首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A proteolipidic toxin, prymnesin, when added to the aqueous solutions around thin lipid membranes causes a marked increase in membrane conductance. The toxin-treated membrane is cation-permselective. The extent of cation permselectivity is dependent upon ionic strength of the aqueous solutions in a fashion similar to the dependence of cation permselectivity of a cation exchanger containing about 100mm of fixed negative sites. Dose-response relationship studies reveal a linear relation between log prymnesin concentration and log membrane conductance. The slope of the curve is around 3 if the toxin is applied to one side of the membrane and is around 7 if the toxin is applied to both sides of the membrane. The membrane treated with toxin on one side only is clearly asymmetric in its properties. These characteristics are expressed by an asymmetric current-voltage relationship, and by asymmetric sensitivity of membrane conductance to pH and to salt concentration. The conductance of the toxin-treated membrane is inversely proportional to temperature. It is suggested that aggregates of toxin moieties assemble in the membrane to form negatively charged aqueous pores. There is roughly a good correlation between the increase in membrane conductance and the increase in membrane permeability to urea if both were attributed to the formation of aqueous channels in the membrane.  相似文献   

2.
膜生物反应器的研究进展   总被引:2,自引:0,他引:2  
膜生物反应器是近年来发展的废水处理新技术,具有活性污泥浓度高、污泥龄长、占地面积小、投资省的特点。利用膜生物反应器进行污水处理不仅可以大大节约水资源,还可以大大节约能源,节省设备和运行费用,已成为二十一世纪研究热点。膜生物反应器是通过高效膜分离技术与活性污泥相结合,增大污泥中的特效菌来加快生化反应速率,提高废水处理效果。目前处理对象已从生活污水扩展到高浓度的有机废水和难降解的工业废水。本文综述了膜生物反应器在废水中的应用研究情况,并分析比较了各种膜材质的特点、适用范围以及膜的污染因素和清洗方法,展望了膜生物反应器的应用前景及进一步研究方向。  相似文献   

3.
The expression for the isotropic membrane bending energy was generalized for the case of a multicomponent membrane where the membrane constituents (single molecules or small complexes of molecules-membrane inclusions) were assumed to be anisotropic. Using this generalized expression for the membrane energy it was shown that the change of intrinsic shape of membrane components may induce first-order-like shape transitions leading to the formation of a membrane neck. The predicted discontinuous membrane shape transition and the concomitant lateral segregation of membrane components were applied to study membrane budding. Based on the results presented we conclude that the budding process might be driven by accumulation of anisotropic membrane components in the necks connecting the bud and the parent membrane, and by accumulation of isotropic (conical) membrane components on the bud. Both processes may strongly depend on the intrinsic shape of membrane components and on the direct interactions between them.  相似文献   

4.
A motile cell, when stimulated, shows a dramatic increase in the activity of its membrane, manifested by the appearance of dynamic membrane structures such as lamellipodia, filopodia, and membrane ruffles. The external stimulus turns on membrane bound activators, like Cdc42 and PIP2, which cause increased branching and polymerization of the actin cytoskeleton in their vicinity leading to a local protrusive force on the membrane. The emergence of the complex membrane structures is a result of the coupling between the dynamics of the membrane, the activators, and the protrusive forces. We present a simple model that treats the dynamics of a membrane under the action of actin polymerization forces that depend on the local density of freely diffusing activators on the membrane. We show that, depending on the spontaneous membrane curvature associated with the activators, the resulting membrane motion can be wavelike, corresponding to membrane ruffling and actin waves, or unstable, indicating the tendency of filopodia to form. Our model also quantitatively explains a variety of related experimental observations and makes several testable predictions.  相似文献   

5.
A rat liver plasma membrane preparation was isolated and characterized both biochemically and morphologically. The isolation procedure was rapid, simple and effective in producing a membrane fraction with the following biochemical characteristics: approximately 40-fold enrichment in three plasma membrane markers, 5'-nucleotidase, alkaline phosphodiesterase I (both putative bile canalicular membrane enzymes), and the asialo-glycoprotein (ASGP) receptor (a membrane glycoprotein present along the sinusoidal front of hepatocytes); a yield of each of these plasma membrane markers that averaged approximately 16%; and minimal contamination by lysosomes, nuclei, and mitochondria, but persistent contamination by elements of the endoplasmic reticulum. Morphological analysis of the preparation revealed that all three major domains of the hepatocyte plasma membrane (sinusoidal, lateral, and bile canalicular) were present in substantial amounts. The identification of sinusoidal membrane was further confirmed when ASGP binding sites were localized predominantly to this membrane in the isolated PM using electron microscope autoradiography. By morphometry, the sinusoidal front membrane accounted for 47% of the total membrane in the preparation, whereas the lateral surface and bile canalicular membrane accounted for 6.8% and 23% respectively. This is the first report of such a large fraction of sinusoidal membrane in a liver plasma membrane preparation.  相似文献   

