首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary In ox, pig and sheep the adrenaline storing cells are intensely basophilic compared with the noradrenaline storing cells when aldehyde fixed tissue is stained with toluidine blue at pH 5.0 and above. This has been shown to be due to carboxyl groups from the glutamate rich chromaffin granule soluble protein. In isolated chromaffin granules adenosine nucleotides also bind the dye. Fixation of adrenal medulla in agents not containing aldehydes, or the use of cryostat sections results in equal basophilia in the adrenaline and noradrenaline storing cells. The probable mechanism of the differential basophilia of the two sorts of medullary cells following aldehyde fixation is discussed.  相似文献   

2.
Summary The adrenal medulla of ox was studied by an indirect immunofluorescent technique using anti-ox chromaffin granule serum. The serum had a weak cross reaction with ox brain stem and splenic nerve. There was a species cross reaction with sheep, pig and horse. Immunoelectrophoresis showed five components in the serum against ox adrenal lysates. The whole adrenal medulla of ox was found to fluoresce by the immunofluorescent technique but not the cortex. The adrenals of sheep, pig and horse behaved similarly using the anti-ox serum. A serum prepared against ox chromogranin-A, the most abundant soluble protein of the chromaffin granules, was also used for immunofluorescence. Again both the adrenaline and noradrenaline storing cells fluoresced, but not the cortex.  相似文献   

3.
The adrenal components of C. mrigala are embedded in the pronephric cephalic kidney around the post cardinal vein. The cortical cells responded positively to the lipids, ascorbic acid, delta 5-3 beta-HSD, G-6-PD, MAO, acid and alkaline phosphatase tests. The presence of intense MAO activity may suggest the possible involvement of monoamines in the adrenocortical function. Localization of lipids and delta 5-3 beta-HSD show the sites of corticosteroid synthesis. In the chromaffin cells, MAO, acid and alkaline phosphatase activity was moderate whereas they gave a strong reaction to ascorbic acid test in comparison to the cortical cells. Noradrenaline (NA) and adrenaline (A) storing cells were differentiated adopting glutaraldehyde silver, dichromate and iodate techniques. NA and A storing cells are almost totally depleted of their contents after reserpine treatment. The histochemical response of the adrenal gland of this species is largely comparable to that of higher vertebrates.  相似文献   

4.
Summary The PAS reaction in the adrenal medulla of rat, rabbit, hamster, ox, pig and sheep was investigated. The medullary cells were positive in cryostat sections and potassium dichromate fixed material but not in formaldehyde fixed paraffin sections. The latter result is due mostly to the extraction of PAS positive lipids and loss of PAS positive proteins. No glycogen was detected in the chromaffin cells histochemically. The catechol amines played no part in the PAS reaction unless the fixative contained dichromate. The connective tissue elements were also PAS positive, and the nerve fibres in ox, sheep and pig. Periodate cannot be used to differentiate between adrenaline and noradrenaline storing cells.  相似文献   

5.
Summary Esterases were demonstrated in the ox adrenals histochemically. The substrates used were -naphthyl acetate, and naphthyl acetate AS on fresh and fixed tissue. The highest activity was in the zona glomerulosa, the adrenaline-storing cells and the ganglia. The other parenchymal cells showed a moderate activity. The cytological localization of the enzyme was both diffuse and particulate and highly polarized in the adrenaline-storing cells. The particulate form persisted after formaldehyde fixation. The following inhibitors were used to differentiate between the various esterases histochemically and biochemically: DFP, E600, eserine, p-chloromercuribenzoate and 62C47.The cortex, adrenaline storing- and noradrenaline-storing cells were separated by dissection. Suitable marker were used to assess contamination. Total esterase, carboxylesterase, arylesterase, acetylesterase, acetylcholinesterase and cholinesterase were assayed biochemically in conjunction with the inhibitors. Acetylesterase showed the highest activity and was fairly evenly distributed as was carboxylesterase, although at a lesser level of activity. Aryl esterase was more abundant in the cortex than the medulla. The reverse was found for acetylcholinesterase and at a lower level of activity cholinesterase. The results were compared with the histochemical findings.  相似文献   

