藓类植物的比较结构学观察   总被引:20,自引:1,他引:19  
对新疆产的4种藓类植物茎、叶的表面及内部结构进行了观察,结果表明:尖叶大帽藓(Encalypta rhabdocurpa Schwaegr.)茎的中部结构类似于种子植物(单子叶)根的内皮层,其茎表皮也有类似于种子植物表皮毛(腺毛)的腺体。在阔叶紫萼藓(Grimmia laevigata(Brid.)Brid.)茎的中轴部,厚角组织发达,数层皮部厚壁组织也很发达。小石藓(Weisia controv  相似文献   

4.
Evidence is presented for the presence of xylogalacturonan (XGA) in Arabidopsis thaliana. This evidence was obtained by extraction of pectin from the seeds, root, stem, young leaves and mature leaves of A. thaliana, followed by treatment of these pectin extracts with xylogalacturonan hydrolase (XGH). Upon enzymatic treatment, XGA oligosaccharides were primarily produced from pectin extracts obtained from the young and mature leaves and to a lesser extent from those originating from the stem of A. thaliana. The oligosaccharide GalA(3)Xyl was predominantly formed from these pectin extracts. No XGA oligosaccharides were detected in digests of pectin extracts from the seeds and roots. A low number of XGA oligosaccharides was obtained from pectins of A. thaliana. This indicates a uniform distribution of xylose in XGA from A. thaliana. The predominant production of GalA(3)Xyl, as well as the release of linear GalA oligosaccharides pointed to a lower degree of xylose substitution in XGA from A. thaliana than in XGA from apple and potato. The estimated amount of XGA accounted for approximately 2.5%, 7% and 6% (w/w) of the total carbohydrate in the pectin fraction of the stem, young leaves and mature leaves, respectively.  相似文献   

5.
6.
Phyllotaxis theory typically assumes that an acropetal influence from recently formed leaves acts on the apical dome to initiate new leaves. Biophysical theory postulates that established plant organs elongate because their primary walls, particularly those in the organ surface layer, are transversely reinforced by cellulose to give the organ overall hoop reinforcement. These two postulates are combined here in a biophysical theory for phyllotaxis. The essential acropetal influence from young leaves is proposed to be the stretching of the adjacent dome tissue by the growth of leaf bases. Cytoskeletal responses on the dome produce reinforcement patterns which initiate new hoop reinforced leaves. Growth of these leaves remodels the dome for the next round of organs. Data pertinent to this theory are presented here for Vinca major. The surface (tunica) layer of the apical dome was isolated by paradermal cuts. Using polarized light, the cellulose alignment in this surface layer was determined, cell by cell, for various stages of the plastochron. The growing dome is typically elliptical, with the major axis shifting by 90° during each plastochron. The periphery of the dome always has cellulose oriented parallel to its margin; the central region, when the major axis is pronounced, has reinforcement normal to this axis. During the plastochron this reinforcement pattern is modified, by plausible biophysical mechanisms, to account for the three major activities of the dome: 1) production of a hoop-reinforced leaf at each end of the ellipse, 2) formation of a hoop-reinforced stem segment, 3) revision of dome structure to produce the same initial reinforcement pattern as at the start of the plastochron, but at 90°.  相似文献   

