首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
HAP1 is a divalent cation-dependent endonuclease from human cells with specificity for apurinic/apyrimidinic (AP) sites in DNA. Extraction of the essential metal ion from purified HAP1 stabilized its binding to an oligonucleotide containing a single AP site, permitting AP site binding studies to be undertaken using gel retardation assays. Binding of HAP1 to such an oligonucleotide was dependent upon the presence of an AP site. Previous structural and modelling studies have suggested a role for Asn212 (Asn153 in exonuclease III, the bacterial homologue of HAP1) in substrate recognition. Substitution of alanine for Asn212 abolished the AP endonuclease activity of purified recombinant HAP1 protein. More conservative substitutions of aspartate or glutamine for Asn212 still led to a reduction in specific activity of at least 300-fold. Moreover, none of the three Asn212 substitution mutants of HAP1 possessed detectable AP site binding activity in vitro. This study indicates that chelation of the active site metal ion in HAP1 stabilizes the complex of the protein with AP sites and identifies an active site asparagine residue as an important component of AP site recognition by the HAP1 protein.  相似文献   

3.
HAP1 protein, the major apurinic/apyrimidinic (AP) endonuclease in human cells, is a member of a homologous family of multifunctional DNA repair enzymes including the Escherichia coli exonuclease III and Drosophila Rrp1 proteins. The most extensively characterised member of this family, exonuclease III, exhibits both DNA- and RNA-specific nuclease activities. Here, we show that the RNase H activity characteristic of exonuclease III has been conserved in the human homologue, although the products resulting from RNA cleavage are dissimilar. To identify residues important for enzymatic activity, five mutant HAP1 proteins containing single amino acid substitutions were purified and analysed in vitro. The substitutions were made at sites of conserved amino acids and targeted either acidic or histidine residues because of their known participation in the active sites of hydrolytic nucleases. One of the mutant proteins (replacement of Asp-219 by alanine) showed a markedly reduced enzymatic activity, consistent with a greatly diminished capacity to bind DNA and RNA. In contrast, replacement of Asp-90, Asp-308 or Glu-96 by alanine led to a reduction in enzymatic activity without significantly compromising nucleic acid binding. Replacement of His-255 by alanine led to only a very small reduction in enzymatic activity. Our data are consistent with the presence of a single catalytic active site for the DNA- and RNA-specific nuclease activities of the HAP1 protein.  相似文献   

4.
5.
Apurinic/apyrimidinic (AP) sites in cellular DNA are considered to be both cytotoxic and mutagenic, and can arise spontaneously or following exposure to DNA damaging agents. We have isolated cDNA clones which encode an endonuclease, designated HAP1 (human AP endonuclease 1), that catalyses the initial step in AP site repair in human cells. The predicted HAP1 protein has an Mr of 35,500 and shows striking sequence similarity (93% identity) to BAP 1, a bovine AP endonuclease enzyme. Significant sequence homology to two bacterial DNA repair enzymes, E. coli exonuclease III and S. pneumoniae ExoA proteins, and to Drosophila Rrp1 protein is also apparent. We have expressed the HAP1 cDNA in E. coli mutants lacking exonuclease III (xth), endonuclease IV (nfo), or both AP endonucleases. The HAP1 protein can substitute for exonuclease III, but not for endonuclease IV, in respect of some, but not all, DNA repair and mutagenesis functions. Moreover, a dut xth (ts) double mutant, which is nonviable at 42 degrees C due to an accumulation of unrepaired AP sites following excision of uracil from DNA, was rescued by expression of the HAP1 cDNA. These results indicate that AP endonucleases show remarkable conservation of both primary sequence and function. We would predict that the HAP1 protein is important in human cells for protection against the toxic and mutagenic effects of DNA damaging agents.  相似文献   

