首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Termination of DNA replication in Bacillus subtilis involves the polar arrest of replication forks by a specific complex formed between the replication terminator protein (RTP) and DNA terminator sites. While determination of the crystal structure of RTP has facilitated our understanding of how a single RTP dimer interacts with terminator DNA, additional information is required in order to understand the assembly of a functional fork arrest complex, which requires an interaction between two RTP dimers and the terminator site. In this study, we show that the conformation of the major B.subtilis DNA terminator,TerI, becomes considerably distorted upon binding RTP. Binding of the first dimer of RTP to the B site of TerI causes the DNA to become slightly unwound and bent by approximately 40 degrees. Binding of a second dimer of RTP to the A site causes the bend angle to increase to approximately 60 degrees . We have used this new data to construct two plausible models that might explain how the ternary terminator complex can block DNA replication in a polar manner. In the first model, polarity of action is a consequence of the two RTP-DNA half-sites having different conformations. These different conformations result from different RTP-DNA contacts at each half-site (due to the intrinsic asymmetry of the terminator DNA), as well as interactions (direct or indirect) between the RTP dimers on the DNA. In the second model, polar fork arrest activity is a consequence of the different affinities of RTP for the A and B sites of the terminator DNA, modulated significantly by direct or indirect interactions between the RTP dimers.  相似文献   

2.
The coordinated termination of DNA replication is an important step in the life cycle of bacteria with circular chromosomes, but has only been defined at a molecular level in two systems to date. Here we report the structure of an engineered replication terminator protein (RTP) of Bacillus subtilis in complex with a 21 base pair DNA by X-ray crystallography at 2.5 A resolution. We also use NMR spectroscopic titration techniques. This work reveals a novel DNA interaction involving a dimeric 'winged helix' domain protein that differs from predictions. While the two recognition helices of RTP are in close contact with the B-form DNA major grooves, the 'wings' and N-termini of RTP do not form intimate contacts with the DNA. This structure provides insight into the molecular basis of polar replication fork arrest based on a model of cooperative binding and differential binding affinities of RTP to the two adjacent binding sites in the complete terminator.  相似文献   

3.
DNA replication fork arrest during the termination phase of chromosome replication in Bacillus subtilis is brought about by the replication terminator protein (RTP) bound to specific DNA terminator sequences (Ter sites) distributed throughout the terminus region. An attractive suggestion by others was that crucial to the functioning of the RTP-Ter complex is a specific interaction between RTP positioned on the DNA and the helicase associated with the approaching replication fork. In support of this was the behaviour of two site-directed mutants of RTP. They appeared to bind Ter DNA normally but were ineffective in fork arrest as ascertained by in vitro Escherichia coli DnaB helicase and replication assays. We describe here a system for assessing the fork-arrest behaviour of RTP mutants in a bona fide in vivo assay in B. subtilis. One of the previously studied mutants, RTP.Y33N, was non-functional in fork arrest in vivo, as predicted. But through extensive analyses, this RTP mutant was shown to be severely defective in binding to Ter DNA, contrary to expectation. Taken in conjunction with recent findings on the other mutant (RTP.E30K), it is concluded that there is as yet no substantive evidence from the behaviour of RTP mutants to support the RTP-helicase interaction model for fork arrest. In an extension of the present work on RTP.Y33N, we determined the dissociation rates of complexes formed by wild-type (wt) RTP and another RTP mutant with various terminator sequences. The functional wtRTP-TerI complex was quite stable (half-life of 182 minutes), reminiscent of the great stability of the E. coli Tus-Ter complex. More significant were the exceptional stabilities of complexes comprising wtRTP and an RTP double-mutant (E39K.R42Q) bound to some particular terminator sequences. From the measurement of in vivo fork-arrest activities of the various complexes, it is concluded that the stability (half-life) of the whole RTP-Ter complex is not the overriding determinant of arrest, and that the RTP-Ter complex must be actively disrupted, or RTP removed, by the action of the approaching replication fork.  相似文献   

