共查询到20条相似文献,搜索用时 9 毫秒
1.
James A. Severson Jan O. Marcusson Heinz H. Osterburg† Caleb E. Finch † Bengt Winblad 《Journal of neurochemistry》1985,45(5):1382-1389
Aging was associated with an increase in the density of specific binding sites for [3H]imipramine in postmortem specimens of human hypothalamus, frontal cortex, and parietal cortex. In general, [3H]imipramine binding was not affected by factors considered difficult to control in postmortem studies, i.e., time from death to autopsy and cause of death. The in vitro regulation of [3H]imipramine binding by sodium was impaired with age in hypothalamic homogenates. In vitro regulation of [3H]imipramine binding by chloride was intact. Determination of the concentrations of 5-hydroxytryptamine (serotonin) and 5-hydroxyindoleacetic acid in hypothalamus and frontal cortex indicated no apparent age-related changes in indole metabolism. The age-related increase in brain [3H]imipramine binding and impairment in the in vitro regulation of binding by ions are similar to changes observed previously in aged mouse brain. The increase in brain antidepressant binding sites is discussed in relationship to other indices of brain serotonergic function in aging and to the relationship of [3H]imipramine binding and depression. 相似文献
2.
S. Z. Langer F. Javoy-Agid R. Raisman M. Briley Y. Agid 《Journal of neurochemistry》1981,37(2):267-271
Abstract: [3 H]Imipramine binds with high affinity to membranes from different regions of the human brain. The highest density of binding sites was observed in the hypothalamus and substantia nigra and the lowest density in the white matter and cerebellum. As found in rat brain, tricyclic antidepressant drugs are potent inhibitors of [3 H]imipramine binding. Atypical antidepressants are, however, much weaker at inhibiting the specific binding. The [3 H]imipramine binding site in human cortex is apparently identical to the site already described in the rat brain and in human platelets. 相似文献
3.
Abstract The binding of [3H]aspartate and [3H]glutamate to membranes prepared from frozen human cerebellar cortex was studied. The binding sites differed in their relative proportions, their inhibition by amino acids and analogues, and by the effects of cations. A proportion (about 30%) of [3H]glutamate binding was to sites similar to those labelled by [3H]aspartate. An additional component of [3H]gluta-mate binding (about 50%) was displaced by quisqualate and aL-amino-3-hydroxy-5-methylisoxazole-4-propionic acid, and may represent a “quisqualate-preferring” receptor. Neither N-methyl-d-aspartic acid-sensitive nor dl-2-amino-4-phosphonobutyric acid-sensitive [3H]glutamate binding was detected. 相似文献
4.
Abstract: Apparent specific binding of [3 H]imipramine to human platelet membranes at high concentrations of imipramine showed deviation from that expected of a single binding site, a result consistent with a low-affinity binding site. The deviation was due to displaceable, saturable binding to the glass fibre filters used in the assays. Imipramine, chloripramine, desipramine, and fluoxetine inhibited binding to filters whereas 5-hydroxytryptamine and ethanol were ineffective. Experimental conditions were developed that eliminated filter binding, allowing assay of high and low-affinity binding to membranes. Failure to correct for filter binding may lead to overestimation of binding parameters, Bmax and KD for high-affinity binding to membranes, and may also be misinterpreted as indicating a low-affinity binding component in both platelet and brain membranes. Low-affinity binding ( KD < 2 μ M ) of imipramine to human platelet membranes was demonstrated and its significance discussed. 相似文献
5.
