首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Mycobacterium bovis bacilli Calmette-Guerin (BCG) pcp gene that encodes the pyrrolidone carboxyl peptidase (Pcp) was cloned from a lambdagtll genomic library and sequenced. The nucleotide sequence contains a 669 bp open reading frame coding for a protein of 222 amino acid residues with a calculated molecular mass of 23,209 Da. The deduced amino acid sequence is highly homologous to the Pcps from Bacillus amyloliquefaciens, Pseudomonas fluorescens, Bacillus subtilis, Streptococcus pyogenes, and Staphylococcus aureus. A multiple sequence alignment revealed highly conserved domains. The BCG pcp gene was overexpressed in Escherichia coli. The Pcp was purified to homogeneity. The recombinant protein was further confirmed by an enzymatic assay.  相似文献   

2.
3.
The gene encoding aspartate aminotransferase of a thermophilic Bacillus species, YM-2, has been cloned and expressed efficiently in Escherichia coli. The primary structure of the enzyme was deduced from nucleotide sequences of the gene and confirmed mostly by amino acid sequences of tryptic peptides. The gene consists of 1,176 base pairs encoding a protein of 392 amino acid residues; the molecular mass of the enzyme subunit is estimated to be 42,661 daltons. The active site lysyl residue that binds the coenzyme, pyridoxal phosphate, was identified as Lys-239. Comparison of the amino acid sequence with those of aspartate aminotransferases from other organisms revealed very low overall similarities (13-14%) except for the sequence of the extremely thermostable enzyme from Sulfolobus solfataricus (34%). Several amino acid residues conserved in all the compared sequences include those that have been reported to participate in binding of the coenzyme in three-dimensional structures of the vertebrate and E. coli enzymes. However, the strictly conserved arginyl residue that is essential for binding of the distal carboxyl group of substrates is not found in the corresponding region of the sequences of the thermostable enzymes from the Bacillus species and S. solfataricus. The Bacillus aspartate aminotransferase has been purified from the E. coli clone cell extracts on a large scale and crystallized in the buffered ammonium sulfate solution by the hanging drop method. The crystals are monoclinic with unit cell dimensions a = 121.2 A, b = 110.5 A, c = 81.8 A, and beta = 97.6 degrees, belonging to space group C2, and contain two molecules in the asymmetric unit. The crystals of the enzyme-alpha-methylaspartate complex are isomorphous with those without the substrate analog.  相似文献   

4.
Alkaline elastase YaB is an extracellular serine protease of the alkalophilic Bacillus strain YaB. We cloned the structural gene, ale, and determined the nucleotide sequence. The mature enzyme (268 amino acids) was preceded by a putative signal sequence and a prosequence (27 and 83 amino acids, respectively). The mature enzyme was 55% homologous to subtilisin BPN'. Almost all the positively charged residues are predicted to be on the surface of the molecule, which would facilitate binding to elastin. The P1 substrate site-related sequences differed between alkaline elastase YaB and subtilisin BPN'.  相似文献   

5.
An alpha-amylase gene from Micrococcus sp. 207 was cloned into Escherichia coli JM101 using the vector pHSG399. The constructed recombinant plasmid pYK63 contained a 4.8 kb chromosomal DNA fragment derived from strain 207 DNA. The cloned amylase isolated from E. coli JM101 (pYK63) produced mainly maltotetraose from starch, and exhibited temperature and pH activity profiles closely similar to those of the enzyme from the original strain. Nucleotide sequence analysis of the cloned DNA fragment revealed one open reading frame containing the gene which consisted of 3312 bp (1104 amino acids). When compared with several other alpha-amylases, three consensus sequences were identified in the region of the active site. About 300 amino acid residues were present both upstream and downstream of the active site region.  相似文献   