6.
7.
DNA deoxyribophosphodiesterase.   总被引:17,自引:0,他引:17       下载免费PDF全文
A previously unrecognized enzyme acting on damaged termini in DNA is present in Escherichia coli. The enzyme catalyses the hydrolytic release of 2-deoxyribose-5-phosphate from single-strand interruptions in DNA with a base-free residue on the 5' side. The partly purified protein appears to be free from endonuclease activity for apurinic/apyrimidinic sites, exonuclease activity and DNA 5'-phosphatase activity. The enzyme has a mol. wt of approximately 50,000-55,000 and has been termed DNA deoxyribophosphodiesterase (dRpase). The protein presumably is active in DNA excision repair to remove a sugar-phosphate residue from an endonucleolytically incised apurinic/apyrimidinic site, prior to gap filling and ligation.  相似文献   

8.
9.
10.
In this report we present the alignment of one of the most conserved segments (Exo III) of the 3'-5' exonuclease domain in 39 DNA polymerase sequences, including prokaryotic and eukaryotic enzymes. Site-directed substitutions of the two most conserved residues, which form the Exo III motif Tyr-(X)3-Asp of phi 29 DNA polymerase, did not affect single-stranded DNA binding, DNA polymerization, processivity or protein-primed initiation. In contrast, substitution of the highly conserved Tyr residue by Phe or Cys decreased the 3'-5' exonuclease activity to 7.5 and 4.1%, respectively, of the wild-type activity. Change of the highly conserved Asp residue into Ala resulted in almost complete inactivation (0.1%) of the 3'-5' exonuclease. In accordance with the contribution of the 3'-5' exonuclease to the fidelity of DNA replication, the three mutations in the Exo III motif (Y165F, Y165C and D169A) produced enzymes with an increased frequency of misinsertion and extension of DNA polymerization errors. Surprisingly, the three mutations in the Exo III motif strongly decreased (80- to 220-fold) the ability to replicate phi 29 DNA, this behaviour being due to a defect in the strand displacement activity, an intrinsic property of phi 29 DNA polymerase required for this process. Taking these results into account, we propose that the strand displacement activity of phi 29 DNA polymerase resides in the N-terminal domain, probably overlapping with the 3'-5' exonuclease active site.  相似文献   

11.
12.
Park S  Lippard SJ 《Biochemistry》2011,50(13):2567-2574
HMGB1, one of the most abundant nuclear proteins, has a strong binding affinity for cisplatin-modified DNA. It has been proposed that HMGB1 enhances the anticancer efficacy of cisplatin by shielding platinated DNA lesions from repair. Two cysteine residues in HMGB1 domain A form a reversible disulfide bond under mildly oxidizing conditions. The reduced domain A protein binds to a 25-bp DNA probe containing a central 1,2-d(GpG) intrastrand cross-link, the major platinum-DNA adduct, with a 10-fold greater binding affinity than the oxidized domain A. The binding affinities of singly and doubly mutated HMGB1 domain A, respectively deficient in one or both cysteine residues that form the disulfide bond, are unaffected by changes in external redox conditions. The redox-dependent nature of the binding of HMGB1 domain A to cisplatin-modified DNA suggests that formation of the intradomain disulfide bond induces a conformational change that disfavors binding to cisplatin-modified DNA. Hydroxyl radical footprinting analyses of wild-type domain A bound to platinated DNA under different redox conditions revealed identical cleavage patterns, implying that the asymmetric binding mode of the protein across from the platinated lesion is conserved irrespective of the redox state. The results of this study reveal that the cellular redox environment can influence the interaction of HMGB1 with the platinated DNA and suggest that the redox state of the A domain is a potential factor in regulating the role of the protein in modulating the activity of cisplatin as an anticancer drug.  相似文献   

