首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hyphomycetous fungus Aphanocladiutn album can grow over and around uredia of the rusts Puccinia coronata, P. hordei, P. graminis f.sp. avenae and P. recondita f.sp. triticina when host plants are kept under very humid conditions, but not on such plants not infected with rusts; uredia are adversely affected and telia develop in their vicinity. Plants inoculated with these rusts and with five isolates of A. album (one from a dead insect) showed: (1) much earlier development of telia on detached and non-detached rusted leaves inoculated with A. album than on corresponding leaves not thus inoculated; (2) telial induction by A. album in some isolates of rust species which hitherto had rarely or never produced telia; (3) precocious telial formation, in comparison with controls, when A. album spores were sprayed on leaves as much as 3 days before and 9 days after rust inoculation, and occasionally after uredia had already matured. As affected leaves remained green until the whole leaf became moribund, senescence is apparently not the factor inducing telia formation. The normal-appearing teliospores of some isolates were induced to germinate, whereas others did not. Rhamnus palaestina inoculated with basidiospores of one isolate of A. album-treated P. coronata f.sp. avenae produced pycnia and fertile aecia. The importance of A. album as a working tool in rust research and as a possible means for biological control of rust epiphytotics is discussed.  相似文献   

2.
The effect of N supply on shoot and leaf lifespan was investigated in established stands of four herbaceous Carex species which differed in maximum dry matter production. These species were, in rank order of increasing maximum dry matter production (per unit ground area): Carex diandraC. rostrata. The observed patterns of shoot and leaf turnover were compared with data on leaf characteristics and nitrogen use efficiency indices of these species. There was no consistent difference in shoot production (number of shoots produced per unit ground area) between species with low production and those with high production: Carex diandra (low production) and C. lasiocarpa (high production) had high shoot production, while shoot production in c. rostrata (low production) and C. acutiformis (high production) was much lower. The rank order of the mean lifespan of shoots was: C. diandra. Thus, the lifespan of shoots increased with increasing maximum dry matter production of these Carex species. In all species, increased N supply led to a significant reduction in shoot lifespan. The reduction of shoot lifespans in response to enhanced N supply will result in increased nutrient turnover rates in these species. There was no consistent difference in the number of leaves produced per shoot between low-production and high-production species. C. diandra and C. lasiocarpa had relatively low leaf production, while C. rostrata and C. acutiformis had relatively high leaf production per shoot. Thus, this pattern is opposite to the pattern in shoot production. The rank order of the mean lifespan of leaves was: C. diandra. This implies that the high-production species had longer mean leaf lifespans than the low-production species. Mean leaf lifespan was not significantly affected by enhanced N supply, except in C. diandra, where leaf lifespan decreased in response to enhanced N supply. Shoot lifespans did not show any significant relation with the specific leaf area (SLA, leaf area per unit leaf mass) or the leaf area ratio (LAR, leaf area per unit plant mass) of the species under study. There was, however, a negative relation (r 2=0.71) with the nitrogen concentration in the leaves. Shoot lifespans were positively related (r 2=0.79) with whole-plant nitrogen use efficiency (NUE, dry matter production per unit N-loss) and with the mean residence time of nitrogen (MRT, the average time-span during which a unit of nitrogen is present in the plant) (r 2=0.78), but not with the nitrogen productivity (A, annual dry matter production per unit N in the plant). Leaf lifespan was positively related with the mean residence time of nitrogen in the plants (r 2–0.70). For all the other parameters, there were no significant relations with leaf lifespan. From these results we conclude that: (1) at the stand level, shoot and leaf lifespans are positively related with maximum dry matter production; and (2) shoot and leaf lifespan are important determinants of whole-plant nitrogen economy.  相似文献   