4.
Two dimers of the replication terminator protein (RTP) of Bacillus subtilis bind to a chromosomal DNA terminator site to effect polar replication fork arrest. Cooperative binding of the dimers to overlapping half-sites within the terminator is essential for arrest. It was suggested previously that polarity of fork arrest is the result of the RTP dimer at the blocking (proximal) side within the complex binding very tightly and the permissive-side RTP dimer binding relatively weakly. In order to investigate this "differential binding affinity" model, we have constructed a series of mutant terminators that contain half-sites of widely different RTP binding affinities in various combinations. Although there appeared to be a correlation between binding affinity at the proximal half-site and fork arrest efficiency in vivo for some terminators, several deviated significantly from this correlation. Some terminators exhibited greatly reduced binding cooperativity (and therefore have reduced affinity at each half-site) but were highly efficient in fork arrest, whereas one terminator had normal affinity over the proximal half-site, yet had low fork arrest efficiency. The results show clearly that there is no direct correlation between the RTP binding affinity (either within the full complex or at the proximal half-site within the full complex) and the efficiency of replication fork arrest in vivo. Thus, the differential binding affinity over the proximal and distal half-sites cannot be solely responsible for functional polarity of fork arrest. Furthermore, efficient fork arrest relies on features in addition to the tight binding of RTP to terminator DNA.  相似文献   

5.
The first stage in termination of chromosome replication in Bacillus subtilis involves arrest of the clockwise fork at the inverted repeat region (IRR), comprising the opposed IRI and IRII sequences, adjacent to the upstream region of the rtp gene, which encodes the replication terminator protein RTP. RTP binds to IRI and IRII. The ability of the IRR and its components to function as terminators, in conjunction with RTP, and their polarity of action have now been tested by the use of plasmids replicating in B. subtilis as unidirectional theta structures and into which potential terminator sequences were inserted in alternate orientations relative to fork movement. When the complete IRR was inserted into such plasmids and the new plasmids transferred into a B. subtilis strain overproducing RTP, it was able to block movement of a replication fork approaching from either direction. IRI and IRII were shown to function as polar terminators, each blocking movement of a fork when it approached from one particular direction but not the other. Furthermore, the polarity of action was in accordance with the IRR being able to operate as a replication fork trap. Thus, a fork approaching the IRR would pass through the first terminator encountered (IRI or IRII) and be halted by the second. The previously observed nonfunctioning of a particular orientation of chromosomal IRR as a fork arrest site probably reflects a limiting level of RTP in the cell. Interestingly, a 21 base-pair core sequence spanning a single RTP binding site within IRI (the 47 base-pair IRI contains 2 binding sites) was unable to arrest a fork approaching from either direction in the plasmid system. This suggests that both binding sites within an IR must be filled in order to function as an arrest site. It is possible that co-operative interaction between adjacent dimers within IRI or IRII provides the necessary conformation for causing fork arrest.  相似文献   

6.
A functional DNA replication terminator of Bacillus subtilis contains two overlapping binding sites, A and B, for the replication terminator protein (RTP). A degenerate 17-mer oligonucleotide corresponding to the consensus B site has been used to detect four new terminators in the B. subtilis chromosome, in addition to the previously identified and closely spaced IRI and IRII. All the new terminators lie in the terminus region of the chromosome, on both sides of IRI and IRII, with their positions spanning <1O% of its length. Their DNA sequences are characterized by clearly identifiable A- and B-binding sites. They bind RTP in a manner indistinguishable from IRI, although precise affinities have not been compared. Each new terminator is functional in causing fork arrest when present in a plasmid replicating in B. subtilis . Three of the four were tested for polarity in fork-arrest activity and exhibited the polarity expected. The total of six terminators now identified in B. subtilis have been named TerI-TerVI . TerI and TerII correspond to the previously identified IRI and IRII, respectively. The chromosomal orientations of all but one of the terminators ( TerIV ) have been established and they conform to an arrangement similar to that in Escherichia coli in which two opposed groups of polar terminators provide a replication-fork trap ensuring that the approaching forks meet within a restricted region of the chromosome. The development of a strikingly similar arrangement of terminators in the two organisms, despite the lack of any detectable similarity in their respective DNA terminators and terminator proteins, emphasizes the importance of the replication-fork trap in each case.  相似文献   