6.
7.
A gene encoding the salicylate hydroxylase was cloned from the genomic DNA of Pseudomonas fluorescens SME11. The DNA fragment containing the nahG gene for the salicylate hydroxylase was mapped with restriction endonucleases and sequenced. The DNA fragment contained an ORF of 1,305 bp encoding a polypeptide of 434 amino acid residues. The nucleotide and amino acid sequences of the salicylate hydroxylase revealed several conserved regions with those of the enzyme encoded in P. putida PpG7: The homology of the nucleotide sequence is 83% and that of amino acid sequence is 72%. We found large conserved regions of the amino acid sequence at FAD and NADH binding regions. The FAD binding site is located at the amino terminal region and a lysine residue functions as a NADH-binding site.  相似文献   

8.
V A David  A H Deutch  A Sloma  D Pawlyk  A Ally  D R Durham 《Gene》1992,112(1):107-112
The gene (nprV), encoding the extracellular neutral protease, vibriolysin (NprV), of the Gram- marine microorganism, Vibrio proteolyticus, was isolated from a V. proteolyticus DNA library constructed in Escherichia coli. The recombinant E. coli produced a protease that co-migrated with purified neutral protease from V. proteolyticus on non-denaturing polyacrylamide gels, and that demonstrated enzymatic specificity towards the neutral protease substrate N-[3-(2-furyl)acryloyl]-L-alanylphenylalanine amide. The nucleotide (nt) sequence of the cloned nprV gene revealed an open reading frame encoding 609 amino acids (aa) including a putative signal peptide sequence followed by a long 'pro' sequence consisting of 172 aa. The N-terminal aa sequence of NprV purified from cultures of V. proteolyticus, identified the beginning of the mature protein within the aa sequence deduced from the nt sequence. Comparative analysis of mature NprV to the sequences of the neutral proteases from Bacillus thermoproteolyticus (thermolysin) and Bacillus stearothermophilus identified extensive regions of conserved aa homology, particularly with respect to active-site residues, zinc-binding residues, and calcium-binding sites. NprV was overproduced in Bacillus subtilis by placing the DNA encoding the 'pro' and mature enzyme downstream from a Bacillus promoter and signal sequence.  相似文献   

9.
The gene for thermostable D-amino acid aminotransferase from a thermophile, Bacillus species YM-1 was cloned and expressed efficiently in Escherichia coli. The entire covalent structure of the enzyme was determined from the nucleotide sequence of the cloned gene and mostly confirmed by amino acid sequences of tryptic peptides from the gene product. The polypeptide is composed of 282 amino acid residues with a calculated molecular weight of 32,226. Comparison of the primary structure with those of various proteins registered in a protein data bank revealed a significant sequence homology between D-amino acid aminotransferase and the L-branched chain amino acid aminotransferase of E. coli (Kuramitsu, S., Ogawa, T., Ogawa, H., and Kagamiyama, H. (1985) J. Biochem. (Tokyo) 97, 993-999); the active site lysyl residue is located in an equivalent position in both enzyme sequences of similar size. Despite the difference in subunit composition and no immunochemical cross-reactivity, the sequences of the two enzymes show similar hydropathy profiles, and spectrophotometric properties of the enzyme-bound cofactor are also similar. The sequence homology suggests that the structural genes for D-amino acid and L-branched chain amino acid aminotransferases evolved from a common ancestral gene.  相似文献   

10.
A cDNA encoding a novel copper amine oxidase (CAO) was cloned and sequenced from the Chinese club moss Huperzia serrata (Huperziaceae), which produces the Lycopodium alkaloid huperzine A. A 2043-bp open reading frame encoded an Mr 76,854 protein with 681 amino acids. The deduced amino acid sequence shared 44-56% identity with the known CAOs of plant origin, and contained the active site consensus sequence of Asn-Tyr-Asp/Glu. The phylogenetic tree analysis revealed that HsCAO from the primitive vascular plant H. serrata is closely related to Physcomitrella patens subsp CAO. The recombinant enzyme, heterologously expressed in Escherichia coli, catalyzed the oxidative deamination of aliphatic and aromatic amines. Among them, the enzyme accepted cadaverine as the best substrate to catalyze the oxidative deamination to Δ(1)-piperideine, which is the precursor of the Lycopodium alkaloids. Furthermore, a homology modeling and site-directed mutagenesis studies predicted the active site architecture, which suggested the crucial active site residues for the observed substrate preference. This is the first report of the cloning and characterization of a CAO enzyme from the primitive Lycopodium plant.  相似文献   