6.
In this paper, we compared the minimum potential differences in the electroporation of membrane lipid bilayers and the denaturation of membrane proteins in response to an intensive pulsed electric field with various pulse durations. Single skeletal muscle fibers were exposed to a pulsed external electric field. The field‐induced changes in the membrane integrity (leakage current) and the Na channel currents were monitored to identify the minimum electric field needed to damage the membrane lipid bilayer and the membrane proteins, respectively. We found that in response to a relatively long pulsed electric shock (longer than the membrane intrinsic time constant), a lower membrane potential was needed to electroporate the cell membrane than for denaturing the membrane proteins, while for a short pulse a higher membrane potential was needed. In other words, phospholipid bilayers are more sensitive to the electric field than the membrane proteins for a long pulsed shock, while for a short pulse the proteins become more vulnerable. We can predict that for a short or ultrashort pulsed electric shock, the minimum membrane potential required to start to denature the protein functions in the cell plasma membrane is lower than that which starts to reduce the membrane integrity. Bioelectromagnetics 34:253–263, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
The major outer membrane lipoprotein (Lpp) of Escherichia coli requires LolA for its release from the cytoplasmic membrane, and LolB for its localization to the outer membrane. We examined the significance of the LolA-LolB system as to the outer membrane localization of other lipoproteins. All lipoproteins possessing an outer membrane-directed signal at the N-terminal second position were efficiently released from the inner membrane in the presence of LolA. Some lipoproteins were released in the absence of externally added LolA, albeit at a slower rate and to a lesser extent. This LolA-independent release was also strictly dependent on the outer membrane sorting signal. A lipoprotein-LolA complex was formed when the release took place in the presence of LolA, whereas lipoproteins released in the absence of LolA existed as heterogeneous complexes, suggesting that the release and the formation of a complex with LolA are distinct events. The release of LolB, an outer membrane lipoprotein functioning as the receptor for a lipoprotein-LolA complex, occurred with a trace amount of LolA, and therefore was extremely efficient. The LolA-dependent release of lipoproteins was found to be crucial for the specific incorporation of lipoproteins into the outer membrane, whereas lipoproteins released in the absence of LolA were nonspecifically and inefficiently incorporated into the membrane. The outer membrane incorporation of lipoproteins including LolB per se was dependent on LolB in the outer membrane. From these results, we conclude that lipoproteins in E. coli generally utilize the LolA-LolB system for efficient release from the inner membrane and specific localization to the outer membrane.  相似文献   

8.
Mechanism of spontaneous inside-out vesiculation of red cell membranes   总被引:1,自引:1,他引:0  
In certain conditions, human red cell membranes spontaneously form inside out vesicles within 20 min after hypotonic lysis. Study of the geometry of this process now reveals that, contrary to earlier views of vesiculation by endocytosis or by the mechanical shearing of cytoskeleton-depleted membrane, lysis generates a persistent membrane edge which spontaneously curls, cuts, and splices the membrane surface to form single or concentric vesicles. Analysis of the processes by which proteins may stabilize a free membrane edge led us to formulate a novel zip-type mechanism for membrane cutting-splicing and fusion even in the absence of free edges. Such protein-led membrane fusion represents an alternative to mechanisms of membrane fusion based on phospholipid interactions, and may prove relevant to processes of secretion, endocytosis, phagocytosis, and membrane recycling in many cell types.  相似文献   

9.
The absorption and circular dichroism of the purple membrane in solution and the linear and circular dichroism of the purple membrane oriented in a film were used to detect changes in the membrane protein structure and membrane organization in the pH range of 2.4 to 12.6. Main findings are (a) the membrane protein structure is stable at every level of organization to pH changes over the range of 5.0 to 8.5. (b) Tertiary structural changes occur in the membrane protein structure in the pH range of 2.4 to 5.0 and 8.5 to 11.8 without any secondary structural involvement. (c) An irreversible change occurs in the membrane organization in the pH range of 11.8 to 12.6 involving large tertiary and secondary structural changes in the membrane protein. (d) The retinyl chromophore is influenced by a nearby ionizable group. (e) The membrane crystalline structure is highly stable to pH perturbation except at the high pH range of 11.0 to 11.8.  相似文献   

