首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of three different feeds, wheat straw, sorghum and berseem, on total and cellulolytic bacterial counts in the buffalo rumen at different time intervals from 0 to 8 h after feeding was studied. Berseem feeding supported maximum growth of rumen bacteria in general and cellulolytic bacteria in particular. Wheat straw supported the poorest growth.
The types of cellulolytic bacteria recovered from the rumen of adult buffaloes were Ruminococcus albus, R. flavefaciens, Bacteroides succinogenes, Butyrivibrio fibrisolvens, Clostridium lochheadii, Cl. longisporum and other Clostridium spp. Cellulolytic cocci were present in smaller numbers than rod forms in the rumen of wheat-straw-fed buffaloes, whereas the cocci outnumbered rod forms in sorghum-and berseem-fed buffaloes.  相似文献   

2.
A mixed inoculum of cellulolytic rumen bacteria depressed straw degradation by a mixed culture of cellulolytic fungi grown in the presence of Methanobrevibacter smithii. The inhibitory effect appeared to be caused by Ruminococcus albus strain JI and R. flavefaciens strain 007. Ruminococcus albus strain J1 also depressed straw degradation by the fungi, but R. albus strain SY3 and three strains of Bacteroides (Fibrobacter) succinogenes tested showed little or no inhibitory activity. It seems that some ruminococci show competitive or antagonistic activity towards certain rumen fungi.  相似文献   

3.
AIM: To examine the effect of concentrate and yeast additive on the number of cellulolytic bacteria in the rumen of sheep. METHODS AND RESULTS: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens were quantified using real-time PCR (targeting 16S rDNA) in parallel to cellulolytic flora enumeration with cultural techniques. Whatever the conditions tested, R. flavefaciens was slightly more abundant than F. succinogenes, with both species outnumbering R. albus. Before feeding, the shift from hay to hay plus concentrate diet had no effect on rumen pH and on the number of the three specie; while after feeding, the concentrate-supplemented diet induced a decrease (-1 log) of the number of the three species concomitant with the rumen acidification. Overall, the presence of the live yeast resulted in a significant increase (two- to fourfold) of the Ruminococci. CONCLUSION: The use of real-time PCR allowed us to show changes in the number of cellulolytic bacterial species in vivo in response to diet shift and additives that could not be as easily evidenced by classical microbial methods. SIGNIFICANCE AND IMPACT OF THE STUDY: This study contributes to the understanding of the negative impact of readily fermentable carbohydrates on rumen cellulolysis and the beneficial effect of yeast on rumen fermentation.  相似文献   

4.
The degradation of cell walls of mesophyll, epidermis and fibre cells isolated from leaves of perennial and Italian ryegrass within the sheep rumen or by selected strains of rumen bacteria in vitro , was followed by estimation of dry matter loss, or loss of neutral sugar residues. Primary cell walls (mesophyll and epidermis) were fully degraded within 12 h in the rumen, while the more heavily lignified fibre cell walls showed only a 40% loss of dry matter over the same period. Neutral sugar residues were lost at a common rate from walls of all three cell types. Incubation of cell walls with cellulolytic bacteria showed that the extent to which cell walls were attacked was constantly ordered (epidermis > mesophyll > fibre). The rate of degradation of cell walls was less in axenic culture than within the rumen. Greatest weight losses were produced by Ruminococcus albus , followed by Bacteroides succinogenes , with Ruminococcus flavefaciens effecting the least change, regardless of the nature of the cell wall provided as a substrate. Xylose was more readily lost from primary cell walls than glucose during the early stages of attack, but both were lost at a common rate from fibre cell walls. Dry matter losses produced by the hemicellulolytic strain, Bacteroides ruminocola , were limited even after extended incubation. Electron microscopy indicated that R. albus was less commonly attached to cell walls than were the other cellulolytic strains, although evidence of capsular material was present. Bacteroides succinogenes was seen with an extensive capsule which enveloped clusters of cells, forming micro-colonies in association with the plant cell wall. Vesicle-like structures, commonly associated with the cellulolytic bacteria R. albus and B. succinogenes , were found on comparatively few occasions in this study.  相似文献   

