首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A multiple measurement system for assessing sarcoplasmic reticulum (SR) Ca++-ATPase activity and Ca++-uptake was used to examine the effects of SR fractionation and quick freezing on rat white (WG) and red (RG) gastrocnemius muscle.In vitro measurements were performed on whole muscle homogenates (HOM) and crude microsomal fractions (CM) enriched in SR vesicles before and after quick freezing in liquid nitrogen. Isolation of the CM fraction resulted in protein yields of 0.96±0.1 and 0.99±0.1 mg/g in WG and RG, respectively. The percent Ca++-ATPase recovery for CM compared to HOM was 14.5% (WG) and 10.1% (RG). SR Ca++-activated Ca++-ATPase activity was not affected by quick freezing of HOM or CM, but basal ATPase was reduced (P<0.05) in frozen HOM (5.12±0.18–3.98±0.20 mole/g tissue/min in WG and from 5.39±0.20–4.48±0.24 mole/g tissue/min in RG). Ca++-uptake was measured at a range of physiological free [Ca++] using the Ca++ fluorescent dye Indo-1. Maximum Ca++-uptake rates when corrected for initial [Ca++]f were not altered in HOM or CM by quick freezing but uptake between 300 and 400nM free Ca++ was reduced (P<0.05) in quick frozen HOM (1.30±0.1–0.66±0.1 mole/g tissue/min in WG and 1.04±0.2–0.60±0.1 mole/g tissue/min in RG). Linear correlations between Ca++-uptake and Ca++-ATPase activity measured in the presence of the Ca++ ionophore A23187 were r=+0.25, (P<0.05) and r=+0.74 (P<0.05) in HOM and CM preparations, respectively, and were not altered by freezing. The linear relationships between HOM and CM maximum Ca++-uptake (r=+0.44, P<0.05) and between HOM and CM Ca++-ATPase activity (r=+0.34, P<0.05) were also not altered by tissue freezing. These data suggest that alterations in maximal SR Ca++-uptake function and maximal Ca++-ATPase activity may be measured in both HOM and CM fractions following freezing and short term storage. (Mol Cell Biochem139, 41–52, 1994)  相似文献   

2.
Summary Secretagogues of pancreatic enzyme secretion, the hormones pancreozymin, carbamylcholine, gastrin I, the octapeptide of pancreozymin, and caerulein as well as the Ca++-ionophore A 23187 stimulate45Ca efflux from isolated pancreatic cells. The nonsecretagogic hormones adrenaline, isoproterenol, secretin, as well as dibutyryl cyclic adenosine 3,5-monophosphate and dibutyryl cyclic guanosine 3,5-monophosphate have no effect on45Ca efflux. Atropine blocks the stimulatory effect of carbamylcholine on45Ca efflux completely, but not that of pancreozymin. A graphical analysis of the Ca++ efflux curves reveals at least three phases: a first phase, probably derived from Ca++ bound to the plasma membrane; a second phase, possibly representing Ca++ efflux from cytosol of the cells; and a third phase, probably from mitochondria or other cellular particles. The Ca++ efflux of all phases is stimulated by pancreozymin and carbamylcholine. Ca++ efflux is not significantly effected by the presence or absence of Ca++ in the incubation medium. Metabolic inhibitors of ATP production, Antimycin A and dinitrophenol, which inhibit Ca++ uptake into mitochondria, stimulate Ca++ efflux from the isolated cells remarkably, but inhibit the slow phase of Ca++ influx, indicating the role of mitochondria as an intracellular Ca++ compartment. Measurements of the45Ca++ influx at different Ca++ concentrations in the medium reveal saturation type kinetics, which are compatible with a carrier or channel model. The hormones mentioned above stimulate the rate of Ca++ translocation.The data suggest that secretagogues of pancreatic enzyme secretion act by increasing the rate of Ca++ transport most likely at the level of the cell membrane and that Ca++ exchange diffusion does not contribute to the45Ca++ fluxes.With the technical assistance of C. Hornung.  相似文献   