10.
The membrane capacitance of the outer hair cell, which has unique membrane potential-dependent motility, was monitored during application of membrane tension. It was found that the membrane capacitance of the cell decreased when stress was applied to the membrane. This result is the opposite of stretching the lipid bilayer in the plasma membrane. It thus indicates the importance of some other capacitance component that decreases on stretching. It has been known that charge movement across the membrane can appear to be a nonlinear capacitance. If membrane stress at the resting potential restricts the movement of the charge associated with force generation, the nonlinear capacitance will decrease. Furthermore, less capacitance reduction by membrane stretching is expected when the membrane is already extended by the (hyperpolarizing) membrane potential. Indeed, it was found that at hyperpolarized potentials, the reduction of the membrane capacitance due to stretching is less. The capacitance change can be described by a two state model of a force-producing unit in which the free energy difference between the contracted and stretched states has both electrical and mechanical components. From the measured change in capacitance, the estimated difference in the membrane area of the unit between the two states is about 2 nm2.  相似文献   

11.
J M DiRienzo  M Inouye 《Cell》1979,17(1):155-161
The reduction of the membrane lipids of E. coli to a nonfluid state resulted in the accumulation in the cell envelope of a high molecular weight precursor of the protoIG protein, a major outer membrane protein. The protoIG protein was as sensitive to trypsin as the mature toIG protein assembled in the outer membrane. In contrast to the toIG protein, however, the accumulated protoIG protein was easily released from the envelope fraction by both sodium lauryl sarcosinate extraction and sonication. This indicated that the precursor protein was loosely associated with the cell membrane. When a fluid lipid state was restored, the protoIG protein was processed to the mature form which was then correctly assembled in the outer membrane. These results suggest that the protoIG protein produced under nonfluid lipid conditions was properly translocated across the cytoplasmic membrane, but could not be assembled in the outer membrane due either to the reversible inhibition of the processing of the ProtoIG to the toIG protein or to the lack of interaction with a specific outer membrane component(s). Reduced lipid fluidity also caused various alterations in the biosynthesis and assembly of other membrane proteins. In addition to the toIG protein, a large number of new proteins were accumulated in the membrane. Alternatively, the matrix protein as well as the promatrix protein were not detected in the cell envelope. On the other hand, the lipoprotein was normally produced, processed, modified and assembled in the outer membrane. These results indicate that the outer membrane proteins are synthesized and assembled according to several different mechanisms, on which the physical state of the membrane has various effects.  相似文献   

12.
Equations of mechanical equilibrium are applied to the erythrocyte membrane in the normal, hypotonically swollen, and sphered configurations. The hydrostatic pressure drop across the normal cell membrane is shown to be zero for all biconcave shapes if the membrane thickness is uniform. This result leads to the conclusion that the membrane tension is uniform and is a function of membrane potential. A two-dimensional fluid film model for the membrane is introduced to describe the unusual deformability of the erythrocyte during sphering in hypotonic solutions. The model predicts a smooth transition from the biconcave shape to a perfect sphere.  相似文献   

13.
Cellularization of the Drosophila embryo is a specialized form of cytokinesis that results in the formation of a polarized epithelium. The mechanisms of membrane growth during cytokinesis are largely unknown. It is also unclear whether membrane growth and polarization represent distinct processes that occur simultaneously or whether growth of the membrane is involved in the emergence of polarity. Using a combination of surface labeling and particles tracking techniques, we monitored the dynamics of marked membrane regions during cellularization. We find that the major source of membrane is intracellular, rather than in the form of a plasma membrane reservoir. Depolymerization of microtubules inhibits the export of a newly synthesized transmembrane protein from the Golgi apparatus to the plasma membrane and simultaneously blocks membrane growth. Membrane insertion occurs in a defined sequence at specific sites, first apical, then apical-lateral. Diffusion of the membrane appears insufficient to compete with the massive local insertion of new membrane. We thus identify a tightly regulated scheme of polarized membrane insertion during cellularization. We propose that such a mechanism could participate in the progressive emergence of apical-basal polarity.  相似文献   