11.
The mRNA sequences for two rat pancreatic elastolytic enzymes have been cloned by recombinant DNA technology and their nucleotide sequences determined. Rat elastase I mRNA is 1113 nucleotides in length, plus a poly(A) tail, and encodes a preproelastase of 266 amino acids. The amino acid sequence of the predicted active form of rat elastase I is 84% homologous to porcine elastase 1. Key amino acid residues involved in determining substrate specificity of porcine elastase 1 are retained in the rat enzyme. The activation peptide of the zymogen does not appear related to that of other mammalian pancreatic serine proteases. The mRNA for elastase I is localized in the rough endoplasmic reticulum of acinar cells, as expected for the site of synthesis of an exocrine secretory enzyme. Rat elastase II mRNA is 910 nucleotides in length, plus a poly(A) tail, and encodes a preproenzyme of 271 amino acids. The amino acid sequence is more closely related to porcine elastase 1 (58% sequence identity) than to the other pancreatic serine proteases (33-39% sequence identity). Predictions of substrate preference based upon key amino acid residues that define the substrate binding cleft are consistent with the broad specificity observed for mammalian pancreatic elastase 2. The activation peptide is similar to that of the chymotrypsinogens and retains an N-terminal cysteine available to form a disulfide link to an internal conserved cysteine residue.  相似文献   

12.
Cyclodextrin glucanotransferase (CGTase; EC 2.4.1.19) is produced mainly by Bacillus strains. CGTase from Bacillus macerans IFO3490 produces alpha-cyclodextrin as the major hydrolysis product from starch, whereas thermostable CGTase from Bacillus stearothermophilus NO2 produces alpha- and beta-cyclodextrins. To analyze the cyclization characteristics of CGTase, we cloned different types of CGTase genes and constructed chimeric genes. CGTase genes from these two strains were cloned in Bacillus subtilis NA-1 by using pTB523 as a vector plasmid, and their nucleotide sequences were determined. Three CGTase genes (cgt-1, cgt-5, and cgt-232) were isolated from B. stearothermophilus NO2. Nucleotide sequence analysis revealed that the three CGTase genes have different nucleotide sequences encoding the same amino acid sequence. Base substitutions were found at the third letter of five codons among the three genes. Each open reading frame was composed of 2,133 bases, encoding 711 amino acids containing 31 amino acids as a signal sequence. The molecular weight of the mature enzyme was estimated to be 75,374. The CGTase gene (cgtM) of B. macerans IFO3490 was composed of 2,142 bases, encoding 714 amino acids containing 27 residues as a signal sequence. The molecular weight of the mature enzyme was estimated to be 74,008. The sequence determined in this work was quite different from that reported previously by other workers. From data on the three-dimensional structure of a CGTase, seven kinds of chimeric CGTase genes were constructed by using cgt-1 from B. stearothermophilus NO2 and cgtM from B. macerans IFO3490. We examined the characteristics of these chimeric enzymes on cyclodextrin production and thermostability. It was found that the cyclization reaction was conferred by the NH2-terminal region of CGTase and that the thermostability of some chimeric enzymes was lower than that of the parental CGTases.  相似文献   