James A. Severson John J. Woodward Richard E. Wilcox 《Journal of neurochemistry》1986,46(6):1743-1754
The specific binding of [3H]imipramine to mouse brain membranes in an assay containing 120 mM NaCl and 5 mM KCl was similar in regional distribution and pharmacological specificity to that reported previously in rat and human brain. However, the absence of ions decreased the density of the specific binding of [3H]imipramine and did not affect the equilibrium dissociation constant. Sodium was the only cation, and halides were the only anions tested that enhanced the specific binding of [3H]imipramine. Chloride did not increase the density of binding in the absence of sodium. The ion-sensitive binding of [3H]imipramine was regionally dependent and was highly correlated with the uptake of 5-hydroxytryptamine (5-HT, serotonin) into synaptosomes from brain regions. 5-HT did not inhibit the binding of [3H]imipramine in the absence of ions. Antidepressants inhibited binding in the absence and presence of ions, but in the presence of ions inhibition curves were shifted to the left and the apparent complexity of inhibition was increased. Quantitative analysis of the inhibition of [3H]imipramine binding by antidepressants conducted in the presence of ions was consistent with two binding sites. Lesion of the serotonergic input to the cerebral cortex by 5,7-dihydroxytryptamine suggested that both the 5-HT-sensitive and ion-sensitive binding of [3H]imipramine were associated with serotonergic nerve terminals. [3H]Imipramine binding displaced by desipramine, but insensitive to 5-HT and ions, was not affected by the lesion. Thus, the binding of [3H]imipramine that is displaced by desipramine, the most common assay for [3H]imipramine binding, includes a component that is not associated with brain serotonergic nerve terminals and 5-HT uptake, and, in addition, a separable component that is highly correlated with serotonergic function. These data have important implications for studies of serotonergic neurons and for the interpretation of imipramine binding data. 相似文献
6.
Abstract: Abstract: [3H]Adenosine transport was characterized in cerebral cortical synaptoneurosomes prepared from postmortem human brain using an inhibitor-stop/centrifugation method. The adenosine transport inhibitors dipyridamole and dilazep completely and rapidly blocked transmembrane fluxes of [3H]adenosine. For 5-s incubations, two kinetically distinguishable processes were identified, i.e., a high-affinity adenosine transport system with Kt and Vmax values of 89 μM and 0.98 nmol/min/mg of protein, respectively, and a low-affinity adenosine transport system that did not appear to be saturable. For incubations with 1 μM [3H]adenosine as substrate, intrasynaptoneurosomal concentrations of [3H]adenosine were 0.26 μM at 5 s and 1 μM at 600 s. Metabolism of accumulated [3H]adenosine to adenine nucleotides was 15% for 5-s, 23% for 15-s, 34% for 30-s, 43% for 60-s, and 80% for 600-s incubations. The concentrations (μM) of total accumulated 3H-purines ([3H]-adenosine plus metabolites) at these times were 0.3, 0.5, 1.0, 1.3 and 5.6, respectively. These results indicate that in the presence of extensive metabolism, the intrasynaptoneurosomal accumulation of 3H-purines was higher than the initial concentration of 1 μM [3H]adenosine in the reaction medium. For 5-, 15-, 30-, 60-, and 600-s incubations in the presence of the adenosine deaminase inhibitor EHNA and the adenosine kinase inhibitor 5′-iodotubercidin, metabolism of the transported [3H]adenosine was 14, 14, 16, 14, and 38%, respectively. During these times, total 3H-purine accumulation was 0.3, 0.5, 0.5, 0.7, and 1.8 μM, respectively. Thus, the apparently “concentrative'’accumulation of 3H-purines can be prevented by inhibition of adenosine metabolism and, taken together, these results suggest that adenosine transport in at least synaptoneurosomes prepared from postmortem human brain is via a nonconcentrative and equilibrative system. 相似文献
7.
Merrit L. Quarum Joel D. Parker John F. W. Keana Eckard Weber 《Journal of neurochemistry》1990,54(4):1163-1168
The pharmacological specificity and the regional distribution of the N-methyl-D-aspartate receptor-associated 5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801) binding sites in human postmortem brain tissue were determined by binding studies using (+)-[3H]MK-801. Scatchard analysis revealed a high-affinity (KD = 0.9 +/- 0.2 nM, Bmax = 499 +/- 33 fmol/mg of protein) and a low-affinity (KD = 3.6 +/- 0.9 nM, Bmax = 194 +/- 44 fmol/mg of protein) binding site. The high-affinity site showed a different regional distribution of receptor density (cortex greater than hippocampus greater than striatum) compared to the low-affinity binding site (cerebellum greater than brainstem). The rank order pharmacological specificity and stereoselectivity of the high-(cortex) and low-(cerebellar) affinity binding sites were identical. However, all compounds tested showed greater potency at the high-affinity site in cortex. The results indicate that (+)-[3H]MK-801 binding in human postmortem brain tissue shows pharmacological and regional specificity. 相似文献
8.