3.
In three separate experiments, the upper leaf surface of the fifth formed leaf of wheat cv. Highbury, the fourth and fifth leaves of barley cv. Julia and the third and fourth leaves of oat cv. Mostyn were inoculated in a spore settling tower with wheat brown rust (Puccinia recondita f. sp. tritici), barley brown rust (P. hordei) or oat crown rust (P. coronata f. sp. avenae), respectively. Fewer pustules developed on distal portions of leaves of plants infected with barley yellow dwarf virus (BYDV) than on similar portions of leaves from virus-free plants. There were no significant differences in the number of pustules on proximal leaf portions. In barley and oats, the number of pustules on distal leaf portions was negatively correlated with the amount of yellowing of the leaf areas scored. In wheat, symptoms of BYDV were mild and leaves were little affected by yellowing. The latent period of rust on wheat and oats was not affected by BYDV. In barley, BYDV reduced the latent period of rust on leaf 5, but not on leaf 4, and reduced it on proximal, but not distal, leaf portions. In other experiments, BYDV reduced the yield of wheat and oats by 44% and 66%, respectively, while BYDV-infected barley was almost sterile. The appropriate rust reduced the yield of wheat, barley and oats by 33%, 13% and 86%, respectively. When infected with both BYDV and rust, yield of wheat and oats was reduced by 63% and 91%, respectively. Neither BYDV nor rust affected the percentage crude protein content of wheat grain, nor did rust affect that of barley. In oats, BYDV and rust each significantly increased crude protein of grain, but rust infection of BYDV-infected plants tended to reduce it.  相似文献   

4.
Leaf area, chlorophyll content, net CO2 photoassimilation, and the partitioning of fixed carbon between leaf sucrose and starch and soluble protein were examined in Glycine max (L) Merr. cv Williams grown under three different nitrogen regimes. One group (Nod+/+) was inoculated with Bradyrhizobium and watered daily with a nutrient solution containing 6 millimolar NH4NO3. A second set (Nod+/−) was inoculated and had N2 fixation as its sole source of nitrogen. A third group (Nod) was not inoculated and was watered daily with a nutrient solution containing 6 millimolar NH4NO3. The mean net micromole CO2 uptake per square decimeter per hour of the most recently matured source leaves was similar among the three groups of plants, being about 310. Mean leaf area of the source leaves, monitored for net photosynthesis was also similar. However, the mean milligram of chlorophyll per square decimeter of Nod+/− test leaves was about 50% lower than the other groups' leaves and indicated nitrogen deficiency. Thus, Nod+/− utilized their chlorophyll more efficiently for photosynthetic CO2 uptake than the plants of the other treatments. The ratio of foliar carbohydrate:protein content was high in Nod+/− but low in the plants from the other two treatments. This inverse relationship between foliar protein and carbohydrate content suggests that more fixed carbon is diverted to the synthesis of protein when nitrogen availability is high. It was also found that Nod+/− sequestered more storage protein in their paraveinal mesophyll than plants of the other treatments. This study indicates that when inorganic nitrogen regimes are used to control photosynthate partitioning, then both leaf carbohydrate and leaf protein must be considered as end products of carbon assimilate allocation.  相似文献   

5.
量化植物地上部和地下部元素含量对于理解和预测植物养分平衡如何响应大气氮沉降的变化至关重要。通过盆栽试验研究了氮沉降增加背景下外生菌根真菌对马尾松幼苗营养元素的影响。对马尾松幼苗进行了接种两种外生菌根真菌:(彩色豆马勃(Pisolithus tinctorius,Pt)与厚环乳牛肝菌(Suillus grevillei,Sg))以及4种氮素浓度添加:0 kg N hm-2a-1(N0)、正常氮沉降30 kg N hm-2a-1(N30)、中度氮沉降60 kg N hm-2a-1(N60)、重度氮沉降90 kg N hm-2a-1(N90),共12个处理,测定了马尾松地上部和地下部大量元素和微量元素的含量。结果表明:施氮改变了营养元素在马尾松幼苗地上部和地下部的含量,马尾松幼苗磷(P)、钙(Ca)、铁(Fe)、锰(Mn)等元素均在N60时达到临界值,而当输入的量超过了马尾松对氮的需求时,氮沉降会使马尾松营养元素含量较最适浓度时降低,地上部碳(C)随施氮浓度的升高先升高后降低,N随施氮浓度的升高而升高,根系和叶片钾(K)、Ca、镁(Mg)均随施氮浓度的升高而降低,施氮也降低了根系C及微量元素的含量。但在同一施氮浓度下,接种外生菌根真菌(EMF)后能够提高大多数元素的含量,N90时接种厚环乳牛肝菌(Sg)和彩色豆马勃(Pt)的叶片N含量与对照相比分别提高112.6%和138.6%,根系N含量分别提高73.1%、71.6%;N60时接种Sg和Pt的植株叶片P含量比不施氮未接种对照分别提高了166.3%、132.9%,根系P含量分别提高了40.8%、38.5%。EMF能够维持植物养分平衡,从而降低高施氮量对植物的影响效果。这为未来气候变化情景中氮沉降增加下接种EMF可以调节植物元素含量,从而达到更适应环境的元素平衡来促进生长提供理论依据。  相似文献   