6.
The disposition of adrenaline and noradrenaline storing cells in the adrenal medulla has been studied in the rat. It has been demonstrated that no morphological or functional reason exists for the follicular designation of clumps of chromaffin cells in the medulla. No significant difference was found between the outer and inner zone as regards the frequency of NA cells by morphometric and statistical methods. The cytoarchitectural differences between adrenaline- and noradrenaline-storing cell arrangement are described. Special features of the interrelation between noradrenaline storing cells, cortical cells and the connective tissue framework are stressed. The light and electron microscopic appearance of two types of cortical cells, assumed to represent different states of functional activity is described.  相似文献   

7.
Rat renal cortical and medullary slices incorporate [14C]arachidonate into phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol and triacylglycerols. The percent distribution of [14C]arachidonate among the various phospholipids is similar in renal cortex and medulla, although the total amount of radioactively labeled phospholipids is higher in the renal medulla. Subsequent incubation of prelabeled slices in the presence of deoxycholate induces a loss of radioactivity from [14C]phosphatidylinositol, with a concomitant increase in 1,2-[14C]diacylglycerol. Neutral lipids are not affected. The degradation of phosphatidylinositol to [14C]diacylglycerol indicates the presence of phospholipase C activity. Renal medulla seems to be more sensitive to deoxycholate than the renal cortex. Deoxycholate also induces slightly the disappearance of some 14C radioactivity from phosphatidylethanolamine and phosphatidylcholine, which might reflect activation of phospholipase A2. The activity of the phospholipase C could constitute the first step in the sequence of reactions that leads to the release of arachidonic acid.  相似文献   

8.
Platelet-activating factor (PAF) is one of the most potent inflammatory mediators. It is biosynthesized by either the de novo biosynthesis of glyceryl ether lipids or by remodeling of membrane phospholipids. PAF is synthesized and catabolized by various renal cells and tissues and exerts a wide range of biological activities on renal tissue suggesting a potential role during renal injury. The aim of this study was to identify whether cortex and medulla of human kidney contain the acetyl-CoA:1-O-alkyl-sn-glycero-3-phosphocholine acetyltransferase (lyso-PAF AT) activity which catalyses the last step of the remodeling biosynthetic route of PAF and is activated in inflammatory conditions. Cortex and medulla were obtained from nephrectomized patients with adenocarcinoma and the enzymatic activity was determined by a trichloroacetic acid precipitation method. Lyso-PAF AT activity was detected in both cortex and medulla and distributed among the membrane subcellular fractions. No statistical differences between the specific activity of cortical and medullary lyso-PAF AT was found. Both cortical and medullary microsomal lyso-PAF ATs share similar biochemical properties indicating common cellular sources.  相似文献   

9.
Neurocalcin is a novel calcium-binding protein found in bovine brain tissue. We investigated immunoreactivity for neurocalcin in the mouse adrenal medulla using light and electron microscopy. The immunoreactivity was present in nerve fibers, nerve terminals, and ganglion cells in the adrenal medulla, but chromaffin cells, sustentacular cells, and Schwann cells were negative in reaction. Nerve bundles containing neurocalcin-immunoreactive fibers passed through the adrenal cortex and extended into the medulla. Immunopositive nerve fibers branched off and projected varicose terminals around the chromaffin cells. These varicose terminals contained small and large-cored vesicles and made synapses with the chromaffin cells. We performed paraformaldehyde-induced fluorescence-histochemical studies for catecholamine combined with immunohistochemical studies for neurocalcin. Neurocalcin-immunoreactive nerve terminals were more abundant at noradrenaline (fluorescent) cell-rich regions than at adrenaline (non-fluorescent) cell-rich regions. These results show that neurocalcin-immunoreactive nerves mainly innervate noradrenaline-containing chromaffin cells in the mouse adrenal medulla and that neurocalcin may regulate synaptic function in the nerve terminals. Received: 21 October 1996 / Accepted: 12 February 1997  相似文献   