5.
Competitive PCR assays were developed for the enumeration of the rumen cellulolytic bacterial species: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. The assays, targeting species-specific regions of 16S rDNA, were evaluated using DNA from pure culture and rumen digesta spiked with the relevant cellulolytic species. Minimum detection levels for F. succinogenes, R. albus and R. flavefaciens were 1-10 cells in pure culture and 10(3-4) cells per ml in mixed culture. The assays were reproducible and 11-13% inter- and intra-assay variations were observed. Enumeration of the cellulolytic species in the rumen and alimentary tract of sheep found F. succinogenes dominant (10(7) per ml of rumen digesta) compared to the Ruminococcus spp. (10(4-6) per ml). The population size of the three species did not change after the proportion of dietary alfalfa hay was increased. All three species were detected in the rumen, omasum, caecum, colon and rectum. Numbers of the cellulolytic species at these sites varied within and between animals.  相似文献   

6.
Four sheep were fed an alfalfa hay diet. Rumen content samples were collected three hours after feeding in order to total microorganism population (TP), solid attached population (SAP) and solid attached firmly population (SAFP). Fibrolytic specific activities (xylanase, CMCase and beta-glycosidases) were estimated by the amount of reducing sugars or p-nitrophenol released from the appropriate substrate. The distribution of the three main cellulolytic bacterial species (Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens) was quantified by dot-blot hybridisation using specific 16S-rRNA-targeting probes. Specific activities of polysaccharidase enzymes were higher in SAP than in TP, and in SAFP than in SAP. The sum of RNA of the three cellulolytic bacterial species represented on average 9% of the total bacterial RNA, and increased after filtration. In all samples, the relative population size of F. succinogenes was higher than that of R. albus and of R. flavefaciens. These results demonstrate that the most active enzymes are secreted by the particle-associated microorganisms. The differences in composition of the microflora between the solid and liquid phase suggest that bacteria are not equally distributed throughout the rumen content: the cellulolytic species are present in a higher proportion in the solid phase of rumen contents.  相似文献   

7.
To apply recombinant DNA techniques to the genetic manipulation of cellulolytic ruminal bacteria, a plasmid vector transformation system must be available. The objective of this work was to develop a system for plasmid transformation of Ruminococcus albus. Using high voltage electrotransformation, pSC22 and pCK17 plasmid vectors, derived from lactic acid bacteria plasmids and replicating via single-stranded DNA intermediate, were successfully introduced into three freshly isolated R. albus strains and into R. albus type strain ATCC 27210. The optimization of the electrotransformation condition raised the electroporation efficiency up to 3 x 10(5) transformants per microgram of pSC22 plasmid.  相似文献   

8.
A method was developed and used to arrest and stain reducing sugars (glucose) produced by bacteria with cell-surface-associated carboxymethyl cellulase (CMCase) and endoglucanase activities (CMC bacteria) in the rumen of cows fed alfalfa or triticale. Precipitation of silver oxide on the surface of individual cells was observed using cellulolytic bacterial pure cultures with known CMCase activity and rumen mixed cultures. The CMC bacteria in the liquid and solid fractions of the rumen digesta were identified using fluorescence in situ hybridization (FISH) with currently available and newly designed oligonucleotide probes. The CMC bacteria contributed between 8.2% and 10.1% to the total bacterial cell numbers. Most of the CMC bacteria (75.2-78.5%) could be identified by FISH probing. The known cellulolytic populations Ruminococcus flavefaciens, R.?albus, and Fibrobacter succinogenes constituted 44.5-53.1% of the total. Other CMC bacteria identified hybridized with the probe Clo549 (11.2-23.0%) targeting members of an uncharacterized genus in Clostridia, the probe Inc852 (8.9-10.7%) targeting members of the family Incertae Sedis III and unclassified Clostridiales, and the probe But1243 (相似文献   

9.
To assess the contribution of individual bacterial species to the overall process of cellulose digestion in the rumen, cellulolytic bacteria (Bacteroides succinogenes and Ruminococcus albus) were tested as pure cultures and as cocultures with noncellulolytic Treponema bryantii. In studies of in vitro barley straw digestion, Treponema cocultures surpassed pure cultures of the cellulolytic organisms in dry matter disappearance, volatile fatty acid generation, and in the production of succinic acid, lactic acid, and ethanol. Morphological examination, by electron microscopy, showed that cells of T. bryantii associate with the plant cell wall materials in straw, but that cellulose digestion occurs only when these organisms are present with cellulolytic species such as B. succinogenes. These results show that cellulolytic bacteria interact with noncellulolytic Treponema to promote the digestion of cellulosic materials.  相似文献   