6.
The area covered by visible mycelium of E. cichoracearum on the upper surface of leaves 4, 8, 12 and 16 of tobacco plants in field plots in Rhodesia was expressed as percentages of the proximal and distal halves at weekly intervals. Free amino nitrogen and carbohydrate in discs from proximal and distal halves of the same leaves were analysed when each leaf was expanding rapidly and was not infected, and several weeks later, when the rate of expansion had slowed down and there was slight infection. On two other occasions, similar leaf discs were inoculated with conidia, to measure the percentage germination and hyphal length from individual conidia after incubation for 2–3 days at constant temperature and humidity; duplicate discs were chemically analysed. Leaves were not susceptible until at least 6 weeks after they had emerged from the bud. Soluble carbohydrate increased and free amino nitrogen decreased during the change from resistance to susceptibility. Proximal parts of leaves were usually infected first; they initially contained less amino nitrogen and soluble carbohydrate than distal parts. All parts of the leaf seemed to be equally susceptible later, when there were no differences in their amino nitrogen or soluble carbohydrate. Upper leaves of intact plants had more natural infection than those from corresponding leaves from topped plants. More conidia germinated on discs from them and produced longer hyphae. The discs from intact plants contained less free amino nitrogen and more soluble carbohydrate than those from topped plants. The accuracy of visual assessments of susceptibility was, generally, confirmed by measurements of percentage germination and length of hyphae from individual conidia on leaf discs. Regressions of hyphal length on leaf composition showed that susceptibility was apparently related inversely to free amino nitrogen and water content and directly to insoluble carbohydrate per unit dry matter.  相似文献   

7.
Branch architecture, leaf photosynthetic traits, and leaf demography were investigated in saplings of two woody species, Homolanthus caloneurus and Macaranga rostulata, co-occurring in the understory of a tropical mountain forest. M. rostulata saplings have cylindrical crowns, whereas H. caloneurus saplings have flat crowns. Saplings of the two species were found not to differ in area-based photosynthetic traits and in average light conditions in the understory of the studied site, but they do differ in internode length, leaf emergence rate, leaf lifespan, and total leaf area. Displayed leaf area of H. caloneurus saplings, which have the more rapid leaf emergence, was smaller than that of M. rostulata saplings, which have a longer leaf lifespan and larger total leaf area, although M. rostulata saplings showed a higher degree of leaf overlap. Short leaf lifespan and consequent small total leaf area would be linked to leaf overlap avoidance in the densely packed flat H. caloneurus crown. In contrast, M. rostulata saplings maintained a large total leaf area by producing leaves with a long leaf lifespan. In these understory saplings with a different crown architecture, we observed two contrasting adaptation strategies to shade which are achieved by adjusting a suite of morphological and leaf demographic characters. Each understory species has a suite of morphological traits and leaf demography specific to its architecture, thus attaining leaf overlap avoidance or large total leaf area.  相似文献   

8.
Summary We studied the effects of nitrogen supply on growth, allocation, and gas exchange characteristics of two perennial grasses of dry, nutrient-poor inland dunes: Corynephorus canescens (L.) Beauv. and Agrostis vinealis Schreber. C. canescens invests more biomass in leaves and less in roots, but has less leaf area and more root length per unit plant weight than A. vinealis. A. vinealis invests more nitrogen per unit leaf weight, but less per unit leaf area, despite a similar relative nitrogen investment in leaves and plant nitrogen concentration. Between-species differences in the rate of net photosynthesis, transpiration and shoot respiration are positively related to leaf nitrogen content per unit leaf area. The rate of net photosynthesis per unit plant weight is higher for A. vinealis at both levels of nitrogen supply, due to differences in leaf area ratio (LAR), and despite the reverse differences in the rate of net photosynthesis per unit leaf area. The water use efficiency of the two species is similar and increases significantly with an increase in nitrogen supply. The photosynthetic nitrogen use efficiency on the other hand is not affected by nitrogen supply, while at both low and high nitrogen supply A. vinealis has a 10% higher photosynthetic nitrogen use efficiency than C. canescens.  相似文献   