7.
五种紫萼藓科植物茎及叶的解剖学观察   总被引:13,自引:3,他引:10  
王虹 《植物研究》2002,22(1):T001-T002
对紫萼藓科紫萼藓属中的5种植物,运用石蜡切片法和扫描电镜法,对其茎的结构及叶表皮角质层皱褶、孔及纹饰等特征进行观察分析,结果表明:长枝紫萼藓(Grimmia elongata Kaulf.)茎呈多棱形,片状附属物沿叶腹面表皮连成带状,而叶背面角质层纹饰呈辐射状的裂片;圆蒴紫萼藓(Grimmia a pocarpa Hedw.)茎、叶细胞中内含物非常浓厚,细胞不透明,中助的角质层纹饰呈纵向的线状;高山紫萼藓(Grimmia alpicola Sw.ex Hedw.)中肋宽厚,孔呈梯形排列,叶背面角质层皱褶呈“菊花状”纹饰,叶腹面孔口处有“眼皮状”鳞片覆盖;卵叶紫萼藓(Grimmia o-valis(Hedw.)Lindb.)茎无明显的中轴部;中肋“导水细胞”发达,叶表面密布粗疣和网状排列的大孔,且孔深陷;毛尖紫萼藓(Grimmia pilifera P.Beauv.)茎的外皮部和内皮部之间有一层“鞘状”物质,叶背面孔的形状呈挤压状。  相似文献   

8.
Varying the position of stem inoculation, the concentration of inoculum and the age of plant affected the reaction of cotton, Gossypium sp., to infection with Xanthomonas malvacearum (E. F. Sm.) Dowson.
The extent of stem discoloration, internal and external, and the probability of disease ocurring in leaves by bacteria moving within the plant increased ( a ) the nearer the point of stem inoculation was to the apex, and ( b ) the higher the concentration of inoculum. The leaf symptoms were not the angular spots typical of primary leaf infection. Instead, bacteria seemed to lodge in, discolour and blacken sections of leaf veins. Then tissue next to the affected veins became water-soaked and leaf sectors dependent upon these veins died and dried. These symptoms usually developed 14 to 55 days after inoculation in the expanding leaves.
The amounts of stem discoloration and the probabilities of leaf symptoms developing were less when hypocotyls of old plants were inoculated than when hypocotyls of young plants were inoculated. The probabilities of leaf symptoms developing were similar, however, when young tissues in young and old plants were inoculated.
American cotton, Gossypium hirsutum , was less affected by stem inoculation than Egyptian cotton, G. barbadense. Of the resistance factors against primary leaf infection only B6m gave appreciable stem resistance.  相似文献   

9.
The reaction of plants to environmental factors often varies with developmental stage. It was hypothesized, that also the cuticle, the outer surface layer of plants is modified during ontogenesis. Apple plantlets, cv. Golden Delicious, were grown under controlled conditions avoiding biotic and abiotic stress factors. The cuticular wax surface of adaxial apple leaves was analyzed for its chemical composition as well as for its micromorphology and hydrophobicity just after unfolding of leaves ending in the seventh leaf insertion. The outer surface of apple leaves was formed by a thin amorphous layer of epicuticular waxes. Epidermal cells of young leaves exhibited a distinctive curvature of the periclinal cell walls resulting in an undulated surface of the cuticle including pronounced lamellae, with the highest density at the centre of cells. As epidermal cells expanded during ontogenesis, the upper surface showed only minor surface sculpturing and a decrease in lamellae. With increasing leaf age the hydrophobicity of adaxial leaf side decreased significantly indicated by a decrease in contact angle. Extracted from plants, the amount of apolar cuticular wax per area unit ranged from only 0.9 microgcm(-2) for the oldest studied leaf to 1.5 microgcm(-2) for the youngest studied leaf. Differences in the total amount of cuticular waxes per leaf were not significant for older leaves. For young leaves, triterpenes (ursolic acid and oleanolic acid), esters and alcohols were the main wax components. During ontogenesis, the proportion of triterpenes in total mass of apolar waxes decreased from 32% (leaf 1) to 13% (leaf 7); absolute amounts decreased by more than 50%. The proportion of wax alcohols and esters, and alkanes to a lesser degree, increased with leaf age, whereas the proportion of acids decreased. The epicuticular wax layer also contained alpha-tocopherol described for the first time to be present also in the epicuticular wax. The modifications in the chemical composition of cuticular waxes are discussed in relation to the varying physical characteristics of the cuticle during ontogenesis of apple leaves.  相似文献   