10.
广西水牛瘤胃中的细菌多样性   总被引:1,自引:0,他引:1  
[目的]了解广西水牛瘤胃中细菌的组成及其可能的降解纤维素细菌的主要类群。[方法]提取水牛瘤胃内容物和高效降解滤纸的水牛瘤胃内容物的富集培养物的宏基因组DNA,以宏基因组DNA为模板,扩增16S rRNA基因序列,构建该两种样品的细菌的16S rRNA基因文库。通过对16S rRNA基因序列的分析,了解这两种样品的细菌群体种类及数量。 [结果] 水牛瘤胃内容物与其富集培养物中均主要含有LGCGPB (low G+C Gram-Positive Bacteria)、CFB (Cytophaga-Flexibacter-Bacteroides)两大类菌群和少数的螺旋体菌(Spirochaetes),且LGCGPB所占的比例都是最高的,LGCGPB在水牛瘤胃内容物细菌中的比例为56.66%,而在富集培养物细菌中的比例升高为73.33%。在水牛瘤胃内容物中,丝状杆菌(Fibrobacteres)占3.33%,但在富集培养物中未被检测到。而在富集培养物中占13.33%的变形杆菌(Proteobacteria),在水牛瘤胃内容物中未被检测到。本研究还发现了分类地位尚未明确的一菌群(R46)。[结论]细菌类群LGCGPB、Proteobacteria可能在水牛瘤胃中的纤维素降解过程中起重要作用。此外,水牛瘤胃中的细菌组成和牦牛、牛、羊瘤胃中的细菌组成较相似但比例有所不同。  相似文献   

11.
The 6.3 kb plasmid pCRB1 containing the eglS gene from Streptomyces rochei, coding for a -1,4 glucanase, was constructed in Bacillus subtilis by using the plasmid vector pIL253 with subsequent activity of the cellulase activity. Strictly anaerobic cellulolytic and xylanolytic strains of Ruminococcus albus, isolated from the rumen of cows and water buffaloes, were used for transformation experiments. The plasmid pCRB1 was introduced by means of electroporation into five freshly isolated strains of R. albus, with frequencies ranging from 10 to 10 /mg of plasmid DNA. Northern analysis demonstrated the expression of the eglS gene in R. albus. All the strains harbouring the heterologous cellulase gene showed an increase of the secreted cellulase activity.  相似文献   

12.
Aims: To determine the origins of DNA sequences isolated from the rumen microbial ecosystem using a self‐organizing map (SOM). Methods and Results: DNA sequences other than 16S small subunit ribosomal RNA (SSU rRNA) gene sequences that were detected from the rumen were analysed by the SOM method reported by Abe et al. [2000, Self‐Organizing Map (SOM) unveils and visualizes hidden sequence characteristics of a wide range of eukaryote genomes. Gene 365, 27–34]. Because query sequences positioned by SOM were scattered on the master drawing of SOM, it was suggested that many DNA sequences isolated from the rumen were collected from a broad range of micro‐organisms. Although the results obtained by SOM were similar to those obtained by the neighbour‐joining (NJ) method, SOM was able to presume the phylotypes of the query sequences without information about the 16S SSU rRNA gene sequences and homology searches, and to reveal existence of novel micro‐organisms deduced to be cellulolytic bacteria, archaea and methanotrophic bacterium. Conclusions: As the SOM method defined phylotypes of unreported rumen micro‐organisms, it is presumed that these phylotypes would be involved in rumen fermentation in cooperation with known rumen micro‐organisms. Moreover, it is demonstrated that SOM is a useful tool for affiliating DNA sequences, which have no matches in databases. Significance and Impact of Study: Through SOM analysis, a better means of identifying rumen micro‐organisms and estimating their roles in rumen function was provided.  相似文献   

13.
Pre-treatment of straw with anhydrous ammonia increased its susceptibility to solubilization by the predominant cellulolytic bacteria from the rumen, Bacteroides succinogenes, Ruminococcus albus and R. flavefaciens. Ammonia treatment also increased the production of microbial protein and fermentation products by all three species. Scanning electron microscope observations of straw during digestion suggested that the attack of straw by these bacteria was accompanied by the formation of substantial numbers of adherent microcolonies.  相似文献   