9.
Endophytic bacteria have been shown to provide several advantages to their host, including enhanced growth. Inoculating biofuel species with endophytic bacteria is therefore an attractive option to increase the productivity of biofuel feedstocks. Here, we investigated the effect of inoculating hard wood cuttings of Populus deltoides Bartr. × Populus. nigra L. clone OP367 with Enterobacter sp. 638. After 17 weeks, plants inoculated with Enterobacter sp. 638 had 55% greater total biomass than un‐inoculated control plants. Study of gas exchange and fluorescence in developing and mature leaves over a diurnal cycle and over a 5 week measurement campaign revealed no effects of inoculation on photosynthesis, stomatal conductance, photosynthetic water use efficiency or the maximum and operating efficiency of photosystem II. However, plants inoculated with Enterobacter sp. 638 had a canopy that was 39% larger than control plants indicating that the enhanced growth was fueled by increased leaf area, not by improved physiology. Leaf nitrogen content was determined at two stages over the 5 week measurement period. No effect of Enterobacter sp. 638 on leaf nitrogen content was found indicating that the larger plants were acquiring sufficient nitrogen. Enterobacter sp. 638 lacks the genes for N2 fixation, therefore the increased availability of nitrogen likely resulted from enhanced nitrogen acquisition by the 84% larger root system. These data show that Enterobacter sp. 638 has the potential to dramatically increase productivity in poplar. If fully realized in the production environment, these results indicate that an increase in the environmental and economic viability of poplar as a biofuel feedstock is possible when inoculated with endophytic bacteria like Enterobacter sp. 638.  相似文献   

10.
It is well known that the extent of yield reduction depends not only on the severity of water stress but also on the stage of plant development. Assessing photosynthetic response of individual leaves to water deficit during the ontogeny may, therefore, offer a clue to better understand the whole plant behaviour. This research aimed at investigating the influence of early and late water stress on net photosynthesis (Pn), carbon‐isotope discrimination and other related traits on individual leaves during ontogeny. Sugar beet plants were grown in rain‐sheltered soil columns of relevant volume (300 L), subdivided into well‐watered (WW); early (S1) and late (S2) stress. In general, water stress significantly reduced leaf lifespan and Pn. Relieving the stress at about one‐third and two‐thirds of potential leaf life substantially restored Pn at the levels of WW. Stressing a previously WW leaf brought about a comparatively heavier loss than stressing a leaf since the beginning. As for leaves at different phenological times, the early leaves had higher initial photosynthetic peaks but steeper falls during their lives. An insight into the relationships between Pn and substomatal CO2 concentration (Ci) shows that in mature leaves the photosynthetic restoration following stress relief did not entail a full recovery of the electron transport rate, the parameter most severely affected by the stress. The partial reversibility of the effects of water deficiency, associated to the anticipated leaf senescence and to the natural slow‐down of net assimilation during leaf life, may be seen as a key factor in predicting to what extent the plant can tolerate drought and the damages caused by water stress.  相似文献   

11.
Leaf physiological and gas-exchange traits of a summer-green herbaceous perennial, Parasenecio yatabei, growing along a stream were examined in relation to leaf age. In its vegetative phase, the aerial part of this plant consists of only one leaf and provides an ideal system for the study of leaf longevity. Volumetric soil water content (SWC) decreased with increasing distance from the stream, whereas relative light intensity was nearly constant. The light-saturated net CO2 assimilation rate (A sat) and leaf stomatal conductance (gs) were approximately 1.5-fold and 1.4-fold higher, respectively, in the lower slope near the mountain stream than in the upper slope far from the mountain stream. The lifespan of aerial parts of vegetative plants significantly increased with decreasing SWC. The leaf mass-based nitrogen content of the leaves (N mass) was almost constant (ca. 2.2%); however, the maximum carboxylation rate by ribulose-1,5-biphosphate carboxylase/oxygenase (rubisco) (V cmax) and photosynthetic nitrogen use efficiency (PNUE, A sat/N area) decreased more slowly in the upper slope than in the lower slope. The higher leaf photosynthetic activity of P. yatabei plants growing lower on the slope leads to a decrease in V cmax and PNUE in the early growing season, and to a shorter leaf lifespan.  相似文献   