13.
The major abasic endonuclease of human cells, Ape1 protein, is a multifunctional enzyme with critical roles in base excision repair (BER) of DNA. In addition to its primary activity as an apurinic/apyrimidinic endonuclease in BER, Ape1 also possesses 3'-phosphodiesterase, 3'-phosphatase, and 3'-->5'-exonuclease functions specific for the 3' termini of internal nicks and gaps in DNA. The exonuclease activity is enhanced at 3' mismatches, which suggests a possible role in BER for Ape1 as a proofreading activity for the relatively inaccurate DNA polymerase beta. To elucidate this role more precisely, we investigated the ability of Ape1 to degrade DNA substrates that mimic BER intermediates. We found that the Ape1 exonuclease is active at both mismatched and correctly matched 3' termini, with preference for mismatches. In our hands, the exonuclease activity of Ape1 was more active at one-nucleotide gaps than at nicks in DNA, even though the latter should represent the product of repair synthesis by polymerase beta. However, the exonuclease activity was inhibited by the presence of nearby 5'-incised abasic residues, which result from the apurinic/apyrimidinic endonuclease activity of Ape1. The same was true for the recently described exonuclease activity of Escherichia coli endonuclease IV. Exonuclease III, the E. coli homolog of Ape1, did not discriminate among the different substrates. Removal of the 5' abasic residue by polymerase beta alleviated the inhibition of the Ape1 exonuclease activity. These results suggest roles for the Ape1 exonuclease during BER after both DNA repair synthesis and excision of the abasic deoxyribose-5-phosphate by polymerase beta.  相似文献   

14.
The structure of the major human apurinic/ apyrimidinic endonuclease (HAP1) has been solved at 2.2 A resolution. The enzyme consists of two symmetrically related domains of similar topology and has significant structural similarity to both bovine DNase I and its Escherichia coli homologue exonuclease III (EXOIII). A structural comparison of these enzymes reveals three loop regions specific to HAP1 and EXOIII. These loop regions apparently act in DNA abasic site (AP) recognition and cleavage since DNase I, which lacks these loops, correspondingly lacks AP site specificity. The HAP1 structure furthermore suggests a mechanism for AP site binding which involves the recognition of the deoxyribose moiety in an extrahelical conformation, rather than a 'flipped-out' base opposite the AP site.  相似文献   

15.
Human Rad51 protein (HsRad51) is a homolog of Escherichia coli RecA protein, and functions in DNA repair and recombination. In higher eukaryotes, Rad51 protein is essential for cell viability. The N-terminal region of HsRad51 is highly conserved among eukaryotic Rad51 proteins but is absent from RecA, suggesting a Rad51-specific function for this region. Here, we have determined the structure of the N-terminal part of HsRad51 by NMR spectroscopy. The N-terminal region forms a compact domain consisting of five short helices, which shares structural similarity with a domain of endonuclease III, a DNA repair enzyme of E. coli. NMR experiments did not support the involvement of the N-terminal domain in HsRad51-HsBrca2 interaction or the self-association of HsRad51 as proposed by previous studies. However, NMR tiration experiments demonstrated a physical interaction of the domain with DNA, and allowed mapping of the DNA binding surface. Mutation analysis showed that the DNA binding surface is essential for double-stranded and single-stranded DNA binding of HsRad51. Our results suggest the presence of a DNA binding site on the outside surface of the HsRad51 filament and provide a possible explanation for the regulation of DNA binding by phosphorylation within the N-terminal domain.  相似文献   

16.
L Gu  S M Huang    M Sander 《Nucleic acids research》1993,21(20):4788-4795
Drosophila Rrp1 protein has four tightly associated enzymatic activities: DNA strand transfer, ssDNA renaturation, dsDNA 3'-exonuclease and apurinic/apyrimidinic (AP) endonuclease. The carboxy-terminal region of Rrp1 is homologous to Escherichia coli exonuclease III and several eukaryotic AP endonucleases. All members of this protein family cleave abasic sites. Rrp1 protein was expressed under the control of the E. coli RNA polymerase tac promoter (pRrp1-tac) in two repair deficient E. coli strains (BW528 and LG101) lacking both exonuclease III (xth) and endonuclease IV (nfo). Rrp1 confers resistance to killing by oxidative, antitumor and alkylating agents that damage DNA (hydrogen peroxide, t-butylhydroperoxide, bleomycin, methyl methanesulfonate, and mitomycin C). Complementation of the repair deficiency by Rrp1 provides up to a two log increase in survival and requires the C-terminal nuclease region of Rrp1, but not its N-terminal region. The AP endonuclease activity in extracts from the repair deficient strain LG101 is increased up to 12-fold when the strain contains pRrp1-tac. These results indicate that pRrp1-tac directs the synthesis of active enzyme, and that the nuclease activities of Rrp1 are likely to be the cause of the increased resistance to DNA damage of the mutant cells.  相似文献   