Kiyoko S. Kanba Shigenobu Kanba Harou Okazaki Elliott Richelson 《Journal of neurochemistry》1986,46(3):946-952
The binding of [3H]neurotensin to membranes from human brain at 0 degrees C was specific, saturable, and reversible. In the frontal cortex, the equilibrium dissociation constant (KD) for [3H]neurotensin determined from the ratio of rate constants (k-1/k1), saturation isotherms, and inhibition binding experiments was 0.80, 2.0, and 2.0 nM, respectively, and the maximum number of binding sites (Bmax) from the saturation isotherms and the competitive binding experiments was 2.4 and 2.2 pmol/g of tissue, respectively. Hill coefficients for binding were equal to 1, indicating the presence of single, noncooperative binding sites. Inhibition of specific binding of [3H]-neurotensin by several analogs of neurotensin showed that [Gln4]neurotensin and neurotensin(8-13) had the highest affinities for these binding sites in human frontal cortex, with each analog being approximately 13-fold more potent than neurotensin. In addition, these data showed that the carboxy-terminal portion of neurotensin played an important part in the binding of this neuropeptide in human brain, a result described for other species. Regional distribution of binding sites was different from that reported for animal brains. Of the 33 different regions investigated, the uncus and substantia nigra showed the highest specific binding of [3H]neurotensin, whereas such areas as the pineal body, medulla, and corpus callosum had few binding sites. 相似文献
9.
Binding of [3H]nipecotic acid, a proposed marker for GABAergic neurons, was investigated in postmortem human brain by use of a centrifugation assay. Binding was displaceable, apparently saturable, and to a single site, with typical KD and Bmax values of 1.85 microM and 124.2 pmol/mg of protein in the hippocampus. Regional distribution studies indicated a heterogeneous population of [3H]nipecotic acid binding sites with highest concentrations in the lateral globus pallidus. Putamen tissue from four cases of Huntington's disease showed a marked reduction in [3H]nipecotic acid binding. Binding correlated with both age and postmortem delay in the hippocampus. There was an effect of agonal state in which prolonged illness before death apparently caused a reduction in binding. Our results indicate that [3H]nipecotic acid may be used successfully as a marker for neuronal GABAergic uptake sites in human brain, but that the effects of variables such as age, postmortem delay, and agonal state must always be taken into account. 相似文献
10.
Siong-Chi Lin Kenneth C. Olson Haruo Okazaki† Elliott Richelson‡ 《Journal of neurochemistry》1986,46(1):274-279
Pirenzepine, a potent antimuscarinic agent with apparent selectivity for a subtype (M1) of muscarinic receptors, was used in tritiated form to characterize its binding to human brain tissue. Specific [3H]pirenzepine binding showed rapid association and dissociation. From kinetic and competitive binding experiments, its KD was 5.5 nM and 9 nM, respectively. Regional distribution of [3H]pirenzepine binding determined in parallel with [3H]quinuclidinyl benzilate binding, a nonselective muscarinic antagonist, indicated a significant correlation for the maximum number of binding sites for the two radioligands in 13 brain regions, with the highest amount of binding for each in the putamen and the least in the cerebellum. Binding for [3H]pirenzepine averaged 57% of that for [3H]quinuclidinyl benzilate, with a range of 20% (cerebellum) to 77% (frontal cortex). Most antidepressants and neuroleptics tested had affinities for [3H]pirenzepine binding sites that were not significantly different from their previously reported values obtained with the use of [3H]quinuclidinyl benzilate. 相似文献
11.