3.
Summary Both simultaneous and consecutive mechanisms for Na+–Ca++ exchange are formulated and the associated systems of steady-state equations are solved numerically, and the net and unidirectional Ca++ fluxes computed for a variety of ionic and electrical boundary conditions. A simultaneous mechanism is shown to be consistent with a broad range of experimental data from the squid giant axon, cardiac muscle and isolated sarcolemmal vesicles. In this mechanism, random binding of three Na+ ions and one Ca++ on apposing sides of a membrane are required before a conformational change can occur, translocating the binding sites to the opposite sides of the membranes. A similar (return) translocation step is also permitted if all the sites are empty. None of the other states of binding can undergo such translocating conformational changes. The resulting reaction scheme has 22 reaction steps involving 16 ion-binding intermediates. The voltage dependence of the equilibrium constant for the overall reaction, required by the 31 Na+Ca++ stoichiometry was obtained by multiplying and dividing, respectively, the forward and reverse rate constants of one of the translocational steps by exp(–FV/2RT). With reasonable values for the membrane density of the enzyme (120 sites m2) and an upper limit for the rate constants of both translocational steps of 105·sec–1, satisfactory behavior was obtainable with identical binding constants for Ca++ on the two sides of the membrane (106 m –1), similar symmetry also being assumed for the Na+ binding constant (12 to 60m –1). Introduction of order into the ion-binding process eliminates behavior that is consistent with experimental findings.  相似文献   

4.
Summary Activation of the -adrenergic receptors of the opercular epithelium ofFundulus heteroclitus stimulates Cl secretion, while activation of the -adrenergic receptors inhibits Cl secretion (Degnan and Zadunaisky, 1979). The possible involvement of adenosine 3, 5-monophosphate (cAMP) in these adrenergic responses was investigated. Isolated opercular epithelia incubated in Ringer, containing 10 mM theophylline, had cAMP levels ranging between 5.3 and 19.3 pmoles·mg protein–1 (mean=9.5±1.0 pmoles·mg protein–1). Activation of the -receptors by 10–5 M isoproterenol increased the mean cAMP level 430% (P<0.001). Blockage of the -receptors with propranolol greatly reduced the increase in cAMP in response to isoproterenol. Activation of the -receptors by 10–5 M arterenol stimulated the mean cAMP level 270% (P<0.01). However, when the -receptors were blocked with propranolol, arterenol had no effect on the cAMP level. The possible involvement of Ca++ in these adrenergic responses was investigated. Neither the stimulatory effect of isoproterenol, nor the inhibitory effect of arterenol on the Cl secretion were diminished in the absence of extracellular Ca++. The Ca++ ionophore, A23187, and the calmodulin inhibitor, trifluoperazine, had no effects on the Cl secretion. The Ca++-channel blocker, D600, had a significant inhibitory effect (P<0.005). Guanosine 3,5-monophosphate (cGMP) had no effect on the Cl secretion.The results indicate that -adrenergic stimulation of Cl secretion across the opercular epithelium is accompanied by an elevation in tissue cAMP levels. -adrenergic inhibition of Cl secretion does not involve changes in the tissue cAMP. Neither of these responses appear to require Ca++.  相似文献   

5.
We performed experiments to elucidate the calcium influx pathways in freshly dispersed rabbit corneal epithelial cells. Three possible pathways were considered: voltage-gated Ca++ channels, Na+/Ca++ exchange, and nonvoltage-dependent Ca++-permeable channels. Whole cell inward currents carrying either Ca++ or Ba++ were not detected using voltage clamp techniques. We also used imaging technology and the Ca++-sensitive ratiometric dye fura 2 to measure changes in intracellular Ca++ concentration ([Ca]i). Bath perfusion with NaCl Ringer's solution containing the calcium channel agonist Bay-K-8644 (1 m), or Ni++ (40 m), a blocker of many voltage-dependent calcium channels, did not affect [Ca++]i. Membrane depolarization with a KCl Ringer's bath solution resulted in a decrease in [Ca++]i. These results are inconsistent with the presence of voltage gated Ca++ channels. Nonvoltage gated Ca++ entry, on the other hand, would be reduced by membrane depolarization and enhanced by membrane hyperpolarization. Agents which hyperpolarize via stimulation of K+ current, such as flufenamic acid, resulted in an increase in ratio intensity. The cells were found to be permeable to Mn++ and bath perfusion with 5 mm Ni++ decreased [Ca++]i suggesting that the Ca++ conductance was blocked. These results are most consistent with a nonvoltage gated Ca++ influx pathway. Finally, replacing extracellular Na+ with Li+ resulted in an increase in [Ca++]i if the cells were first Na+-loaded using the Na+ ionophore monensin and ouabain, a Na+-K+-ATPase inhibitor. These results suggest that Na+/Ca++ exchange may also regulate [Ca++] in this cell type.The authors are grateful to Chris Bartling for expert technical assistance with the imaging experiments, Helen Hendrickson for cell preparation, and Jonathon Monck for helpful discussions regarding imaging technology. This work was supported by National Institutes of Health grants EYO3282, EYO6005, DK08677, and an unrestricted award from Research to Prevent Blindness.  相似文献   