17.
18.
MutY and endonuclease III, two DNA glycosylases from Escherichia coli, and AfUDG, a uracil DNA glycosylase from Archeoglobus fulgidus, are all base excision repair enzymes that contain the [4Fe-4S](2+) cofactor. Here we demonstrate that, when bound to DNA, these repair enzymes become redox-active; binding to DNA shifts the redox potential of the [4Fe-4S](3+/2+) couple to the range characteristic of high-potential iron proteins and activates the proteins toward oxidation. Electrochemistry on DNA-modified electrodes reveals potentials for Endo III and AfUDG of 58 and 95 mV versus NHE, respectively, comparable to 90 mV for MutY bound to DNA. In the absence of DNA modification of the electrode, no redox activity can be detected, and on electrodes modified with DNA containing an abasic site, the redox signals are dramatically attenuated; these observations show that the DNA base pair stack mediates electron transfer to the protein, and the potentials determined are for the DNA-bound protein. In EPR experiments at 10 K, redox activation upon DNA binding is also evident to yield the oxidized [4Fe-4S](3+) cluster and the partially degraded [3Fe-4S](1+) cluster. EPR signals at g = 2.02 and 1.99 for MutY and g = 2.03 and 2.01 for Endo III are seen upon oxidation of these proteins by Co(phen)(3)(3+) in the presence of DNA and are characteristic of [3Fe-4S](1+) clusters, while oxidation of AfUDG bound to DNA yields EPR signals at g = 2.13, 2.04, and 2.02, indicative of both [4Fe-4S](3+) and [3Fe-4S](1+) clusters. On the basis of this DNA-dependent redox activity, we propose a model for the rapid detection of DNA lesions using DNA-mediated electron transfer among these repair enzymes; redox activation upon DNA binding and charge transfer through well-matched DNA to an alternate bound repair protein can lead to the rapid redistribution of proteins onto genome sites in the vicinity of DNA lesions. This redox activation furthermore establishes a functional role for the ubiquitous [4Fe-4S] clusters in DNA repair enzymes that involves redox chemistry and provides a means to consider DNA-mediated signaling within the cell.  相似文献   

19.
Mammalian DNA polymerases alpha and beta lack 3' exonuclease activity and are unable to edit errors after DNA synthesis. However, editing exonucleases can be functions of separate polypeptides. We isolated a widely distributed DNA-specific 3' exonuclease from rabbit liver nuclei, sequenced tryptic peptides by mass spectrometry, and identified the corresponding human open reading frame. The protein expressed from the cloned human sequence exhibits 3' exonuclease activity. The human clone shares sequence homology with the editing function of the Escherichia coli DNA polymerase III holoenzyme, i.e., the DnaQ/MutD protein, and weakly with the editing 3' exonuclease domain of eukaryotic DNA polymerase epsilon. The gene maps to human chromosome 3p21.2-21.3. In a reconstituted human DNA repair system containing DNA polymerase beta and DNA ligase III-XRCC1, accurate rejoining of a 3' mismatched base residue at a single-strand break is dependent on addition of the exonuclease.  相似文献   

20.
A Bernad  L Blanco  J M Lázaro  G Martín  M Salas 《Cell》1989,59(1):219-228
The 3'----5' exonuclease active site of E. coli DNA polymerase I is predicted to be conserved for both prokaryotic and eukaryotic DNA polymerases based on amino acid sequence homology. Three amino acid regions containing the critical residues in the E. coli DNA polymerase I involved in metal binding, single-stranded DNA binding, and catalysis of the exonuclease reaction are located in the amino-terminal half and in the same linear arrangement in several prokaryotic and eukaryotic DNA polymerases. Site-directed mutagenesis at the predicted exonuclease active site of the phi 29 DNA polymerase, a model enzyme for prokaryotic and eukaryotic alpha-like DNA polymerases, specifically inactivated the 3'----5' exonuclease activity of the enzyme. These results reflect a high evolutionary conservation of this catalytic domain. Based on structural and functional data, a modular organization of enzymatic activities in prokaryotic and eukaryotic DNA polymerases is also proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号