7.
The replication terminator protein (RTP) of Bacillus subtilis impedes replication fork movement in a polar mode upon binding as two interacting dimers to each of the replication termini. The mode of interaction of RTP with the terminus DNA is of considerable mechanistic significance because the DNA-protein complex not only localizes the helicase-blocking activity to the terminus, but also generates functional asymmetry from structurally symmetric protein dimers. The functional asymmetry is manifested in the polar impedance of replication fork movement. Although the crystal structure of the apoprotein has been solved, hitherto there was no direct evidence as to which parts of RTP were in contact with the replication terminus. Here we have used a variety of approaches, including saturation mutagenesis, genetic selection for DNA-binding mutants, photo cross-linking, biochemical and functional characterizations of the mutant proteins, and X-ray crystallography, to identify the regions of RTP that are either in direct contact with or are located within 11 angstroms of the replication terminus. The data show that the unstructured N-terminal arm, the alpha3 helix and the beta2 strand are involved in DNA binding. The mapping of amino acids of RTP in contact with DNA, confirms a 'winged helix' DNA-binding motif.  相似文献   

8.
The replication terminus region of the Bacillus subtilis chromosome, comprising TerI and TerII plus the rtp gene (referred to as the terC region) was relocated to serC (257 degrees) and cym (10 degrees) on the anticlockwise- and clockwise-replicating segments of the chromosome, respectively. In both cases, it was found that only the orientation of the terC region that placed TerI in opposition to the approaching replication fork was functional in fork arrest. When TerII was opposed to the approaching fork, it was nonfunctional. These findings confirm and extend earlier work which involved relocations to only the clockwise-replicating segment, at metD (100 degrees) and pyr (139 degrees). In the present work, it was further shown that in the strain in which TerII was opposed to an approaching fork at metD, overproduction of the replication terminator protein (RTP) enabled TerII to function as an arrest site. Thus, chromosomal TerII is nonfunctional in arrest in vivo because of a limiting level of RTP. Marker frequency analysis showed that TerI at both cym and metD caused only transient arrest of a replication fork. Arrest appeared to be more severe in the latter situation and caused the two forks to meet at approximately 145 degrees (just outside or on the edge of the replication fork trap). The minimum pause time erected by TerI at metD was calculated to be approximately 40% of the time taken to complete a round of replication. This significant pause at metD caused the cells to become elongated, indicating that cell division was delayed. Further work is needed to establish the immediate cause of the delay in division.  相似文献   

9.
A DNA replication terminator sequence blocks an approaching replication fork when the moving replisome approaches from just one direction. The mechanism underlying polar arrest has been debated for years, but recent work has helped to reveal how a replication fork is blocked in Escherichia coli . Early work suggested that asymmetric interaction between terminator protein and terminator DNA contributes to polar fork arrest. A later study demonstrated that if the terminator DNA is partially unwound, the resulting melted DNA could bind tightly to the terminator protein, suggesting a mechanism for polar arrest that involves a locked complex. However, recent evidence suggests that the terminator protein–DNA contacts are not sufficient for polar arrest in vivo . Furthermore, polar arrest of a replication fork still occurs in the absence of a locked complex between the terminator protein and DNA. In E. coli and Bacillus subtilis , the bound terminator protein makes protein–protein contacts with the replication fork helicase, and these contacts are critical in blocking progression of the advancing fork. Thus, we propose that interactions between the replication fork helicase and terminator protein are the primary mechanism for polar fork arrest in bacteria, and that this primary mechanism is modulated by asymmetric contacts between the terminator protein and its cognate DNA sequence. In yeast, terminator sequences are present in rDNA non-transcribed spacers and a region immediately preceding the mating type switch locus Mat1, and the mechanism of polar arrest at these regions is beginning to be elucidated.  相似文献   