6.
Summary In Paramecium cells Ca++-stimulated triggering of the exocytosis of secretory vesicles (trichocysts) was achieved by ionophores X-537 A or A 23187. Under triggering conditions electron dense deposits were present in some resting trichocysts and regularly in discharging trichocysts; upon subsequent fixation deposits occurred on the trichocyst membrane (on the inner side or within the membrane) and on the inner lamellar sheath from where deposits seemed to radiate into the secretory materials. Similar results were obtained with glutardialdehyde fixation alone which also triggers exocytosis but only at low concentrations. Element analysis by energy dispersive x-ray microanalysis ascertained the presence of Ca and P in deposits occurring in trichocysts. Those resting trichocysts which were devoid of deposits did not contain Ca or P enriched. Hence, an abrupt Ca++-influx into individual trichocysts just before exocytosis seems to be involved in the triggering mechanism, possibly in combination with the sudden activation of an ATPase systemlocalized at those sites of the trichocysts which primarily contain the deposits. When paramecia were treated only with Ca++ and then fixed with OsO4 plus oxalate or merely with glutardialdehyde, electron scattering deposits were formed also on the inner side of the cell membrane and within the ciliary shaft (but rarely in trichocysts). Deposits obtained on cilia (including ciliary granule plaques) also contained Ca, P and S. Cells contain osmiophilic calcium-storing vacuoles which were selectively rich in Ca and S but devoid of P.  相似文献   

7.
Using combined intracellular recordings and behavioral bioassays, it was found that lysozyme has two different effects in Paramecium, depending upon the concentrations used. At low concentrations (0.5 nm to 1.0 m) it acts as an effective chemorepellent that causes reliable electrophysiological changes. Lysozyme-induced somatic depolarizations, isolated by blocking K+ channels with Cs-TEA, showed concentration dependencies that were well correlated with chemorepulsion. Ion dependency experiments showed that these were Ca++ based depolarizations. Addition of either Na+ or Mg++ improves chemorepulsion by providing additional depolarizations. Both the depolarizations and chemorepulsion were blocked by 10 m neomycin, suggesting that the depolarization is necessary for this chemosensory transduction event. At higher concentrations (100 m), lysozyme is a secretagogue. A transient inward current, recorded in Ca++ alone solutions with Cs-TEA present, was seen in response to high lysozyme concentrations. The amplitude of this inward current was well correlated with exocytosis. Addition of neomycin (1.0 mm) eliminated both the inward current and exocytosis, suggesting a causal relationship. Neither amiloride or W-7, compounds previously suggested to affect the electrophysiological responses to secretagogues, had any significant effects. The mucopolysaccharide hydrolysis activity of lysozyme was not required for any of these responses. We propose that Paramecium have a high affinity receptor on the body plasma membrane that responds to either lysozyme or a related compound to cause an increase in a novel body Ca++ conductance. This receptor-operated Ca++ conductance causes membrane depolarization and chemorepulsion at low concentrations and triggers a sufficient Ca++ influx at high concentrations to cause exocytosis.We thank Drs. C. Kung and R. Preston for sharing mutants and Drs. H. Machemer, A. Turkewitz and K. Clark for their comments on the first draft of this work. This was supported by NSF grants BNS8916228 and MCB9410756 to TMH and a grant from the American Diabetes Association to BHS.  相似文献   