10.
The coexistence of met5- and leu5-enkephalin-like immunoreactivities with catecholamines in the rat adrenal medulla was studied with combined fluorescence microscopy and immunocytochemistry. Both met5- and leu5-enkephalin-like immunoreactivities were localized in few heavily stained adrenaline cells and in a population of nerves innervating adrenaline cells and as well as ganglion cells among the adrenaline cells. Only occasionally single noradrenaline cells exhibited light immunostaining for both enkephalins but no positive fibers could be found around the noradrenaline cells. In electron microscope the immunoreaction was seen in the granules of the adrenaline cells and in the large synaptic vesicles of the nerve terminals around the adrenaline cells. The present findings suggest that enkephalin-like immunoreactivity coexists mainly with adrenaline in rat adrenal medulla and that the enkephalin immunoreactive terminals regulate secretion of adrenaline from rat adrenal medulla.  相似文献   

11.
Summary The coexistence of met5- and leu5-enkephalinlike immunoreactivities with catecholamines in the rat adrenal medulla was studied with combined fluorescence microscopy and immunocytochemistry. Both met5- and leu5-enkephalin-like immunoreactivities were localized in few heavily stained adrenaline cells and in a population of nerves innervating adrenaline cells and as well as ganglion cells among the adrenaline cells. Only occasionally single noradrenaline cells exhibited light immunostaining for both enkephalins but no positive fibers could be found around the noradrenaline cells. In electron microscope the immunoreaction was seen in the granules of the adrenaline cells and in the large synaptic vesicles of the nerve terminals around the adrenaline cells. The present findings suggest that enkephalin-like immunoreactivity coexists mainly with adrenaline in rat adrenal medulla and that the enkephalin immunoreactive terminals regulate secretion of adrenaline from rat adrenal medulla.  相似文献   

12.
Summary The present immunohistochemical study reveals that a small number of chromaffin cells in the rat adrenal medulla exhibit CGRP-like immunoreactivity. All CGRP-immunoreactive cells were found to be chromaffin cells without noradrenaline fluorescence; from combined immunohistochemistry and fluorescence histochemistry we suggest that these are adrenaline cells. In addition, all CGRP-immunoreactive cells simultaneously exhibited NPY-like immunoreactivity. CGRP-chromaffin cells were characterized by abundant chromaffin granules with round cores in which the immunoreactive material was densely localized. These findings suggest the co-existence of CGRP, NPY and adrenaline within the chromaffin granules in a substantial number of chromaffin cells.Thicker and thinner nerve bundles, which included CGRP-immunoreactive nerve fibers, with or without varicosities, penetrated the adrenal capsule. Most of them passed through the cortex and entered the medulla directly, whereas others were distributed in subcapsular regions and among the cortical cells of the zona glomerulosa. Here the CGRP-fibers were in close contact with cortical cells. A few of the fibers supplying the cortex extended further into the medulla. The CGRP-immunoreactive fibers in the medulla were traced among and within small clusters of chromaffin cells and around ganglion cells. The CGRP-fibers were directly apposed to both CGRP-positive and negative chromaffin cells, as well as to ganglion cells. Immunoreactive fibers, which could not be found close to blood vessels, were characterized by the presence of numerous small clear vesicles mixed with a few large granular vesicles. The immunoreactive material was localized in the large granular vesicles and also in the axoplasm. Since no ganglion cells with CGRP-like immunoreactivity were found in the adrenal gland, the CGRP-fibers are regarded as extrinsic in origin. In double-immunofluorescence staining for CGRP and SP, all the SP-immunoreactive fibers corresponded to CGRP-immunoreactive ones in the adrenal gland. This suggests that CGRP-positive fibers in the adrenal gland may be derived from the spinal ganglia, as has been demonstrated with regard to the SP-nerve fibers.  相似文献   