Abstract: The nature of [3 H]imipramine binding to human platelets was investigated. Desipramine and 5-hydroxytryptamine (5-HT) displaced the same amount of binding and the binding was sensitive to protease treatment. The nature of pharmacological inhibition of [3 H]imipramine binding was investigated in saturation experiments. Increases in K d without changes in B max were noted with the addition of 5-HT, desipramine, norzimeldine, or 5-methoxytryptoline. Reductions in B max without alterations in K D were obtained when citalopram or clomipramine was added. It is concluded that the [3 H]imipramine binding site in human platelets is of protein nature and that this binding site contains the substrate recognition site for 5-HT uptake. In addition, [3 H]imipramine and other 5-HT uptake inhibitors have bonds to other parts of the 5-HT uptake carrier or to the surrounding lipid membrane. This additional binding outside the substrate recognition site is not one single site but most likely represents sites that are specific for the chemical structure of each uptake inhibitor, respectively. 相似文献
12.
Jacques De Keyser Jean-Paul De Backer Guy Ebinger Georges Vauquelin 《Journal of neurochemistry》1989,53(5):1400-1404
Binding of 1-[2-(diphenylmethoxy)ethyl]-4-(3-phenylpropyl)piperazine ([3H]GBR 12935) was studied in membrane preparations of several human brain regions. In putamen, the substituted piperazine derivates cis- and trans-flupenthixol displaced 90% of the total [3H]GBR 12935 binding. Computer-assisted analysis of the competition curves revealed a high-affinity site (30%; KiH = 54 nM) and a low-affinity site (60%; KiL = 4.5 microM). The dopamine uptake blockers mazindol and nomifensine only displaced 30% of the total [3H]GBR 12935 binding in a monophasic way. Binding of [3H]GBR 12935 to the dopamine uptake sites, i.e., that displaced by dopamine uptake blockers, corresponded to part of the binding having low affinity for flupenthixol and was only detected in putamen, nucleus caudatus, nucleus accumbens, and substantia nigra. Even after masking the high-affinity binding site for flupenthixol by including 1 microM cis-flupenthixol in the binding assays, no dopamine uptake sites could be detected in globus pallidus, amygdala, thalamus, hippocampus, and cerebral cortex. Binding of [3H]GBR 12935 to dopamine uptake sites was lost in the nucleus caudatus ipsilateral to ventral midbrain infarctions, confirming their location on nigrostriatal nerve endings. Gross unilateral lesions of the striato- and pallidonigral pathways did not affect the number of dopamine uptake sites in the ipsilateral substantia nigra, suggesting that they may reside on the soma or dendrites of nigral neurons. 相似文献
13.
Binding of [3H]imipramine in mouse cerebral cortex was found to be nonhomogeneous. Competition experiments, Scatchard analysis, and Hill plots are compatible with the existence of binding with high (nanomolar) and low (micromolar) affinity. Low-affinity binding could be eliminated by the use of low concentrations of imipramine as the competing ligand. In contrast to the high-affinity binding, the low-affinity binding was found to be unrelated to the neuronal uptake system for serotonin. 相似文献
14.
[3H]MK-801 binding was used as an index of the glutamate receptor N-methyl-D-aspartate-subtype channel to examine the influence of gender, age, mode of death (agonal status), interval between death and autopsy (postmortem delay), and time in storage at -70 degrees C in well washed homogenate preparations from postmortem human frontal cortex. Basal binding and the modulatory effects of glutamate, glycine, spermidine, and zinc were examined with respect to these variables. Basal binding was sensitive to agonal status, being higher in sudden death cases. The effect of added glutamate and glycine was sensitive to age, with a trend toward lower binding with increasing age. The effect of added spermidine alone was sensitive to storage time at -70 degrees C, the binding being higher with longer storage time. The effect of added zinc was also sensitive to postmortem delay, with zinc causing a greater reduction in binding with shorter postmortem delays. Thus, with the exception of gender, all variables examined influenced [3H]MK-801 binding, highlighting the attention that should be given to these factors in postmortem studies in normal and diseased human subjects. 相似文献
15.