8.
Summary We studied the mechanism of K++ channel activation by minoxidil-sulfate (MxSO4) in fused Madin-Darby canine kidney (MDCK) cells. Patch-clamp techniques were used to assess single channel activity, and fluorescent dye techniques to monitor cell calcium. A Ca+2+-dependent inward-rectifying K++ channel with slope conductances of 53±3 (negative potential range) and 20±3 pS (positive potential range) was identified. Channel activity is minimal in cell-attached patches. MxSO4 initiated both transient channel activation and an increase of intracellular Ca+2+ (from 94.2±9.1 to 475±12.6 nmol/liter). The observation that K++ channel activity of excised inside-out patches was detected only at Ca+2+ concentrations in excess of 10 mol/liter suggests the involvement of additional mechanisms during channel activation by MxSO4.Transient K++ channel activity was also induced in cell-attached patches by 10 mol/liter of the protein kinase C activator 1-oleoyl-2-acetyl-glycerol (OAG). OAG (10 mol/liter in the presence of 1.6 mmol/liter ATP) increased the Ca+2 sensitivity of the K+ channel in inside-out patches significantly by lowering the K mfor Ca+2 from 100 mol/liter to 100 nmol/liter. The channel activation by OAG was reversed by the protein kinase inhibitor H8. Staurosporine, a PKC inhibitor, blocked the effect of MxSO4 on K+ channel activation. We conclude that MxSO4-induced K+ channel activity is mediated by the synergistic effects of an increase in intracellular Ca+2 and a PKC-mediated enhancement of the K+ channel's sensitivity to Ca+2.A. Schwab was recipient of a Feodor-Lynen-Fellowship from the Alexander von Humboldt-Stiftung. This work was supported by NIH grant DK 17433. The authors thank Nikon Instruments Partners in Research Program for their support and generous use of equipment during the course of this study. Minoxidil-sulfate was kindly provided by Upjohn, Kalamazoo, MI.  相似文献   

9.
Summary The stain ruthenium red binds very strongly to isolated sarcolemma and the maximal binding is about 125 nmoles/mg protein, decreasing slightly in lipid-extracted membranes. The binding is half maximal when the free stain concentration is about 1.0 M, for both intact and lipid-depleted material. The nucleotide, ATP, reduces markedly the binding and the apparent affinity of the membranes for the stain. Minute concentrations of ruthenium red (10 M) inhibit by 80 to 90% the Ca++-binding by sarcolemma. The inhibition does not depend on the Ca++ concentration and is similar in both intact and lipid-extracted preparations. Ruthenium red inhibits the ATPase activity of sarcolemma. The inhibition is decreased by increasing the ATP concentration in the medium.  相似文献   

10.
The effect of lead on the filtration rate of the zebra musselDreissena polymorpha was investigated, together with the accumulation of Pb in the soft tissues of the mussels. The NOEC-filtration was 116 g.l–1 (0,56 mol.l–1) and the EC50-filtration was 370 g.l–1 (1.79 mol.l–1). The NOEC-accumulation was the concentration found in the control water (1.4g.l–1). These experiments show that the EC50-filtration for Pb is similar to that for Cd, higher than that for Cu and lower than that for Zn. The water quality criteria for lead allow 25 g Pb.l–1 in surface water. This will not cause short-term effects. Long-term effects may, however, occur, since an accumulation of Pb as low as 16 g.l–1 was recorded in this study.  相似文献   

11.
The effects of aluminum on the concentration-dependent kinetics of Ca2+ uptake were studied in two winter wheat (Triticum aestivum L.) cultivars, Al-tolerant Atlas 66 and Al-sensitive Scout 66. Seedlings were grown in 100 M CaCl2 solution (pH 4.5) for 3 d. Subsequently, net Ca2+ fluxes in intact roots were measured using a highly sensitive technique, employing a vibrating Ca2+-selective microelectrode. The kinetics of Ca2+ uptake into cells of the root apex, for external Ca2+ concentrations from 20 to 300 M, were found to be quite similar for both cultivars in the absence of external Al; Ca2+ transport could be described by Michaelis-Menten kinetics. When roots were exposed to solutions containing levels of Al that were toxic to Al-sensitive Scout 66 but not to Atlas 66 (5 to 20 M total Al), a strong correlation was observed between Al toxicity and Al-induced inhibition of Ca2+ absorption by root apices. For Scout 66, exposure to Al immediately and dramatically inhibited Ca2+ uptake over the entire Ca2+ concentration range used for these experiments. Kinetic analyses of the Al-Ca interactions in Scout 66 roots were consistent with competitive inhibition of Ca2+ uptake by Al. For example, exposure of Scout 66 roots to increasing Al levels (from 0 to 10 M) caused the K m for Ca2+ uptake to increase with each rise in Al concentration, from approx. 100 M in the absence of Al to approx. 300 M in the presence of 10 M Al, while having no effect on the V max. The same Al exposures had little effect on the kinetics of Ca2+ uptake into roots of Atlas 66. The results of this study indicate that Al disruption of Ca2+ transport at the root apex may play an important role in the mechanisms of Al toxicity in Al-sensitive wheat cultivars, and that differential Al tolerance may be associated with the ability of Ca2+-transport systems in cells of the root apex to resist disruption by potentially toxic levels of Al in the soil solution.We would like to thank Dr. Lionel F. Jaffe, Director of the National Vibrating Probe Facility, Marine Biological Laboratory, Woods Hole, Mass., USA, for making his calcium-selective vibrating-mi-croelectrode system available for a portion of this work. The research presented here was supported in part by USDA/NRI Competitive Grant number 91-37100-6630 to Leon Kochian. Contribution from the USDA-ARS, U.S. Plant, Soil and Nutrition Laboratory, Cornell University, Ithaca, N.Y. This research was part of the program of the Center for Root-Soil Research, Cornell University, Ithaca, N.Y. Department of Soil, Crop and Atmosphere Science, paper No. 1741.  相似文献   