10.
Hormone Interaction in Apical Dominance in Phaseolus vulgaris L.   总被引:2,自引:0,他引:2  
Gibberellic acid (GA3), kinetin, and indole-3yl-acetic acid(IAA) were applied to roots of Phaseolus vulgaris under twodifferent light intensities and when either young or old leaveswere removed In all cases GA3, promoted stem and lateral growth,especially when light intensity was reduced. Promotion by GA3,of stem growth under reduced light was reduced if IAA and kinetinwere present; promotion of lateral growth under reduced lightwas reduced if IAA was added and eliminated if kinetin or kinetinplus IAA were added to GA3. Removal of young and mature leavesreduced main stem growth; removal of young leaves promoted,and of mature leaves reduced, lateral shoot growth. We suggestthat shoot growth and apical dominance are governed by the balanceof hormones present in elongating internodes. There may be twoways of modifying this balance; firstly by altering light, temperature,or nutrients, or by applying hormones generally to the plant.Secondly, local modifications can be made by removing apicesor young leaves, or applying hormones in lanolin to specificareas. Knowledge of both the general and local conditions maybe necessary for a complete understanding of apical dominance.  相似文献   

11.
荻不同外植体离体培养研究   总被引:5,自引:0,他引:5  
  相似文献   

12.
E. Oddo  R. Veca  G. Morici 《Plant biosystems》2018,152(1):161-165
Lithops plants consist of a pair of succulent leaves inserted on a short stem; in each growing season, young leaves develop in a cavity formed between the older pair. Young leaves can take up water from the older pair allowing the plant to maintain growth and leaf expansion even without external supply of water. Recycling water between vegetative organs is one of the possible adaptation strategies of plants under drought stress, but it had never been demonstrated experimentally in Lithops. The methodology used to verify the existence of water redistribution from old leaves to young leaves was fluorescence microscopy, using two dyes to follow the water pathway inside the plant: Sulforhodamine G (SRG) and 5(6)-carboxyfluoroscein diacetate (CFDA). In Lithops fluorescent tracers loaded into old leaves were found in young leaves, in 74% of the cases for SRG, in 59% of the cases for CFDA. Our data demonstrate that young leaves take up water from the old ones following both a symplastic and an apoplastic pathway. Water recycling is therefore one of the adaptive responses of these plants allowing them to perform at least a complete growth cycle even during prolonged drought stress periods, using the water stored in the older leaves.  相似文献   

13.
Plants of Dictyostega orobanchoides arise from about 1 mm thick rhizomes, which are densely covered by sessile, imbricate, peltate scale leaves. The resulting interfoliar spaces are inhabited by fungal hyphae up to 6 microns thick, often developing vesicle-like bladders. The fungus also colonizes the tissue of the scale leaves, inter- as well as intracellularly, forming vesicles but no arbuscules, and it even penetrates the vascular bundles of the leaves. The rhizome itself does not become infected. The 200 microns thick roots emerge from the rhizome and have a 2-layered cortex and voluminous rhizodermis, which both are delicate and often disrupted or missing. In contrast, the strongly reinforced, tertiary endodermis and the central cylinder are durable and have a considerable tensile strength. Although the roots grow through the hyphal masses in the interfoliar spaces when emerging from the rhizome, they only become infected from the rhizosphere. A collar of rhizomogenous tissue hinders the interfoliar hyphae from direct contact to the roots. Only within the rhizodermis, the mycorrhizal fungus builds coils of heteromorphic hyphae, arbuscule-like structures, and vesicles. Hence, the mycorrhiza in D. orobanchoides is assigned to the arbuscular mycorrhiza. It is hypothezised, that the ephemeral mycorrhizal tissue combined with the durable vascular system of the roots is a strategy to avoid the high costs of protecting the large rhizodermal surface area. The rhizomogenous collar is explained as an extra protection to the tender, young roots, when emerging from the rhizome. The necessity to include other subterranean plant organs along with the roots in future mycorrhizal studies is emphasized.  相似文献   