13.
Cyclodextrin glucanotransferase (CGTase; EC 2.4.1.19) is produced mainly by Bacillus strains. CGTase from Bacillus macerans IFO3490 produces alpha-cyclodextrin as the major hydrolysis product from starch, whereas thermostable CGTase from Bacillus stearothermophilus NO2 produces alpha- and beta-cyclodextrins. To analyze the cyclization characteristics of CGTase, we cloned different types of CGTase genes and constructed chimeric genes. CGTase genes from these two strains were cloned in Bacillus subtilis NA-1 by using pTB523 as a vector plasmid, and their nucleotide sequences were determined. Three CGTase genes (cgt-1, cgt-5, and cgt-232) were isolated from B. stearothermophilus NO2. Nucleotide sequence analysis revealed that the three CGTase genes have different nucleotide sequences encoding the same amino acid sequence. Base substitutions were found at the third letter of five codons among the three genes. Each open reading frame was composed of 2,133 bases, encoding 711 amino acids containing 31 amino acids as a signal sequence. The molecular weight of the mature enzyme was estimated to be 75,374. The CGTase gene (cgtM) of B. macerans IFO3490 was composed of 2,142 bases, encoding 714 amino acids containing 27 residues as a signal sequence. The molecular weight of the mature enzyme was estimated to be 74,008. The sequence determined in this work was quite different from that reported previously by other workers. From data on the three-dimensional structure of a CGTase, seven kinds of chimeric CGTase genes were constructed by using cgt-1 from B. stearothermophilus NO2 and cgtM from B. macerans IFO3490. We examined the characteristics of these chimeric enzymes on cyclodextrin production and thermostability. It was found that the cyclization reaction was conferred by the NH2-terminal region of CGTase and that the thermostability of some chimeric enzymes was lower than that of the parental CGTases.  相似文献   

14.
The gene encoding an acid endo-1,4-beta-glucanase from Bacillus sp. KSM-330 was cloned into the HindIII site of pBR322 and expressed in Escherichia coli HB101. The recombinant plasmid contained a 3.1 kb HindIII insert, 1.8 kb of which was sufficient for the expression of endoglucanase activity in E. coli HB101. Nucleotide sequencing of this region (1816 bp) revealed an open reading frame of 1389 bp. The protein deduced from this sequence was composed of 463 amino acids with an Mr of 51882. The deduced amino acid sequence from amino acids 56 through 75 coincided with the amino-terminal sequence of the endoglucanase, Endo-K, purified from culture of Bacillus sp. KSM-330. The deduced amino acid sequence of Endo-K had 30% homology with that of the celA enzyme from Clostridium thermocellum NCIB 10682 and 25% homology with that of the enzyme from Cellulomonas uda CB4. However, the Endo-K protein exhibited no homology with respect to either the nucleotide or the amino acid sequences of other endoglucanases from Bacillus that had been previously characterized. These results indicate that the gene for Endo-K in Bacillus sp. KSM-330 has evolved from an ancestral gene distinct from that of other Bacillus endoglucanases.  相似文献   

15.
We have cloned a DNA complementary to the messenger RNA encoding the precursor of ornithine transcarbamylase from rat liver. This complementary DNA contains the entire protein coding region of 1062 nucleotides and 86 nucleotides of 5'- and 298 nucleotides of 3'-untranslated sequences. The predicted amino acid sequence has been confirmed by extensive protein sequence data. The mature rat enzyme contains the same number of amino acid residues (322) as the human enzyme and their amino acid sequences are 93% homologous. The rat and human amino-terminal leader sequences of 32 amino acids, on the other hand, are only 69% homologous. The rat leader contains no acidic and seven basic residues compared to four basic residues found in the human leader. There is complete sequence homology (residues 58-62) among the ornithine and aspartate transcarbamylases from E. coli and the rat and human ornithine transcarbamylases at the carbamyl phosphate binding site. Finally, a cysteine containing hexapeptide (residues 268-273), the putative ornithine binding site in Streptococcus faecalis, Streptococcus faecium, and bovine transcarbamylases, is completely conserved among the two E. coli and the two mammalian transcarbamylases.  相似文献   