12.
G. F. Wildner  J. Henkel 《Planta》1979,146(2):223-228
Ribulose-1,5-bisphosphate carboxylase-oxygenase is deactivated by removal of Mg++. The enzyme activities can be restored to a different extent by the addition of various divalent ions in the presence of CO2. Incubation with Mg++ and CO2 restores both enzyme activities, whereas, the treatment of the enzyme with the transition metal ions (Mn++, Co++, and Ni++) and CO2 fully reactivates the oxygenase: however, the carboxylase activity remains low. In experiments where CO2-free conditions were conscientiously maintained, no reactivation of RuBP oxygenase was observed, although Mn++ ions were present. Other divalent cations such as Ca++ and Zn++, restore neither the carboxylase nor the oxygenase reaction. Furthermore, the addition of Mn++ to the Mg++ and CO2 preactivated enzyme significantly inhibited carboxylase reactions, but increased the oxygenase reaction.Abbreviation RuBP ribulose-1,5-bisphosphate. The enyme unit for RuBP carboxylase is defined as mol CO2 fixed·min-1 and for the RuBP oxygenase as mol O2 consumed · min-1  相似文献   

13.
We have examined the effect of the Ca2+ (Mg2+)-ATPase inhibitors thapsigargin (TG) and vanadate on ATP-dependent 45Ca2+ uptake into IP3-sensitive Ca2+ pools in isolated microsomes from rat pancreatic acinar cells. The inhibitory effect of TG was biphasic. About 40–50% of total Ca2+ uptake was inhibited by TG up to 10 nm (apparent Ki4.2 nm, Ca2+ pool I). An additional increase of inhibition up to 85–90% of total Ca2+ uptake could be achieved at 15 to 20 nm of TG (apparent Ki12.1 nm, Ca2+ pool II). The rest was due to TG-insensitive contaminating plasma membranes and could be inhibited by vanadate (apparent Ki10 m). In the absence of TG, increasing concentrations of vanadate also showed two phases of inhibition of microsomal Ca2+ uptake. About 30–40% of total Ca2+ uptake was inhibited by 100 m of vanadate (apparent Ki18 m, Ca2+ pool II). The remaining 60–70% could be inhibited either by vanadate at concentrations up to 1 mm (apparent Ki300 m) or by TG up to 10 nm (Ca2+ pool I). The amount of IP3-induced Ca2+ release was constant at 25% over a wide range of Ca2+ filling. About 10–20% remained unreleasable by IP3. Reduction of IP3 releasable Ca2+ in the presence of inhibitors showed similar dose-response curves as Ca2+ uptake (apparent Ki 3.0 nm for IP3-induced Ca2+ release as compared to 4.2 nm for Ca2+ uptake at TG up to 10 nm) indicating that the highly TG-sensitive Ca2+ pump fills the IP3-sensitive Ca2+ pool I. At TG concentrations >10 nm which blocked Ca2+ pool II the apparent Ki values were 11.3 and 12.1 nm, respectively. For inhibition by vanadate up to 100 m the apparent Ki values were 18 m for Ca2+ uptake and 7 m for Ca2+ release (Ca2+ pool II). At vanadate concentrations up to 1 mm the apparent Ki values were 300 and 200 m, respectively (Ca2+ pool I). Both Ca2+ pools I and II also showed different sensitivities to IP3. Dose-response curves for IP3 in the absence of inhibitors (control) showed an apparent Km value for IP3 at 0.6 m. In the presence of TG (inhibition of Ca2+ pool I) the curve was shifted to the left with an apparent Km for IP3 at 0.08 m. In the presence of vanadate (inhibition of Ca2+ pool II), the apparent Km for IP3 was 2.1 m. These data allow the conclusion that there are at least three different Ca2+ uptake mechanisms present in pancreatic acinar cells: TG- and IP3 insensitive but highly vanadate-sensitive Ca2+ uptake occurs into membrane vesicles derived from plasma membranes. Two Ca2+ pools with different TG-, vanadate- and IP3-sensitivities are most likely located in the endoplasmic reticulum at different cell sites, which could have functional implications for hormonal stimulation of pancreatic acinar cells.This work was supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 246. The authors wish to thank Dr. KlausDieter Preuß for valuable discussions and Mrs. Gabriele Mörschbächer for excellent secretarial help.  相似文献   

