首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
5-羟甲基胞嘧啶(5hmC)是新发现的一种的修饰碱基,以低水平存在于哺乳动物的多种细胞类型中。5hmC是10-11易位(TET)家族的酶通过氧化5-甲基胞嘧啶(5mC)产生的。5hmC不仅能够降低MeCP蛋白的甲基化结合结构域(MBD)与甲基化DNA的亲和性,具有潜在的参与基因表达调控的转录调节功能,而且参与了DNA去甲基化过程。因此关于5hmC的研究日益受到学者们的青睐,随着5hmC甲基化分析和检测方法学日益发展,发现5hmC分布具有组织特异性,并且5hmC在肿瘤组织中含量显著降低,可能成为某些肿瘤早期诊断的分子标志物。  相似文献   

2.
植物DNA甲基化及其表观遗传作用   总被引:2,自引:0,他引:2  
表观遗传学(epigenetics)是研究没有DNA序列变化的、可遗传的基因表达的改变。目前研究表明,表观遗传学在植物生长发育过程中起着极其重要的作用,主要通过包括DNA甲基化、RNA干涉、基因组印记、转基因沉默等多个方面来调控植物的生长发育。其中,DNA甲基化是表观遗传学的最重要研究内容之一,是调节基因组功能的重要手段。现对植物DNA甲基化的特征、维持机制、调控机制、表观遗传作用及其研究方法进行简要论述。  相似文献   

3.
利用甲基化特异性引物高通量检测DNA甲基化   总被引:1,自引:1,他引:1  
建立一种基于甲基化特异性引物和SAGE技术的高通量DNA甲基化定量检测新方法(MSP-SAGE),首先利用亚硫酸氢钠对基因组DNA进行处理,使未甲基化的C转变为U,而甲基化的CpG不变.将处理和未处理的DNA双链变性后用随机引物PNNNNCG对存在含有CG的单链进行延伸,而无甲基化CG的单链处则不能延伸;将差异延伸的单链序列和频次信息经过系列分子操作后,引入PCR扩增模板;对中间带有未知序列的PCR扩增产物进行串连克隆测序.将来自于未处理组和处理组的某一CpG位点的序列出现的次数定义为[Tags]A和[Tags]B,将标准系列的实际甲基化水平和[Tags]B/[Tags]A之间建立线性回归方程.根据每一CpG位点的[Tags]B/[Tags]A比值可反推该位点的甲基化水平.MSP-SAGE具有良好的线性,基于标准系列的[Tags]B/[Tags]A与其实际甲基化水平的标准曲线方程为y=1.455x(R2=0.984,P<0.01).MSP-SAGE的回收率在95%到110%之间,精确度位于4.2%和10.5%,检测限在3%左右,单次检测通量可达24个CpG位点.MSP-SAGE是一种很有应用前途的高通量DNA甲基化定量检测方法.  相似文献   

4.
表观遗传指不涉及DNA序列改变的,可随细胞分裂而遗传的基因组修饰作用;DNA甲基化是其中研究最多的基因表达调节机制。异常DNA甲基化可致肿瘤发生,它亦是肿瘤基因诊断和治疗的靶点。文章介绍DNA甲基化基本概念、作用效果及其可能机制;并讨论异常DNA甲基化与肿瘤的关联,包括肿瘤中DNA异常甲基化原因、异常甲基化致瘤机制及基因甲基化研究在肿瘤诊治中的应用等。  相似文献   

5.
目的 族群地域、体貌特征等表型是基因型与环境共同作用的结果。大量基因组学研究表明,汉族人群具有混合特征,内部存在明显的南北遗传差异。本研究旨在探索研究表观基因组在中国南北方汉族人群之间是否存在差异,并筛选差异遗传位点。方法 使用GLINT软件对483份汉族样本的全基因组甲基化芯片数据进行EWAS分析,使用Lasso回归方法筛选位点。使用多元逻辑回归算法构建南北方汉族人群预测模型,通过十折交叉验证的方法评估。结果 筛选出一组南北方汉族之间差异显著的CpG位点,准确性为99.03%,Kappa系数为0.979 6。结论 本研究表明南北方汉族人群之间存在表观遗传差异,本研究为进一步开展不同地域汉族人群之间的表观遗传差异研究奠定了基础。  相似文献   

6.
DNA甲基化是一种重要的表观遗传调控方式,可在转录前水平调节基因的表达.近年来的研究表明,动脉粥样硬化的发生发展与DNA甲基化密切相关. 对DNA甲基化模式改变在动脉粥样硬化发病的相关机制做深入研究,可能为动脉粥样硬化的诊治提供一种新的途径.本文将从基因组低甲基化、相关基因异常甲基化以及动脉粥样硬化危险因素的DNA甲基化等方面重点阐述DNA甲基化与动脉粥样硬化的关系.  相似文献   