16.
A strain of Bacillus species which produced an enzyme named glutaryl 7-ACA acylase which converts 7 beta-(4-carboxybutanamido)cephalosporanic acid (glutaryl 7-ACA) to 7-amino cephalosporanic acid (7-ACA) was isolated from soil. The gene for the glutaryl 7-ACA acylase was cloned with pHSG298 in Escherichia coli JM109, and the nucleotide sequence was determined by the M13 dideoxy chain termination method. The DNA sequence revealed only one large open reading frame composed of 1,902 bp corresponding to 634 amino acid residues. The deduced amino acid sequence contained a potential signal sequence in its amino-terminal region. Expression of the gene for glutaryl 7-ACA acylase was performed in both E. coli and Bacillus subtilis. The enzyme preparations purified from either recombinant strain of E. coli or B. subtilis were shown to be identical with each other as regards the profile of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and were composed of a single peptide with the molecular size of 70 kDa. Determination of the amino-terminal sequence of the two enzyme preparations revealed that both amino-terminal sequences (the first nine amino acids) were identical and completely coincided with residues 28 to 36 of the open reading frame. Extracellular excretion of the enzyme was observed in a recombinant strain of B. subtilis.  相似文献   

17.
The nucleotide sequence of the subtilisin-encoding gene from the antarctic psychrotroph Bacillus TA39 was determined. The primary structure of the subtilisin precursor is composed of 420 amino acids giving rise to a mature enzyme of 309 amino acids. Asp-145, His-185 and Ser-361 are the proposed catalytic residues of the active site.  相似文献   

18.
A gene, cgtA, encoding an extremely thermostable cyclodextrin glycosyltransferase (CGTase) was cloned from a thermophilic anaerobe, Thermoanaerobacter sp. ATCC 53627, and expressed in Escherichia coli. DNA and protein sequencing revealed that the mature enzyme of 683 amino acid residues (MW 75 kDa) was preceded by a signal peptide of 27 amino acid residues. The sequence of the Thermoanaerobacter CGTase was similar to sequences of Bacillus CGTases, with more than 58% identity, and very similar (89% identity) to a CGTase enzyme from Thermoanaerobacterium thermosulfurogenes.  相似文献   

19.
The DNA encoding the elastase of Pseudomonas aeruginosa IFO 3455 was cloned, and its complete nucleotide sequence was determined. When the cloned gene was ligated to pUC18, the Escherichia coli expression vector, bacteria carrying the gene exhibited high levels of both elastase activity and elastase antigens. The amino acid sequence, deduced from the nucleotide sequence, revealed that the mature elastase consisted of 301 amino acids with a relative molecular mass of 32,926 daltons. The amino acid composition predicted from the DNA sequence was quite similar to the chemically determined composition of purified elastase reported previously. We also observed nucleotide sequence encoding a signal peptide and "pro" sequence consisting of 197 amino acids upstream from the mature elastase protein gene. The amino acid sequence analysis revealed that both the N-terminal sequence of the purified elastase and the N-terminal side sequences of the C-terminal tryptic peptide as well as the internal lysyl peptide fragment were completely identical to the deduced amino acid sequences. The pattern of identity of amino acid sequences was quite evident in the regions that include structurally and functionally important residues of Bacillus subtilis thermolysin.  相似文献   

20.
The gene coding for an extracellular lipase of Bacillus licheniformis was cloned using PCR techniques. The sequence corresponding to the mature lipase was subcloned into the pET 20b(+) expression vector to construct a recombinant lipase protein containing 6 histidine residues at the C-terminal. High-level expression of the lipase by Escherichia coli cells harbouring the lipase gene-containing expression vector was observed upon induction with IPTG at 30 degrees C. A one step purification of the recombinant lipase was achieved with Ni-NTA resin. The specific activity of the purified enzyme was 130 units/mg with p-nitrophenyl-palmitate as substrate. The enzyme showed maximum activity at pH 10-11.5 and was remarkably stable at alkaline pH values up to 12. The enzyme was active toward p-nitrophenyl esters of short to long chains fatty acids but with a marked preference for esters with C(6) and C(8) acyl groups. The amino acid sequence of the lipase shows striking similarities to lipases from Bacillus subtilis and Bacillus pumilus. Based on the amino acid identity and biochemical characteristics, we propose that Bacillus lipases be classified into two distinct subfamilies of their own.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号