13.
The Piétrain pigs are significant different from the German Landrace and the Edelschwein in the histometrical parameters of the adrenal glands like cortex and medulla part, height of the cortex regions, part of adrenaline and noradrenaline producing cells. The weight of their adrenal glands is less than in the other races but their part of Zona fasciculata and of adrenaline producing cells is comparably high. These findings let expect distinct reactions on stressors. There are no hints on insufficiency of the adrenal glands. The histometrical parameters and the blood cortisol levels are discussed with regard to deficiencies in meat quality.  相似文献   

14.
Rats were made diabetic by intravenous administration of streptozotocin, 100 mg/kg. Six groups of animals were studied: normal; animals given a supplement of 100% corn oil margarine; insulin-treated normoglycemic diabetic; hyperglycemic nonacidotic diabetic; ketoacidotic diabetic; and NH4Cl acidotic. The kidneys were removed from anesthetized animals. The renal cortex was separated from the medulla, freeze-clamped, and homogenized. Total lipids were extracted and measured gravimetrically. Lipid fractions were determined by thin-layer chromatography. Fatty acids of triacylglycerols and of phospholipids were analyzed by gas chromatography. Plasma triacylglycerols were elevated in hyperglycemic nonacidotic rats and more so in ketoacidotic animals. Total kidney lipids were 18% higher in nonacidotic hyperglycemic rats and 56% higher in ketoacidotic diabetic rats. This was due to accumulation of triacylglycerols while the phospholipid and cholesterol fractions did not change. Examination of long-chain fatty acids of kidney cortex triacylglycerols revealed that palmitate rose in a significant fashion while linoleate fell. This pattern was similar in all three groups of diabetic animals. The present data characterize the lipid content of the experimental rat diabetic kidney. They establish that the accumulation of lipids in the renal cortex during diabetes is related to triacyclgycerols and their palmitate content. Our study also provides a clear profile of plasma triacylglycerols during diabetes mellitus in the rat.  相似文献   

15.
Summary The development of the rat adrenal medulla was studied at the ultrastructural level with particular emphasis placed on early discrimination of different catecholamine-storing cells. The first granule-containing cells, phaeochromoblasts, were seen at day 15 of gestation migrating into the anlage of the cortex. These cells were characterized by a few small granules (80–120 nm in diameter) and a high nuclear to cytoplasmic ratio. Presumably due to differentiation into chromaffin cells, they were no longer present after the eighth postnatal day. Maturation of phaeochromoblasts was indicated by an increase in number and size of their storage granules and a decrease in the nuclear to cytoplasmic ratio. Noradrenaline and adrenaline cell types were first clearly discernible at day 21 of gestation. Another cell type, a giant cell, was also recognized at this stage. In the adult animal, noradrenaline, two morphologically different types of adrenaline, and small granule-containing cells were observed.By applying acetylcholinesterase histochemistry, it was found that at day 17 of gestation a small population of granule-storing cells showed strong positive staining in the endoplasmic reticulum. In the adult animal this cell type was further characterized by small-storage granules. Other chromaffin cells began to show weak staining within the endoplasmic reticulum at day 19 of gestation. This staining appeared more frequently within adrenaline than noradrenaline cells. However, even in the adult animal many cells of both types were completely negative.It is concluded that acetylcholinesterase histochemistry is a useful method for early discrimination of small granule-containing cells in the developing rat adrenal medulla.Supported by grants from the Deutsche Forschungsgemeinschaft  相似文献   