12.
Stemphylium leaf blight caused by Stemphylium vesicarium and onion thrips (Thrips tabaci) are two common causes of leaf damage in onion production. Onion thrips is known to interact synergistically with pathogens to exacerbate plant disease. However, the potential relationship between onion thrips and Stemphylium leaf blight is unknown. In a series of controlled laboratory and field trials, the relationship between thrips feeding and movement on the development and severity of Stemphylium leaf blight were examined. In laboratory assays, onions (“Avalon” and “Ailsa Craig”) with varying levels of thrips feeding damage were inoculated with S. vesicarium. Pathogen colonisation and leaf dieback were measured after 2 weeks. In pathogen transfer assays, thrips were exposed to S. vesicarium conidia, transferred to onion and leaf disease development was monitored. In field trials, insecticide use was examined as a potential indirect means to reduce Stemphylium leaf blight disease and pathogen colonisation by reducing thrips damage. Results from laboratory trials revealed that a reduction in thrips feeding decreased S. vesicarium colonisation of onion leaves by 2.3–2.9 times, and decreased leaf dieback by 40–50%. Additionally, onion thrips were capable of transferring S. vesicarium conidia to onion plants (albeit at a low frequency of 2–14% of plants inoculated). In field trials, the symptoms and colonisation of Stemphylium leaf blight were reduced by 27 and 17%, respectively with the use of insecticide to control thrips. These results suggest that onion thrips may play a significant role in the development of Stemphylium leaf blight, and thrips control may reduce disease in commercial onion fields.  相似文献   

13.
We used path analysis to ask whether leaf position or leaf light level was a better predictor of within-plant variation in leaf nitrogen concentration in five species of rain forest pioneer trees (Cecropia obtusifolia, Ficus insipida, Heliocarpus appendiculatus, Piper auritum, and Urera caracasana) from the Los Tuxtlas Biological Station, Veracruz, Mexico. Three hundred seventy-five leaves on 28 plants of the five species were analyzed for leaf nitrogen concentration, leaf mass per area, and leaf light interception at different positions (= nodes) along a shoot. Mean values of leaf nitrogen concentration ranged from 0.697 to 0.993 g/m2 in the five species, and varied by as much as 2.24 g/m2 among leaves on individual plants. Leaf position on the shoot explained significantly more of the within-plant variation in leaf nitrogen concentration than did leaf light level in four of the five species: Cecropia obtusifolia, Heliocarpus appendiculatus, Piper auritum (branch leaves only), and Urera caracasana. However, individual species differed considerably in the patterns of nitrogen allocation and leaf mass per area among leaves on a shoot. These results suggest that leaf nitrogen deployment in these plants is, in part, developmentally constrained and related to the predictability of canopy light distribution associated with plant growth form.  相似文献   

14.
To evaluate the responses of Quercus crispula and Quercus dentata to herbivory, their leaves were subjected to simulated herbivory in early spring and examined for the subsequent changes in leaf traits and attacks by chewing herbivores in mid summer. In Quercus crispula, nitrogen content per area was higher in artificially damaged leaves than in control leaves. This species is assumed to increase the photosynthetic rate per area by increasing nitrogen content per area to compensate leaf area loss. In Quercus dentata, nitrogen content per area did not differ between artificially damaged and control leaves, while nitrogen content per mass was slightly lower in artificially damaged leaves. The difference in their responses can be attributable to the difference in the architecture of their leaves and/or the severeness of herbivory. The development of leaf area from early spring to mid summer was larger in artificially damaged leaves than in control leaves in both species, suggesting the compensatory response to leaf area loss. Leaf dry mass per unit area was also larger in artificially damaged leaves in both species, but the adaptive significance of this change is not clear. In spite of such changes in leaf traits, no difference was detected in the degree of damage by chewing herbivores between artificially damaged and controlled leaves in both species.  相似文献   