The present study demonstrates that [3H]imipramine binds to both high- and low-affinity imipramine binding components on membranes prepared from rat cerebral cortex. Scatchard and computer analyses of saturation experiments using a wide range of [3H]imipramine concentrations (0.5 nM-50 nM) revealed the presence of two binding components. Inhibition experiments in which membranes were incubated with [3H]imipramine and various concentrations of unlabelled imipramine gave shallow inhibition curves with a Hill coefficient of 0.60 +/- 0.04. When dissociation rates of imipramine were studied, biphasic dissociation curves were obtained with apparent half-times of dissociation of 2.5 +/- 0.4 min and 18.5 +/- 2.5 min. Thus analysis of saturation, competition, and dissociation experiments indicate that [3H]imipramine binds to low as well as high-affinity binding sites in rat cortex. 相似文献
16.
Ted M. Dawson R. Tyler McCabe Suzanne S. Stensaas James K. Wamsley 《Journal of neurochemistry》1987,49(3):789-796
The distribution of dopamine D-1 receptors has been determined in human prefrontal cortex (Brodmann's area 9) by an in vitro light microscopic autoradiographic method. Dopamine D-1 receptors were localized by using [3H]SCH 23390 as a ligand. Our results indicated that [3H]SCH 23390 binding to slide-mounted tissue sections of human brain is specific, saturable, and of high affinity. Lamina Va contained the highest density of D-1 receptors, with a Bmax value of 11.2 +/- 1.3 fmol/mg tissue. The KD values for [3H]SCH 23390 in all laminae ranged from 2.6 to 3.2 nM. Competition studies performed with [3H]SCH 23390 indicated a pharmacologic profile consistent with labeling of the D-1 receptor. 相似文献
17.
In the rat hypothalamus [3H]imipramine binding is inhibited by tricyclic and nontricyclic antidepressant drugs in a complex manner, with biphasic curves and Hill coefficients less than 1.0. 5-Hydroxytryptamine (serotonin) inhibited with high affinity a decreasing proportion of the [3H]imipramine binding sites as the [3H]imipramine concentration was raised. In the absence of sodium ions, IC50 values for the inhibition by tricyclic and nontricyclic antidepressants were increased by approximately 1,000-fold, and the inhibition curves became classically monophasic with Hill coefficients close to 1.0. These data are interpreted as suggesting that [3H]imipramine binds to two independent sites in the rat hypothalamus. One site is sodium-dependent with a high affinity for the drugs tested; the other is sodium-independent and has a low affinity for these drugs. 相似文献
18.
Abstract: The presence of multiple [3 H] GBR-12935 binding sites in the human brain has been revealed in several recent studies. One site represents the dopamine uptake site. In rat brain it was demonstrated that [3 H] GBR-12935 also binds to nondopaminergic "piperazine acceptor sites." One of these sites has been identified as cytochrome P450IID1 in canine brain. [3 H] GBR-12935 binding to the piperazine acceptor sites in the human brain was investigated in the present study. A pharmacological definition of the piperazine acceptor sites is presented: the [3 H]- GBR-12935 binding fraction that could be discriminated by 10 μ M GBR-12909 in the presence of 0.3 μ M mazindol. This binding fraction was saturable, with binding affinity in the range of 3–8 n M. It was also demonstrated that the piperazine acceptor or cytochrome P450-sensitive drugs cis -flupentixol and proadifen (SKF 525 A) compete for the same binding sites, suggesting the cytochrome P450 nature of the binding. The findings presented support the proposal that at least part of this fraction represents cytochrome P450IID6, the human form of P450IID1. The distribution of [3 H] GBR-12935 binding to the suggested P450IID6-site in 12 brain regions was examined, without significant differences in binding densities between the regions. The significance of the present findings on the cytochrome P450 system in brain is discussed. 相似文献
19.