16.
17.
Gamma-aminobutyric acid (GABA) immunoreactivity was revealed by immunocytochemistry in the mouse adrenal gland at the light and electron microscopic levels. Groups of weakly or faintly GABA immunoreactive chromaffin cells were often seen in the adrenal medulla. By means of immunohistochemistry combined with fluorescent microscopy, these GABA immunoreactive chromaffin cells showed noradrenaline fluorescence. The immunoreaction product was seen mainly in the granular cores of these noradrenaline cells. These results suggest the co-existence of GABA and noradrenaline within the chromaffin granules. Sometimes thick or thin bundles of GABA immunoreactive nerve fibers with or without varicosities were found running through the cortex directly into the medulla. In the medulla, GABA immunoreactive varicose nerve fibers were numerous and were often in close contact with small adrenaline cells and large ganglion cells; a few, however, surrounded clusters of the noradrenaline cells, where membrane specializations were formed. Single GABA immunoreactive nerve fibers, and thin or thick bundles of the immunoreactive varicose nerve fibers ran along the blood vessels in the medulla. The immunoreaction deposits were observed diffusely in the axoplasm and in small agranular vesicles of the GABA immunoreactive nerve fibers. Since no ganglion cells with GABA immunoreactivity were found in the adrenal gland, the GABA immunoreactive nerve fibers are regarded as extrinsic in origin.  相似文献   

18.
Two neonates of mice which manifested abnormal motions in their gait in the third generation litter, following the start of manganese (Mn) administration, were selected. One was severely affected by Mn and the other was only moderately affected. Various regions in the brains of the neonates were subjected to histochemical examination under a light microscopy. The losses of stainability in granular cells in the external layer of the cerebral cortex, and Purkinje cells in the cerebellar cortex, and the increase in stainability of the nerve fibers in the cerebellar medulla were in parallel to the degree of abnormal movement in the gait; the greater loss or gain in stainability, varying according to the regions, was associated with the more severe damages to motion. Meanwhile, the changes in the stainabilities of nerve cell nuclei in the lamellar structure of cerebral motor areas and the Nissl bodies in the cerebral medulla were already maximal in the moderately affected neonate. These results indicate that the Mn effect covers a broad area of the extrapyramidal tract even though there are some differences in the sensitivity to Mn in different regions.  相似文献   

19.
Summary The distribution of adrenaline, noradrenaline, aliesterases and non-specific cholinesterases in the cortical and medullary cells and that of ascorbic acid in the cortex have been studied histochemically in sections of adrenal glands from embryonic, juvenile and adult chicken. Both the catecholamines are secreted by the embryonic medulla from the 11th day of incubation but noradrenaline is the more abundant of the two hormones at all stages and it is secreted by the majority of chromaffin cells. There is a tendency for the adrenaline-secreting cells to predominate in the subcapsular layer of the medulla. Both types of chromaffin cells reveal considerable cholinesterase activity consistently from the second half of incubation period onwards.A high concentration of aliesterases and ascorbic acid are developed and maintained in the cortical cords from the time the cortex begins secretory activity, namely, the 10-day incubation stage. Lower concentrations of cholinesterases are also present in the cells of the cortex. The cords of the peripheral zone of cortex show higher concentrations of both the enzymes and ascorbic acid than those of the central zone.From a thesis submitted to McGill University, Montreal, Canada in 1963 in partial fulfillment of the requirements for the degree of Doctor of Philosophy. The work was done during tenure of a Canadian Commonwealth Scholarship.  相似文献   

20.
The level of the neutral and acid phospholipids and thromboplastic activity of various portions of the rabbit brain were studied under normal conditions and following adrenaline stimulation. The level of total phospholipids, neutral phospholipids, and the ratio of neutral to acid phospholipids, thromboplastic activity and its increase following incubation of homogenates of the brain tissue of normal and adrenaline-treated animals were found to be distributed in the following descending order: the medulla oblongata, cerebellum, cerebral hemispheres. Adrenaline decreased the thromboplastic activity and induced changes in the neutral and acid phospholipid levels. The role of phospholipids in the biosynthesis of various components of the blood clotting and anticoagulant systems are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号