15.
The Australian weevil Oxyops vitiosa was released in 1997 in Florida as a biological control agent of Melaleuca quinquenervia. The larvae of this agent are flush-feeders, found only on the growing tips of their host. Knowledge of this restriction to feeding on the growing tips and other nutritional requirements may assist in the establishment and dispersal of this species. Therefore, O. vitiosa survival was assessed when neonates were fed M. quinquenervia leaves from branches that had dormant buds or emerging bud leaves. Additionally, the influence of leaf quality from different sites and within sites was determined by the feeding of neonates emerging bud leaves collected at three sites and from three leaf qualities (poor, intermediate, and high). Within-site leaf qualities were described in the field by leaf color and in the laboratory by percentage dry mass and nitrogen. Larval survival was lowest when fed leaves from branches that had dormant buds. Associated with this low survival were high leaf toughness and percentage dry mass. When larvae were fed emerging bud leaves, most of the variation in larval survival and performance was attributed to differences in within-site plant quality. Generally, the highest-quality leaves had relatively low percentage dry mass and high percentage nitrogen. Larval survival generally decreased when fed the poor-quality leaves, and in one site, the intermediate-quality leaves. Larvae required less time to develop to adults when fed the high-quality leaves. Development time increased in females but not in males when the larvae were fed the poor-quality leaves. Adult biomass of both females and males generally increased when the larvae were fed the high-quality leaves from two of the three sites. The results indicate that the larvae of O. vitiosa are restricted to feeding on flush foliage with low toughness. Additionally, variations in foliar percentage dry mass and nitrogen influence larval survival and performance. This knowledge benefited the development of mass-production nursery sites and the selection of suitable release sites, which facilitated the establishment of this biological control agent.  相似文献   

16.
Altered photosynthetic reactions in cucumber mosaic virus (CMV) inoculated leaves of virus resistant lines L113 and L57 and susceptible pepper (Capsicum annuum L.) plants cv. Albena grown in controlled environment and in the field were investigated. The CMV inoculated leaves of virus resistant lines developed different symptoms—necrotic local lesions on L113 and chlorotic spots on L57 while the same leaves of susceptible cv. Albena were symptomless. The changes in Photosystem II (PSII) and PSI electron transport were evaluated by chlorophyll fluorescence, and far-red (FR) light induced leaf absorbance A 810–860. CMV infection caused a decrease in maximal PSII quantum yield, F v/F m, in susceptible leaves. Increased non-photochemical fluorescence quenching in CMV-inoculated leaves of both resistant lines were observed. In CMV-inoculated leaves of all tested plants FR light induced P700 oxidation was decreased. In the present study, the viral-infected pepper plants grown in controlled environment to avoid the effects of abiotic factors were used as model system that allow us to investigate the differences in leaf senescence in CMV-inoculated leaves of susceptible and resistant pepper lines expressing different symptoms. Earlier leaf falls of inoculated leaves as a result of accelerated leaf senescence is important for building successful secondary virus resistance strategy following fast responses such as hypersensitive reaction.  相似文献   

17.
Patrick J. Moran 《Oecologia》1998,115(4):523-530
Diverse organisms simultaneously exploit plants in nature, but most studies do not examine multiple types of exploiters like phytophagous insects and fungal, bacterial, and viral plant pathogens. This study examined patterns of induction of antipathogenic peroxidase enzymes and phenolics after infection by the cucurbit scab fungus, Cladosporium cucumerinum, and then determined if induction mediated ecological effects on Colletotrichum orbiculare, another fungal pathogen, and two insect herbivores, spotted cucumber beetles, and melon aphids. Peroxidase induction occurred in inoculated, `local,' symptom-bearing leaves 3 days after inoculation, and in `systemic,' symptom-free leaves on the same plants 1 day later. Phenolics were elevated in systemic but not in local leaves 3 days after inoculation. Detached systemic leaves from plants inoculated with C. cucumerinum developed significantly fewer and smaller lesions after challenge with C. orbiculare. Spotted cucumber beetles did not show consistently significant preferences for infected versus control leaf disks in comparisons using local or systemic leaves, but trends differed significantly between leaf positions. In no-choice tests, beetles removed more leaf area from local but not from systemic infected leaves compared to control leaves, and melon aphid reproduction was enhanced on local infected leaves. In the field, cucumber beetle and melon aphid densities did not differ between infected and control plants. Antipathogenic plant chemical responses did not predict reduced herbivory by insects. Other changes in metabolism may explain the positive direction and spatially dependent nature of plant-mediated interactions between pathogens and insects in this system. Received: 28 September 1997 / Accepted: 9 February 1998  相似文献   