7.
上皮细胞转分化现象及其与疾病发生发展的关系,近年已成为细胞生物学、免疫学等多学科关注的聚焦点。转分化作为细胞分化发育的基本生物学现象,存在于机体诸多生理病理过程,也受表观遗传学的调控。相对于经典遗传学而言,表观遗传学作为一门新兴学科,其为生物体的基因表达调控及遗传现象提供了新的理论阐释。现知,DNA甲基化、组蛋白修饰及非编码RNA等均可导致上皮细胞基因发生表观遗传改变,与上皮细胞转分化的发生发展密切相关,并在该过程中发挥重要的调控作用。进一步阐明细胞转分化的分子基础及其表观遗传学调控机制,将有助于认识生命现象基本过程,并可为炎症性疾病、自身免疫病、器官纤维化,以及肿瘤发生与转移等机制的研究与防治,提供新的思路和应对策略。对上皮细胞转分化与表观遗传学调控关系作一简述。  相似文献   

8.
表观遗传学与人类表观基因组计划   总被引:1,自引:0,他引:1  
表观遗传学已被用来描述许多生物学过程,成为生物学与医学领域中热点的学科之一.本文简要介绍表观遗传学与表观遗传基因组学的概念、人类表观基因组计划研究的目标与意义,并阐述DNA甲基化、组蛋白修饰、染色质重塑和非编码微小RNA等表观遗传学调控基因表达的机制.我们已经认识到人类疾病基因缺损可能部分或完全与表观遗传有关.所以,研究疾病状态下非突变的、可逆的表观遗传调节,以及治疗的可能性具有重要实际意义.  相似文献   

9.
DNA修复的表观遗传学调控   总被引:1,自引:0,他引:1  
表观遗传学信息的改变是导致人类肿瘤形成的重要因素之一.基因组的稳定性经常会受到DNA损伤的威胁.然而,高度致密的染色质结构却极大地妨碍了DNA修复的进行.因此,真核生物细胞中必须有一个精确的机制来克服染色质这一天然的屏障.其中,组蛋白的共价修饰和ATP-依赖的染色质重塑通过改变染色质的结构,对DNA修复进程起着关键的调控作用.介绍了DNA修复过程中,发生在表观遗传学方面的主要调控过程,特别阐述了在DNA双链断裂损伤应答和修复过程中,组蛋白修饰和染色质重塑方面最新的研究进展,并对今后的发展方向进行了讨论.  相似文献   

10.
阿尔茨海默病(Alzheimer’s disease,AD)又称老年痴呆症,是老年人中发病率最高的神经退行性疾病之一,以记忆和认知功能损伤为主要特征。AD与表观遗传学如DNA甲基化联系紧密。通常,基因启动子区域DNA高甲基化会抑制相关基因的表达。目前研究表明,诸多因素通过影响DNA甲基化修饰显著增加AD的患病风险,如环境、年龄及AD相关疾病。AD相关基因的DNA甲基化修饰研究已取得较大的进展,测试外周血中基因DNA甲基化修饰差异可为AD的预测、诊断及治疗开辟新的途径。该文就最近相关的DNA甲基化研究进展进行了系统阐述。  相似文献   

11.
Superoxide dismutase (SOD) 3, one of the SOD isozymes, plays a pivotal role in extracellular redox homeostasis. The expression of SOD3 is regulated by epigenetics in human lung cancer A549 cells and human monocytic THP-1 cells; however, the molecular mechanisms governing SOD3 expression have not been elucidated in detail. Ten-eleven translocation (TET), a dioxygenase of 5-methylcytosine (5mC), plays a central role in DNA demethylation processes and induces target gene expression. In the present study, TET1 expression was abundant in U937 cells, but its expression was weakly expressed in A549 and THP-1 cells. These results are consistent with the expression pattern of SOD3 and its DNA methylation status in these cells. Moreover, above relationship was also observed in human breast cancer cells, human prostate cancer cells, and human skin fibroblasts. The overexpression of TET1-catalytic domain (TET1-CD) induced the expression of SOD3 in A549 cells, and this was accompanied by the direct binding of TET1-CD to the SOD3 promoter region. Furthermore, in TET1-CD-transfected A549 cells, the level of 5-hydroxymethylcytosine within that region was significantly increased, whereas the level of 5mC was decreased. The results of the present study demonstrate that TET1 might function as one of the key molecules in SOD3 expression through its 5mC hydroxylation in A549 cells.  相似文献   

12.
In mammals, DNA methylation and hydroxymethylation are specific epigenetic mechanisms that can contribute to the regulation of gene expression and cellular functions. DNA methylation is important for the function of embryonic stem cells and adult stem cells (such as haematopoietic stem cells, neural stem cells and germline stem cells), and changes in DNA methylation patterns are essential for successful nuclear reprogramming. In the past several years, the rediscovery of hydroxymethylation and the TET enzymes expanded our insights tremendously and uncovered more dynamic aspects of cytosine methylation regulation. Here, we review the current knowledge and highlight the most recent advances in DNA methylation and hydroxymethylation in embryonic stem cells, induced pluripotent stem cells and several well‐studied adult stems cells. Our current understanding of stem cell epigenetics and new advances in the field will undoubtedly stimulate further clinical applications of regenerative medicine in the future. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Methylation of the fifth carbon of cytosine was the first epigenetic modification to be discovered in DNA. Recently, three new DNA modifications have come to light: hydroxymethylcytosine, formylcytosine, and carboxylcytosine, all generated by oxidation of methylcytosine by Ten Eleven Translocation (TET) enzymes. These modifications can initiate full DNA demethylation, but they are also likely to participate, like methylcytosine, in epigenetic signalling per se. A scenario is emerging in which coordinated regulation at multiple levels governs the participation of TETs in a wide range of physiological functions, sometimes via a mechanism unrelated to their enzymatic activity. Although still under construction, a sophisticated picture is rapidly forming where, according to the function to be performed, TETs ensure epigenetic marking to create specific landscapes, and whose improper build‐up can lead to diseases such as cancer and neurodegenerative disorders.  相似文献   