R. Niddam A. Dubois B. Scatton S. Arbilla S. Z. Langer 《Journal of neurochemistry》1987,49(3):890-899
The regional distribution of [3H]zolpidem, a novel imidazopyridine hypnotic possessing preferential affinity for the BZD1 (benzodiazepine subtype 1) receptor, has been studied autoradiographically in the rat CNS and compared with that of [3H]flunitrazepam. The binding of [3H]zolpidem to rat brain sections was saturable, specific, reversible, and of high affinity (KD = 6.4 nM). It occurred at a single population of sites whose pharmacological characteristics were similar to those of the benzodiazepine receptors labeled with [3H]flunitrazepam. However, ethyl-beta-carboline-3-carboxylate and CL 218,872 were more potent displacers of [3H]zolpidem than of [3H]flunitrazepam. The autoradiographic brain distribution of [3H]zolpidem binding sites was qualitatively similar to that previously reported for benzodiazepine receptors. The highest levels of [3H]-zolpidem binding sites occurred in the olfactory bulb (glomerular layer), inferior colliculus, ventral pallidum, nucleus of the diagonal band of Broca, cerebral cortex (layer IV), medial septum, islands of Calleja, subthalamic nucleus, and substantia nigra pars reticulata, whereas the lowest densities were found in parts of the thalamus, pons, and medulla. Comparative quantitative autoradiographic analysis of the binding of [3H]zolpidem and [3H]flunitrazepam [a mixed BZD1/BZD2 (benzodiazepine subtype 2) receptor agonist] in the CNS revealed that the relative density of both 3H-labeled ligands differed in several brain areas. Similar levels of binding for both ligands were found in brain regions enriched in BZD1 receptors, e.g., substantia nigra pars reticulata, inferior colliculus, cerebellum, and cerebral cortex lamina IV. The levels of [3H]zolpidem binding were five times lower than those of [3H]flunitrazepam binding in those brain regions enriched in BZD2 receptors, e.g., nucleus accumbens, dentate gyrus, and striatum. Moreover, [3H]zolpidem binding was undetectable in the spinal cord (which contains predominantly BZD2 receptors). Finally, like CL 218,872 and ethyl-beta-carboline-3-carboxylate, zolpidem was a more potent displacer of [3H]flunitrazepam binding in brain regions enriched in BZD1 receptors than in brain areas enriched in BZD2 receptors. The present data add further support to the view that zolpidem, although structurally unrelated to the benzodiazepines, binds to the benzodiazepine receptor and possesses selectivity for the BZD1 receptor subtype. 相似文献
20.
Allosteric Interaction Between the Site Labeled by [3 H]Imipramine and the Serotonin Transporter in Human Platelets 总被引:2,自引:0,他引:2
Laurence R. Meyerson John R. Ieni Lawrence P. Wennogle 《Journal of neurochemistry》1987,48(2):560-565
The nature of interaction between the site labeled by [3H]imipramine (IMI) and the 5-hydroxytryptamine (5-HT, serotonin) transporter in human platelets was examined. The sulfhydryl characterizing agent N-ethylmaleimide (NEM) differentially affected [3H]5-HT uptake and [3H]IMI binding in human platelet preparations. Concentrations of NEM that completely abolished [3H]5-HT uptake only minimally reduced [3H]IMI binding. Examining the effect of IMI on the kinetics of human platelet [3H]5-HT uptake revealed significant reductions in maximal velocity (Vmax) without altering affinity (Km). IC50 values for selected uptake blockers on [3H]IMI binding and [3H]5-HT uptake were determined. IC50 values of these compounds for uptake and binding revealed that agents such as IMI, chlorpromazine, amitriptyline, and nisoxetine were preferential inhibitors of [3H]IMI binding whereas fluoxetine, CL 216, 303, pyrilamine, and bicifadine were preferential [3H]5-HT uptake blockers. 5-HT was a weak displacer of [3H]IMI binding (IC25 = 3.0 microM) and exhibited a rather low Hill coefficient (nH app = 0.46). Results reported herein support the notion of an allosteric interaction between the [3H]IMI binding site and the 5-HT transporter complex in human platelets. 相似文献