14.
Distributions of each amino acid in the trans-membrane domain were calculated as a function of the membrane normal using all currently available alpha-helical membrane protein structures with resolutions better than 4 A. The results were compared with previous sequence- and structure-based analyses. Calculation of the average hydrophobicity along the membrane normal demonstrated that the protein surface in the membrane domain is in fact much more hydrophobic than the protein core. While hydrophobic residues dominate the membrane domain, the interfacial regions of membrane proteins were found to be abundant in the small residues glycine, alanine, and serine, consistent with previous studies on membrane protein packing. Charged residues displayed nonsymmetric distributions with a preference for the intracellular interface. This effect was more prominent for Arg and Lys resulting in a direct confirmation of the positive inside rule. Potentials of mean force along the membrane normal were derived for each amino acid by fitting Gaussian functions to the residue distributions. The individual potentials agree well with experimental and theoretical considerations. The resulting implicit membrane potential was tested on various membrane proteins as well as single trans-membrane alpha-helices. All membrane proteins were found to be at an energy minimum when correctly inserted into the membrane. For alpha-helices both interfacial (i.e. surface bound) and inserted configurations were found to correspond to energy minima. The results demonstrate that the use of trans-membrane amino acid distributions to derive an implicit membrane representation yields meaningful residue potentials.  相似文献   

15.
《Molecular membrane biology》2013,30(4-6):170-177
Abstract

The apical surface of the enterocyte is sculpted into a dense array of cylindrical microvillar protrusions by supporting actin filaments. Membrane microdomains (rafts) enriched in cholesterol and glycosphingolipids comprise roughly 50% of the microvillar membrane and play a vital role in orchestrating absorptive/digestive action of dietary nutrients at this important cellular interface. Increased membrane thickness is believed to be a morphological characteristic of rafts. Thus, we investigated whether the high contents of lipid rafts in the microvillar membrane is reflected in local variations in membrane thickness. We measured membrane thickness directly from electron micrographs of sections of fixed mucosal tissue. Indeed, mapping of the microvillar membrane revealed a biphasic distribution of membrane thickness. As a point of reference the thickness distribution of the basolateral membrane was clearly monophasic. The encountered domains of increased thickness (DITs) occupied 48% of the microvillar membrane and from the data we estimated the area of a single DIT to have a lower limit of 600 nm2. In other experiments we mapped the organization of biochemically defined lipid rafts by immunogold labeling of alkaline phosphatase, a well documented raft marker. Strikingly, the alkaline phosphatase localized to distinct regions of the membrane in a pattern similar to the observed distribution of DITs. Although we were unable to measure membrane thickness directly on the immunogold labeled specimens, and thereby establish an unequivocal connection between DITs and rafts, we conclude that the brush border membrane of the enterocyte contains microdomains distinguishable both by membrane morphology and protein composition.  相似文献   

16.
It has long been known that the red blood cell contains a membrane skeleton that stabilizes the plasma membrane, determines its shape, and regulates the lateral distribution of the membrane glyco-proteins to which it is attached. The way in which these functions are regulated in other cells has not been understood. It has now been shown that platelets also contain a membrane skeleton. In contrast to the membrane skeleton of the red blood cell, the platelet membrane skeleton has actin-binding protein, not spectrin, as a major component. The platelet membrane skeleton regulates the same cellular functions as the red blood cell membrane skeleton. Other cells may contain a membrane skeleton that is critical to their viability and normal functioning.  相似文献   

17.
Several recent studies have demonstrated the ability of techniques based on immunoadsorption to selectively isolate specialized subregions of membranes, termed domains, which are derived from a larger more complex parent membrane like the plasma membrane. The immunoadsorbent is directed against a specific antigen that resides exclusively or predominantly in the membrane domain to be isolated. Thus, a monospecific antibody to the domain-specific antigen is required. In the present study we developed a method employing a modified immunoblotting strategy which could utilize polyspecific antibodies to isolate membrane vesicles derived from a specific membrane domain of the hepatocyte plasma membrane. We also used specific cell surface labeling of the hepatocyte plasma membrane by lactoperoxidase-catalyzed iodination at 4 degrees C and preparation of different sized vesicles by sonication to facilitate isolation of the specific domain. For this study, polyspecific antisera were raised in goats against a membrane fraction, denoted N2u, which is enriched in bile canalicular proteins. This antiserum recognizes, among other antigens, a 110,000 Mr polypeptide previously shown to be localized in the bile canaliculus (J. Cook et al. (1983) J. Cell. Biol. 97, 1823-1833). A monospecific antiserum was raised in rabbits against the rat hepatocyte asialoglycoprotein receptor, a sinusoidal domain-specific set of glycoproteins whose major form has a Mr of 43,000. These antisera were each coupled indirectly to different pieces of nitrocellulose by the immunoblotting protocol and were used to isolate membrane vesicles from a crude extract of liver plasma membrane prepared by sonication. The ratio of iodinated asialoglycoprotein receptor to the 110,000 Mr polypeptide in vesicles isolated by the affinity nitrocellulose immunoadsorbent method indicate a 10- to 15-fold enrichment of sinusoidal-derived vesicles relative to bile canalicular-derived membrane vesicles. These results show that the affinity nitrocellulose immunoadsorbent method can be used to isolate domain-specific vesicles. Further, the affinity immunoadsorbent method described here for the isolation of domains of the plasma membrane is an integrative one allowing isolation of vesicles present in relatively small concentration in crude cell extracts and it requires minimal ultracentrifugation time.  相似文献   