10.
The current models that have been proposed to explain the mechanism of replication termination are (i) passive arrest of a replication fork by the terminus (Ter) DNA-terminator protein complex that impedes the replication fork and the replicative helicase in a polar fashion and (ii) an active barrier model in which the Ter-terminator protein complex arrests a fork not only by DNA-protein interaction but also by mechanistically significant terminator protein-helicase interaction. Despite the existence of some evidence supporting in vitro interaction between the replication terminator protein (RTP) and DnaB helicase, there has been continuing debate in the literature questioning the validity of the protein-protein interaction model. The objective of the present work was two-fold: (i) to reexamine the question of RTP-DnaB interaction by additional techniques and different mutant forms of RTP, and (ii) to investigate if a common domain of RTP is involved in the arrest of both helicase and RNA polymerase. The results validate and confirm the RTP-DnaB interaction in vitro and suggest a critical role for this interaction in replication fork arrest. The results also show that the Tyr(33) residue of RTP plays a critical role both in the arrest of helicase and RNA polymerase.  相似文献   

11.
The Escherichia coli replication terminator TerB was inserted in its two alternate orientations into a Bacillus subtilis fork-arrest assay plasmid. After transferring these new plasmids into B. subtilis, which could overproduce the E. coli terminator protein Tus, it was shown that the E. coli Tus-TerB complex could cause polar replication fork arrest, albeit at a very low level, in B. subtilis. A new B. subtilis-E. coli shuttle plasmid was designed to allow the insertion of either the Terl (B. subtilis) or TerB (E. coli) terminator at the same site and in the active orientation in relation to the approaching replication fork generated in either organism. Fork-arrest assays for both terminator-containing plasmids replicating in both organisms which also produced saturating levels of either the B. subtilis terminator protein (RTP) or Tus were performed. The efficiency of the Tus-TerB complex in causing fork arrest was much higher in E. coli than in B. subtilis. The efficiency of the B. subtilis RTP-Terl complex was higher in B. subtilis than in E. coli, but the effect was significantly less. Evidently a specificity feature in E. coli operates to enhance appreciably the fork-arrest efficiency of a Tus-Ter complex. The specificity effect is of less significance for an RTP-Ter complex functioning in B. subtilis.  相似文献   

12.
The interaction between the DNA replication terminator, IRI, of Bacillus subtilis and its cognate replication terminator protein (RTP) has been examined by the technique of missing nucleoside interference (MNI). IRI contains two adjacent binding sites (A and B) for RTP dimers. The B site is proximal to the replication fork arrest site. The present results have shown that nucleoside contacts with RTP in the two sites are very different. There are more extensive contacts of nucleosides in both strands of the B site with RTP compared with the A site. The data also strongly suggest that filling by RTP of the B site occurs first and is needed for subsequent co-operative filling of an overlapping A site. The A site alone binds RTP poorly. The findings are consistent with interaction occurring between RTP dimers bound to adjacent sites of IRI, which would explain why RTP bound to the B site alone cannot cause replication fork arrest.  相似文献   

13.
The Bacillus subtilis 168 chromosome is known to contain at least six DNA replication terminators in the terminus region of the chromosome. By using a degenerate DNA probe for the consensus terminator sequence and low-stringency hybridization conditions, several additional minor hybridizing bands were identified. DNA corresponding to the most intense of these bands was cloned and characterized. Although localized in the terminus region, it could not bind RTP and possibly represents a degenerate terminator. A search of the SubtiList database identified an additional terminator sequence in the terminus region, near glnA. It was shown to bind RTP and to function in blocking replication fork movement in a polar manner. Its orientation conformed to the replication fork trap arrangement of the other terminators. The low-stringency hybridization experiments failed to identify any terminus region-type terminators in the region of the chromosome where postinitiation control sequences (STer sites) are known to reside. The two most likely terminators in STer site regions, in terms of sequence similarity to terminus region terminators, were identified through sequence searching. They were synthesized and were found not to bind RTP under conditions that allowed binding to terminus region terminators. Neither did they elicit fork arrest, when present in a plasmid, under stringent conditions. It is concluded that the STer site terminators, at least the first two to the left of oriC, do not have the typical consensus A+B site makeup of terminus region terminators.  相似文献   