18.
The oviposition patterns of adults and the movement and feeding patterns of larvae of Epilachna cucurbitae on two species of cucurbits, Cucurbita maxima cv Queensland Blue and C. pepo cv Blackjack, were studied in the field and laboratory. The physical and nutritional characteristics of host plant leaves of different ages were described. Younger leaves had higher nitrogen contents but were less abundant, smaller and had higher trichome densities than older leaves. The development of first instar larvae was delayed by the leaf hairs on young and mature pumpkin leaves which prevented larvae from reaching the leaf surface to feed First instal larvae developed more quickly on leaves rich in nitrogen. Neither the total developmental time of larvae nor the size of pupae was affected by leafage because larvae on poor quality leaves compensated by eating more. Female beetles oviposited on all but the youngest and oldest leaves of the host plant. The trichomes on young leaves prevented females from attaching eggs to the leaf surface. First instar larvae remained where they hatched, but older larvae were more mobile, Changing feeding sites frequently and moving progressively to younger, more nutritious leaves. Final instar larvae moved onto adjacent vegetation to pupate. The adaptive significance of these patterns is discussed in relation to the nutritional value, hairiness and abundance of host plant leaves of different ages and the physical limitations of different larval instars.  相似文献   

19.
Summary The relationships between resource availability, plant succession, and species' life history traits are often considered key to understanding variation among species and communities. Leaf lifespan is one trait important in this regard. We observed that leaf lifespan varies 30-fold among 23 species from natural and disturbed communities within a 1-km radius in the northern Amazon basin, near San Carlos de Rio Negro, Venezuela. Moreover, leaf lifespan was highly correlated with a number of important leaf structural and functional characterisues. Stomatal conductance to water vapor (g) and both mass and area-based net photosynthesis decreased with increasing leaf lifespan (r2=0.74, 0.91 and 0.75, respectively). Specific leaf area (SLA) also decreased with increasing leaf lifespan (r2=0.78), while leaf toughness increased (r2=0.62). Correlations between leaf lifespan and leaf nitrogen and phosphorus concentrations were moderate on a weight basis and not significant on an area basis. On an absolute basis, changes in SLA, net photosynthesis and leaf chemistry were large as leaf lifespan varied from 1.5 to 12 months, but such changes were small as leaf lifespan increased from 1 to 5 years. Mass-based net photosynthesis (A/mass) was highly correlated with SLA (r2=0.90) and mass-based leaf nitrogen (N/mass) (r2=0.85), but area-based net photosynthesis (A/area) was not well correlated with any index of leaf structure or chemistry including N/area. Overall, these results indicate that species allocate resources towards a high photosynthetic assimilation rate for a brief time, or provide resistant physical structure that results in a lower rate of carbon assimilation over a longer time, but not both.  相似文献   

20.
Kouki Hikosaka 《Planta》1996,198(1):144-150
Effects of leaf age, nitrogen nutrition and photon flux density (PFD) on the organization of the photosynthetic apparatus in leaves were investigated in a vine, Ipomoea tricolor Cav., which was grown horizontally so as to avoid mutual shading of leaves. The plants were grown hydroponically at two nitrate levels under two growth light treatments. For one group of the plants, leaves were exposed to full sunlight. For another group, respective leaves were artificially shaded in a manner that simulated changes in the light gradient with the development of an erect herbaceous canopy: old leaves were placed under progressively shadier conditions with growth of the plants (canopy-type shading). In all the treatments, chlorophyll (Chl) content gradually decreased with leaf age. Photosystem I (PSI) per Chl was constant, independent of leaf age, nitrogen nutrition and/or PFD. Photosystem II (PSII) and cytochrome / per Chl, and Chl a/b ratio were independent of leaf age and/or nitrogen nutrition but decreased with the decrease in growth PFD. Ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39, RuBPCase) per Chl steeply decreased with decrease in PFD. When leaves grown at the same PFD were compared, RuBPCase/Chl was lower in the plants grown under lower nitrogen availability and also decreased with leaf age in the plants grown without shading. These decreases were attributed to the curvilinear relationship between RuBPCase and Chl in leaves grown at full sunlight, that was independent of nitrogen availability and leaf age. From these results, it is concluded that the composition of the photosynthetic apparatus is independent of leaf age but changes depending on the light environment and total amount of photosynthetic components of the leaf.Abbreviations Chl chlorophyll - cyt f cytochrome f - PFD photon flux density - RuBPCase ribulose-1,5-bisphosphate carboxylase The author thanks Drs. K. Sonoike, Y. Kashino, K. Okada, H. Hatanaka, Y. Suzuki and A. Aoyama for technical advise. The author also thanks Drs. I. Terashima, A. Makino (Tohoku University, Sendai, Japan), Dr. J.R. Evans (Research School of Biological Sciences, Australian National University, Canberra) and Prof. A. Watanabe for valuable suggestions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号