14.
The rate of cellulose digestion in the presence of either glucose or cellobiose was studied for the three predominant species of cellulolytic rumen bacteria: Ruminococcus albus, Ruminococcus flavefaciens, and Bacteroides succinogenes. When a soluble carbohydrate was added to cellulose broth, the lag phase of cellulose digestion was shortened. Presumably, this was due to greater numbers of bacteria, because increasing the size of the inoculum had a similar effect. Cellulose digestion occurred simultaneously with utilization of the soluble carbohydrate. The rate of cellulose digestion slowed markedly for B. succinogenes and R. flavefaciens and slowed less for R. albus after the cellobiose or glucose had been utilized, and was accompanied by a decrease in pH. Both the rate and the extent of cellulose digestion were partially inhibited when the initial pH of the medium was 6.3 or below. R. albus appeared to be less affected by a low-pH medium than were B. succinogenes and R. flavefaciens. When a soluble carbohydrate was added to the fermentation during the maximum-rate phase of cellulose digestion, the rate of cellulose digestion was not affected until after the soluble carbohydrate had been depleted and the pH had decreased markedly. Prolonged exposure of the bacteria to a low pH had little if any effect on their subsequent ability to digest cellulose. Cellulase activity of intact bacterial cells appeared to be constitutive in nature for these three species of rumen bacteria.  相似文献   

15.
Pre-treatment of straw with anhydrous ammonia increased its susceptibility to solubilization by the predominant cellulolytic bacteria from the rumen, Bacteroides succinogenes, Ruminococcus albus and R. flavefaciens. Ammonia treatment also increased the production of microbial protein and fermentation products by all three species. Scanning electron microscope observations of straw during digestion suggested that the attack of straw by these bacteria was accompanied by the formation of substantial numbers of adherent microcolonies.  相似文献   

16.
A genetic transformation system with similarities to those reported for gram-negative bacteria was found to be associated with membrane vesicles of the ruminal cellulolytic genus Ruminococcus. Double-stranded DNA was recovered from the subcellular particulate fraction of all the cellulolytic ruminococci examined. Electron microscopy revealed that the only particles present resembled membrane vesicles. The likelihood that the DNA was associated with membrane vesicles (also known to contain cellulosomes) was further supported by the adherence of the particles associated with the subcellular DNA to cellulose powder added to culture filtrates. The particle-associated DNA comprised a population of linear molecules ranging in size from <20 kb to 49 kb (Ruminococcus sp. strain YE73) and from 23 kb to 90 kb (Ruminococcus albus AR67). Particle-associated DNA from R. albus AR67 represented DNA derived from genomic DNA of the host bacterium having an almost identical HindIII digestion pattern and an identical 16S rRNA gene. Paradoxically, particle-associated DNA was refractory to digestion with EcoRI, while the genomic DNA was susceptible to extensive digestion, suggesting that there is differential restriction modification of genomic DNA and DNA exported from the cell. Transformation using the vesicle-containing fraction of culture supernatant of Ruminococcus sp. strain YE71 was able to restore the ability to degrade crystalline cellulose to two mutants that were otherwise unable to do so. The ability was heritable and transferred to subsequent generations. It appears that membrane-associated transformation plays a role in lateral gene transfer in complex microbial ecosystems, such as the rumen.  相似文献   

17.
The rate of cellulose digestion in the presence of either glucose or cellobiose was studied for the three predominant species of cellulolytic rumen bacteria: Ruminococcus albus, Ruminococcus flavefaciens, and Bacteroides succinogenes. When a soluble carbohydrate was added to cellulose broth, the lag phase of cellulose digestion was shortened. Presumably, this was due to greater numbers of bacteria, because increasing the size of the inoculum had a similar effect. Cellulose digestion occurred simultaneously with utilization of the soluble carbohydrate. The rate of cellulose digestion slowed markedly for B. succinogenes and R. flavefaciens and slowed less for R. albus after the cellobiose or glucose had been utilized, and was accompanied by a decrease in pH. Both the rate and the extent of cellulose digestion were partially inhibited when the initial pH of the medium was 6.3 or below. R. albus appeared to be less affected by a low-pH medium than were B. succinogenes and R. flavefaciens. When a soluble carbohydrate was added to the fermentation during the maximum-rate phase of cellulose digestion, the rate of cellulose digestion was not affected until after the soluble carbohydrate had been depleted and the pH had decreased markedly. Prolonged exposure of the bacteria to a low pH had little if any effect on their subsequent ability to digest cellulose. Cellulase activity of intact bacterial cells appeared to be constitutive in nature for these three species of rumen bacteria.  相似文献   