14.
We have examined a replication terminus (psiL1) located on the left arm of the chromosome of Bacillus subtilis and within the yxcC gene and at or near the left replication checkpoint that is activated under stringent conditions. The psiL1 sequence appears to bind to two dimers of the replication terminator protein (RTP) rather weakly and seems to possess overlapping core and auxiliary sites that have some sequence similarities with normal Ter sites. Surprisingly, the asymmetrical, isolated psiL1 site arrested replication forks in vivo in both orientations and independent of stringent control. In vitro, the sequence arrested DnaB helicase in both orientations, albeit more weakly than the normal Ter1 terminus. The key points of mechanistic interest that emerge from the present work are: (i) strong binding of a Ter (psiL1) sequence to RTP did not appear to be essential for fork arrest and (ii) polarity of fork arrest could not be correlated in this case with just symmetrical protein-DNA interaction at the core and auxiliary sites of psiL1. On the basis of the result it would appear that the weak RTP-L1Ter interaction cannot by itself account for fork arrest, thus suggesting a role for DnaB-RTP interaction.  相似文献   

15.
T Sahoo  B K Mohanty  I Patel    D Bastia 《The EMBO journal》1995,14(3):619-628
The termination of DNA replication at a sequence-specific replication terminus in Bacillus subtilis is catalyzed by a dimeric replication terminator protein (RTP) of subunit mol. wt 14,500. RTP has become an attractive protein with which to study the molecular mechanism of termination because its crystal structure has now been solved and the previous lack of an in vitro replication system has been largely overcome by our discovery that the protein terminates replication in vivo and in vitro in the well-studied Gram-negative Escherichia coli system. We have exploited the surrogate in vitro system to show that RTP acts as a polar contrahelicase to DnaB helicase of E. coli only when two RTP dimers are bound co-operatively to overlapping core and auxiliary sequences comprising the terminus. A core sequence by itself binds one dimer of RTP, but elicits no contrahelicase activity. Binding of two RTP dimers to a tandem head-to-tail core repeat also elicits no contrahelicase activity, thus suggesting that a specific stereochemical interaction between two RTP dimers and with the terminator site is essential for termination. RTP blocks unwinding of DNA substrates containing heteroduplex regions that include the terminus and are in the size range of approximately 50 to > 1000 bp in length. Thus, the protein blocks authentic helicase-catalyzed unwinding rather than just the translocation of the helicase on DNA.  相似文献   

16.
The Bacillus subtilis merodiploid strain GSY1127 contains a large nontandem duplication of a portion of its chromosome within its left (anticlockwise) replication segment. This causes displacement of the replication terminus region to a noticeably asymmetric location relative to oriC. The utilization of the subsidiary replication terminators, TerIII and TerV, in the merodiploid strain has been compared with that in B. subtilis 168. It is shown that TerIII is utilized to a significant extent in GSY1127 and that TerV is used only marginally at the most. Neither of these terminators is used to a measurable extent in the 168 strain. It is concluded that TerIII and TerV do indeed function as backups to the major terminator TerI, as has been generally thought. It is further concluded that, in the 168 strain, the vast majority of clockwise forks are arrested at the highly efficient TerI terminator, with fork fusion between the approaching forks occurring frequently while the clockwise fork is stationary at TerI.  相似文献   