14.
The spread of excitation in the stem, leaves, and root of Lupinuswas investigated. The stem was electrically stimulated (d.c.pulses). Potential changes in the plant were measured with extracellularcontact electrodes applied at various points to the plant surface.The action potential (AP) was found to propagate solely in thestem. It is extinguished in the region of the stem apex andthe root neck. It does not propagate in leaves. There arise,however, in the leaves, root, and stem apex characteristic potentialchanges at the moment when the AP reaches these regions, butthey do not have the characteristics of AP. Attempts at evokingexcitation by electrical stimulation of leaves, root, or theitem apex were unsuccessful. It appears therefore that the stemplays a special role in the spread of excitation in the plant. The regularities described here differ from those obtained bystimulation of plants with damage stimuli such as touching theshoot or a leaflet with a warmed glass rod (Paszewski and Zawadzki,1976).  相似文献   

15.
Patterns of (14) CO(2) , assimilate movement in Vicia jaba plants having 7 nodes were studied. Bidirectional translocation occurred throughout most of the stem length when tracer was applied to leaves of various ages. To determine whether this bidirectional translocation occurs within single sieve tubes, a O.1 % solution of the fluorescent dye K-fluorescein was applied to a lightly scraped area on the stem in the middle of a young internode. After one hour the dye was present short distances above and below the treated area. Free-hand sections of the internode showed the dye to be localized in the traces of the larger leaves below tbe treated area and in the traces of the younger leaves above the treated area. The dye was never present in the same bundle both above and below the treated area, indicating that each bundle and sieve tube translocated the dye in only one direction. These results were confirmed using Phaseolus vulgaris, Vinca rosea, and Pelargonium hortum. A similar study in which petioles of young Ecballium elaterium leaves were treated showed that usually the phloem of one bundle translocated the dye in only one direction but in some cases the external phloem of the bicollateral bundles carried the dye toward the stem while the internal phloem carried the dye toward the blade. When longer time intervals were used in all these experiments, the dye sometimes appeared in the same phloem areas both above and below the treated area. This is explained by a lateral transfer of tracer within the phloem, either through secondary phloem or through bundle anastomoses at the nodes.  相似文献   

16.
The content of endogenous gibberellins was estimated in leaves adjacent to the individual nodes ofBryophyllum crenatum in five ontogenetic periods (July 10, August 12, September 17, October 22, and December 8). Their content decreased from the stem base to the apex when 5 to 7 leaf pairs were developed (July 10 and August 12). Before transition to the generative state when 8 leaf pairs were formed (Sept. 17 and Oct. 22) the content of gibberellins was gradually increased in the apical leaves and decreased in the basal ones. This change resulted in the increasing gradient of leaf gibberellins from the stem base to the apex just before flowering (Dec. 8). The content of endogenous gibberellins increases during the leaf ontogenesis up to the beginning of its senescence. This trend occurs first in the basal leaves (I –III) where the initial increase is followed by the decline in the gibberellin content. On the other hand gibberellins in leaves derived from the apical nodes (VII–VIII) only gradually increase in the course of leaf ontogenesis.  相似文献   