18.
Numerous cell membrane associated processes, including signal transduction, membrane sorting, protein processing and virus trafficking take place in membrane subdomains. Protein-protein interactions provide the frameworks necessary to generate biologically functional membrane domains. For example, coat proteins define membrane areas destined for sorting processes, viral proteins self-assemble to generate a budding virus, and adapter molecules organize multimolecular signalling assemblies, which catalyse downstream reactions. The concept of raft lipid-based membrane domains provides a different principle for compartmentalization and segregation of membrane constituents. Accordingly, rafts are defined by the physical properties of the lipid bilayer and function by selective partitioning of membrane lipids and proteins into membrane domains of specific phase behaviour and lipid packing. Here, I will discuss the interplay of these independent principles of protein scaffolds and raft lipid microdomains leading to the generation of biologically functional membrane domains.  相似文献   

19.
《The Journal of cell biology》1993,121(6):1233-1243
Nuclear-encoded proteins destined for mitochondria must cross the outer or both outer and inner membranes to reach their final sub- mitochondrial locations. While the inner membrane can translocate preproteins by itself, it is not known whether the outer membrane also contains an endogenous protein translocation activity which can function independently of the inner membrane. To selectively study the protein transport into and across the outer membrane of Neurospora crassa mitochondria, outer membrane vesicles were isolated which were sealed, in a right-side-out orientation, and virtually free of inner membranes. The vesicles were functional in the insertion and assembly of various outer membrane proteins such as porin, MOM19, and MOM22. Like with intact mitochondria, import into isolated outer membranes was dependent on protease-sensitive surface receptors and led to correct folding and membrane integration. The vesicles were also capable of importing a peripheral component of the inner membrane, cytochrome c heme lyase (CCHL), in a receptor-dependent fashion. Thus, the protein translocation machinery of the outer mitochondrial membrane can function as an independent entity which recognizes, inserts, and translocates mitochondrial preproteins of the outer membrane and the intermembrane space. In contrast, proteins which have to be translocated into or across the inner membrane were only specifically bound to the vesicles, but not imported. This suggests that transport of such proteins involves the participation of components of the intermembrane space and/or the inner membrane, and that in these cases the outer membrane translocation machinery has to act in concert with that of the inner membrane.  相似文献   

20.
An enzyme in the cytoplasmic membrane, nitrate reductase, can be solubilized by heating membranes to 60 degrees C for 10 min at alkaline pH. A protease in the cell envelope has been shown to be responsible for this solubilization. The localization of this protease in the outer membrane was demonstrated by separating the outer membrane from the cytoplasmic membrane, adding back various forms of outer membrane protein to the cytoplasmic membrane, and following the increase in nitrate reductase solubilization with increasing amounts of outer membrane proteins. This solubilization is accompanied by the cleavage of one of the subunits of nitrate reductase and is inhibited by the protease inhibitor p-aminobenzamidine. Analysis of membrane proteins synthesized by cells grown in the presence of various amounts of p-aminobenzamidine revealed that p-aminobenzamidine affects the synthesis of the major outer membrane proteins but has little effect on the synthesis of cytoplasmic membrane proteins. When outer membrane is reacted with the protease inhibitor [3H]diisopropylfluorophosphate, a single protein in the outer membrane is labeled. Since the interaction with diisopropylfluorophosphate is inhibited by p-aminobenzamidine, it is suggested that this single outer membrane protein is responsible for the in vitro solubilization of nitrate reductase and the in vivo processing of the major outer membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号