17.
18.
Relatively little is known about the interaction of eukaryotic replication terminator proteins with the cognate termini and the replication termination mechanism. Here, we report a biochemical analysis of the interaction of the Reb1 terminator protein of Schizosaccharomyces pombe, which binds to the Ter3 site present in the nontranscribed spacers of ribosomal DNA, located in chromosome III. We show that Reb1 is a dimeric protein and that the N-terminal dimerization domain of the protein is dispensable for replication termination. Unlike its mammalian counterpart Ttf1, Reb1 did not need an accessory protein to bind to Ter3. The two myb/SANT domains and an adjacent, N-terminal 154-amino-acid-long segment (called the myb-associated domain) were both necessary and sufficient for optimal DNA binding in vitro and fork arrest in vivo. The protein and its binding site Ter3 were unable to arrest forks initiated in vivo from ars of Saccharomyces cerevisiae in the cell milieu of the latter despite the facts that the protein retained the proper affinity of binding, was located in vivo at the Ter site, and apparently was not displaced by the “sweepase” Rrm3. These observations suggest that replication fork arrest is not an intrinsic property of the Reb1-Ter3 complex.  相似文献   

19.
DNase I footprinting of the interaction between the replication terminator protein (RTP) of Bacillus subtilis and the inverted repeat region (IRR) at the chromosome terminus, to which it binds to block the clockwise replication fork, showed that two major regions of 41 base pairs (bp) were protected from cleavage. These regions corresponded approximately to the imperfect inverted repeats (IRI and IRII) identified previously. Band retardation analyses of the interaction between RTP and portions of the IRR established that each inverted repeat (IRI or IRII) contained two RTP binding sites. By sedimentation equilibrium in the ultracentrifuge, RTP was found to exist as a dimer of 29 kDa at neutral pH and concentrations above 0.2 g/l. Quantitative studies of the RTP-IRR interaction using [3H]RTP and [32P]IRR showed that the fully saturated complex contained eight RTP monomers per IRR. It is concluded that a dimer of RTP binds to each of the four sites in IRR. The apparent dissociation constant for the interaction was estimated (in the presence of 50% glycerol) to be 1.2 x 10(-11) M (dimer of RTP). Glycerol was found to have a marked effect on the affinity of RTP for the IRR and on the relative amounts of the interaction complexes formed; in the absence of glycerol the dissociation constant was approximately 50-fold higher and there was pronounced co-operative binding of RTP dimers to adjacent sites in each inverted repeat. Examination of the DNA sequence in IRI and IRII identified two 8 bp direct repeats in each. The regions protected from DNase I cleavage in each inverted repeat and the protection afforded by a core sequence spanning just one of the 8 bp direct repeats were consistent with each 8 bp repeat representing a recognition sequence for the RTP dimer. A model describing the binding of RTP to the IRR is presented.  相似文献   

20.
The replication terminator protein (RTP) is a dimeric molecule that binds specific sequences within the replication terminus of the Bacillus subtilis chromosome and prevents the passage of replication forks. The gene for RTP has been expressed in Escherichia coli, and the protein has been purified in amounts sufficient for structural studies by nuclear magnetic resonance (NMR) and x-ray crystallography. One-dimensional NMR experiments show that the protein has a well-folded compact tertiary structure, as well as a high alpha-helical content. Circular dichroism (CD) studies confirm this finding and show that approximately 32% of the protein is alpha-helical. The terminator protein has been crystallized as monoclinic plates that diffract to better than 2.5 A and are suitable for high resolution structural analysis. Precession photographs show the space group to be C2 with unit cell dimensions a = 77 A, b = 53 A, c = 70 A, and beta = 90 degrees, and two molecules occupy the asymmetric unit. With a view to producing crystals of an RTP.DNA complex, gel-shift assays were performed to establish the shortest sequence of DNA that is required for tight binding to RTP. These clearly show that two turns of DNA are required, centered on an 8-base pair consensus sequence, to elicit relatively stable binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号