18.
Abstract Samples of rumen ingesta from two rumen-fistulated dairy cows fed grass silage-based diets were examined for numbers and types of bacteria that developed colonies on rumen fluid-agar media designated to support the growth of (a) a wide range of species, (b) cellulolytic bacteria, (c) lactate-fermenting bacteria, (d) non-fermentative bacteria. The most numerous species was Bacteroides ruminicola followed by Butyrivibrio fibrisolvens . The most abundant cellulolytic species were Eubacterium cellulosolvens and Ruminococcus flavefaciens. Megasphaera elsdenii and Selenomonas ruminantium were important lactate fermenters but an unidentified bacterium that grew poorly on maintenance medium was by far the most numerous among bacteria isolated from lactate-containing medium. One strain remained sufficiently viable to show that it fermented lactate to propionate and acetate.  相似文献   

19.
The presence of methylcellulose prevents the attachment of cellulolytic rumen bacteria to cellulose fibers. The addition of methylcellulose to pure cultures of these organisms in which the cells are already adherent to cellulose causes their detachment from this insoluble substrate and the inhibition of their growth. Methylcellulose is not used as a carbon source by these organisms and has no effect on their growth when glucose and cellobiose are the carbon sources. Attached cells of Bacteroides succinogenes orient themselves in the plane of the individual cellulose fibers and their methylcellulose-induced detachment, which is complete (almost 100%), leaves grooves where the cellulose has been digested. Attached cells of Ruminococcus albus colonize the cellulose in a looser and less regular pattern and their almost complete methylcellulose-induced detachment leaves less regular pits in the cellulose surface. On the other hand, attached cells of Ruminococcus flavefaciens colonize the cellulose surface in a random orientation by means of a discernible exopolysaccharide network, and their less complete methylcellulose-induced detachment leaves no residual impressions on the cellulose surface. These data support the suggestion that bacterial attachment is necessary for the digestion of highly ordered crystalline cellulose, and that cellulolytic species differ in the nature of their attachment to this insoluble substrate and in the nature of their enzymatic attack. Methylcellulose is an effective agent for detaching major rumen cellulolytic bacteria from their cellulosic substrate.  相似文献   

20.
This study was conducted to investigate effects of disodium fumarate (DF) on fermentation characteristics and microbial populations in the rumen of Hu sheep fed on high-forage diets. Two complementary feeding trials were conducted. In Trial 1, six Hu sheep fitted with ruminal cannulae were randomly allocated to a 2 × 2 cross-over design involving dietary treatments of either 0 or 20 g DF daily. Total DNA was extracted from the fluid- and solid-associated rumen microbes, respectively. Numbers of 16S rDNA gene copies associated with rumen methanogens and bacteria, and 18S rDNA gene copies associated with rumen protozoa and fungi were measured using real-time PCR, and expressed as proportion of total rumen bacteria 16S rDNA. Ruminal pH decreased in the DF group compared with the control (P < 0.05). Total volatile fatty acids increased (P < 0.001), but butyrate decreased (P < 0.01). Addition of DF inhibited the growth of methanogens, protozoa, fungi and Ruminococcus flavefaciens in fluid samples. Both Ruminococcus albus and Butyrivibrio fibrisolvens populations increased (P < 0.001) in particle-associated samples. Trial 2 was conducted to investigate the adaptive response of rumen microbes to DF. Three cannulated sheep were fed on basal diet for 2 weeks and continuously for 4 weeks with supplementation of DF at a level of 20 g/day. Ruminal samples were collected every week to analyze fermentation parameters and microbial populations. No effects of DF were observed on pH, acetate and butyrate (P > 0.05). Populations of methanogens and R. flavefaciens decreased in the fluid samples (P < 0.001), whereas addition of DF stimulated the population of solid-associated Fibrobacter succinogenes. Population of R. albus increased in the 2nd to 4th week in fluid-associated samples and was threefold higher in the 4th week than control week in solid samples. Analysis of denaturing gradient gel electrophoresis fingerprints revealed that there were significant changes in rumen microbiota after adding DF. Ten of 15 clone sequences from cut-out bands appearing in both the 2nd and the 4th week were 94% to 100% similar to Prevotella-like bacteria, and four sequences showed 95% to 98% similarity to Selenomonas dianae. Another 15 sequences were obtained from bands, which appeared in the 4th week only. Thirteen of these 15 sequences showed 95% to 99% similarity to Clostridium sp., and the other two showed 95% and 100% similarity to Ruminococcus sp. In summary, the microorganisms positively responding to DF addition were the cellulolytic bacteria, R. albus, F. succinogenes and B. fibrisolvens as well as proteolytic bacteria, B. fibrisolvens, P. ruminicola and Clostridium sp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号