14.
Osteoarthritis (OA) is one of the most prevalent forms of joint disorder, associated with a tremendous socioeconomic burden worldwide. Various non-genetic and lifestyle-related factors such as aging and obesity have been recognized as major risk factors for OA, underscoring the potential role for epigenetic regulation in the pathogenesis of the disease. OA-associated epigenetic aberrations have been noted at the level of DNA methylation and histone modification in chondrocytes. These epigenetic regulations are implicated in driving an imbalance between the expression of catabolic and anabolic factors, leading eventually to osteoarthritic cartilage destruction. Cellular senescence and metabolic abnormalities driven by OA-associated risk factors appear to accompany epigenetic drifts in chondrocytes. Notably, molecular events associated with metabolic disorders influence epigenetic regulation in chondrocytes, supporting the notion that OA is a metabolic disease. Here, we review accumulating evidence supporting a role for epigenetics in the regulation of cartilage homeostasis and OA pathogenesis.  相似文献   

15.
In mammalian development, epigenetic modifications, including DNA methylation patterns, play a crucial role in defining cell fate but also represent epigenetic barriers that restrict developmental potential. At two points in the life cycle, DNA methylation marks are reprogrammed on a global scale, concomitant with restoration of developmental potency. DNA methylation patterns are subsequently re-established with the commitment towards a distinct cell fate. This reprogramming of DNA methylation takes place firstly on fertilization in the zygote, and secondly in primordial germ cells (PGCs), which are the direct progenitors of sperm or oocyte. In each reprogramming window, a unique set of mechanisms regulates DNA methylation erasure and re-establishment. Recent advances have uncovered roles for the TET3 hydroxylase and passive demethylation, together with base excision repair (BER) and the elongator complex, in methylation erasure from the zygote. Deamination by AID, BER and passive demethylation have been implicated in reprogramming in PGCs, but the process in its entirety is still poorly understood. In this review, we discuss the dynamics of DNA methylation reprogramming in PGCs and the zygote, the mechanisms involved and the biological significance of these events. Advances in our understanding of such natural epigenetic reprogramming are beginning to aid enhancement of experimental reprogramming in which the role of potential mechanisms can be investigated in vitro. Conversely, insights into in vitro reprogramming techniques may aid our understanding of epigenetic reprogramming in the germline and supply important clues in reprogramming for therapies in regenerative medicine.  相似文献   

16.
细胞衰老在表观遗传学上的调控越来越受到人们的关注.Polycomb蛋白复合体(polycomb group proteins)通过对组蛋白的修饰,尤其是甲基化修饰发挥对靶基因的沉默作用,并因此广泛参与到发育、增殖、分化以及肿瘤发生等重要生命过程.目前,有一系列的研究报道了polycomb的各组份参与了细胞衰老的调控.本文对polycomb发挥基因沉默作用机制的最新研究进展进行了归纳总结,并以衰老过程中的重要分子p16为重点,详细介绍了polycomb调节p16表达,影响细胞衰老进程的机制.研究表明,多种polycomb成员同时结合在p16INK4a基因座,它们的结合表现出相互依赖的同时又有各自的作用.这为进一步深入理解细胞衰老提供了表观遗传学的证据.  相似文献   

17.
童童  王连荣 《微生物学报》2017,57(11):1688-1697
为了适应复杂多变的生存环境,微生物通常需要在保证基因组序列不变的前提下不断调整胞内代谢网络。表观调控可以在不改变DNA序列的情况下对基因表达进行调控,因此成为细菌中重要的调控方式。作为一种DNA修饰,DNA甲基化修饰是生物体中最常见的表观调控工具。在本文中我们全面、深入解析了两种孤儿甲基转移酶:DNA腺嘌呤甲基转移酶(DNA adenine methyltransferase,Dam)和细胞周期调控甲基转移酶(Cell cycle-regulated methyltransferase,Ccr M)在原核生物中的表观调控功能。我们主要探讨了DNA甲基化参与的细胞生理过程包括DNA复制起始、DNA错配修复、基因表达调控、致病性和相变异等方面。同时,我们结合三维基因组研究技术基因组结构捕获(Chromosome conformation capture,3C)技术和新型DNA磷硫酰化修饰讨论了该领域的发展前景。  相似文献   

18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号