17.
In higher plants sucrose plays a central roles with respect to both short-term storage and distribution of photoassimilates formed in the leaf. Sucrose is synthesized in the cytosol, transiently stored in the vacuole and exported via the apoplast. In order to elucidate the role of the different compartments with respect to sucrose metabolism, a yeast-derived invertase was directed into the cytosol and vacuole of transgenic tobacco plants. This was in addition to the targeting of yeast-derived invertase into the apoplast described previously. Vacuolar targeting was achieved by fusing an N-terminal portion (146 amino acids long) of the vacuolar protein patatin to the coding region of the mature invertase protein. Transgenic tobacco plants expressing the yeast-derived invertase in different subcellular compartments displayed dramatic phenotypic differences when compared to wild-type plants. All transgenic plants showed stunted growth accompanied by reduced root formation. Starch and soluble sugars accumulated in leaves indicating that the distribution of sucrose was impaired in all cases. Expression of cytosolic yeast invertase resulted in the accumulation of starch and soluble sugars in both very young (sink) and older (source) leaves. The leaves were curved, indicating a more rapid cell expansion or cell division at the upper side of the leaf. Light-green sectors with reduced photosynthetic activity were evenly distributed over the leaf surface. With the apoplastic and vacuolar invertase, the phenotypical changes induced only appear in older (source) leaves. The development of bleached and/or necrotic sectors was linked to the source state of a leaf. Bleaching followed the sink to source transition, starting at the rim of the leaf and moving to the base. The bleaching was paralleled by the inhibition of photosynthesis.  相似文献   

18.
When shoots of young plants of hemp (Cannabis sativa L.) and spinach (Spinacea oleracea L.) were cultured as cuttings and allowed to regenerate advenitious roots, ca. 80–85% became female (formed pistillate flowers) regardless of whether the leaves were left on the plants or were cut off (except for the 2–3 uppermost ones) after the beginning of adventitious-root formation. But when the leaves were cut off and the cuttings treated with gibberellic acid (GA3, 25 mg/l) ca. 77–80% of the plants became male (formed staminate flowers). The result was quite similar when roots and leaves of young hemp plants were removed at the same time and the cuttings treated with GA3. It is suggested that the leaves play an essential role in sex expression in hemp and spinach and that this role is related to gibberellin synthesis in the leaves.  相似文献   

19.
2002 年4 ~11 月,在蜂桶寨自然保护区对小熊猫的觅食特征和营养对策进行了研究,并采用Vanderloeg 和Scavia 选择指数Ei衡量小熊猫对竹笋和竹茎年龄的选择程度。结果表明,小熊猫食物由竹叶(70.5% )、竹笋(22.1% )、野果(7.2% )以及毛(0.2% )等组成。小熊猫几乎全以冷箭竹为食,未发现采食短锥玉山竹。春季食物主要由竹叶和竹笋组成,夏秋季主要由竹叶和果实组成,而冬季以竹叶为主。小熊猫对竹笋、竹叶的觅食具有很强的选择性。基径在3 mm 以上被采食竹笋,Ei的值为0.071 9 ~0. 094 4,竹高在10 ~70 cm 未被采食竹笋, Ei 的值为0.149 6 ~0.1989。对不同年龄竹茎和竹叶的选择在各个月份间存在变化,4 ~6 月一年生、二年生和多年生竹竹叶Ei分别为0. 036 2 、0.224 8 和0.487 6, 7 ~8 月三者Ei分别为0.0071、0.0027 和0. 0098,9~11 月特别喜食当年生老笋上的竹叶(Ei =0.552 1)。此外,小熊猫在6 ~ 8 月还特别喜食已展开(53.4% )和未展开的卷曲嫩叶(36.3% ),不喜食较老的竹叶(10.3% )。小熊猫的食性及其对食物的选择体现了在长期进化过程中觅食对策的优化,可最大化觅食过程中的物质或能量摄入。  相似文献   

20.
Pipermethystine (1), 3alpha,4alpha-epoxy-5beta-pipermethystine (2) and awaine (3) were isolated from the aerial parts of kava (Piper methysticum G. Forster, Piperaceae) and identified by HRMS and NMR spectroscopic analysis. 1 was concentrated in the stem peelings and leaves. 2 and 3 are new alkaloids with 2 found only in cv. Isa among the 11 cultivars examined, and 3 occurred primarily in young leaves of all cultivars. The stem peelings have been used in recent years as a source of kavalactones in kava dietary supplement industry. Quantitative aspects of these piperidine alkaloids in P. methysticum and their potential activities on human physiology are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号