14.
A -carotene oxygenase is described which occurs in the Cyanobacterium Microcystis. It cleaves -carotene and zeaxanthin specifically at the positions 7,8 and 7,8, while echinenone and myxoxanthophyll are not affected. The oxidative cleavage of -carotene leads to the formation of -cyclocitral and crocetindial and that of zeaxanthin to hydroxy--cyclocitral and crocetindial in nearly stoichiometric amounts. Oxidant is dioxygen as has been demonstrated by high incroporation (86%) of 18O2 into -cyclocitral. -Carotene oxygenase is membrane bound, sensitive to sulfhydryl reagents, antioxidants and chelating agents. Iron seems to be an essential part of the enzyme activity. Cofactors necessary for the reaction could not be detected.Abbreviations TLC thin layer-chromatography - PIPES piperazine-N,N-bis-(2-ethanesulfonate) Na - TES 2{[tris-(hydroxymethyl)-methyl]-amino} ethanesulfonic acid Dedicated to Professor G. Drews on occasion of his 60th birthday  相似文献   

15.
Summary When the compound eyes of the fly Lucilia are fixed for electron microscopy with glutaraldehyde in common buffer solutions, artefactual whorls are liable to be formed from the photoreceptor microvilli. The whorls result from two factors: (i) a prolonged time interval prior to osmication, such as the overnight primary fixation or wash at 4° C commonly used in studies of compound eyes; (ii) as little as 1–2 mM Ca++ in the primary fixative and wash solutions. Osmication after short (1 h) glutaraldehyde fixation at 4° C, or omission of Ca++ and addition of 2 mM EGTA, prevent whorl-formation. In the tipulid fly Ptilogyna, similar artefacts are produced, but are confined to the distal zone of the microvilli that sheds during turnover.  相似文献   

16.
Summary The addition of agents that uncouple electron transfer from energy conservation (uncouplers) to state 4 mitochondria causes the following ion movements: K+ is extruded from the mitochondria in association with phosphate and possibly other anions, but not H+. Endogenous Ca++ is extruded from the mitochondria, and H+ moves in to counter-balance the Ca++ movement; some phosphate movement may be associated with Ca++ extrusion. The rate and extent of K+ extrusion induced by uncoupler is dependent on the concentrations of external phosphate and divalent ions. Phosphate induces K+ extrusion, while Mg++ and Mn++ inhibit it. TheV max of K+ transport is 300 moles K+/g protein per min. The K m for FCCP-induced potassium extrusion is 0.25 M at pH 7.4. The inhibitory effect of Mg++ is noncompetitive with respect to uncoupler concentration but competitive with respect to phosphate concentration. The experimental evidence does not support the existence of high H+ permeability in the presence of uncoupler. A correlation is observed between the rate of K+ extrusion and the energy reserves supplied from the high energy intermediate. The action of uncoupler in inducing K+ permeability is considered to arise through its action in depleting the energy reserves of mitochondria rather than through a specific activating effect of permeability by the uncoupler itself. The relationship of membrane potential to regulation of K+ permeability is discussed.  相似文献   

17.
Summary The interrelationships between sodium ion, calcium transport and oxygen utilization have been investigated in the chick chorioallantoic membrane. The oxygen uptakes of the two surface layers of the tissue, the ectoderm and the endoderm, were separated into their basal, Na+ dependent and Ca++ dependent components. The endoderm has a basal rate of respiration of 3.6 liters O2/cm2/hr and a Na+ dependent component of 1.4 liters O2/cm2/hr. The ectoderm has a basal rate of respiration of about 3.5 liters O2/cm2/hr, and Na+ and Ca++ dependent components of 1.1 and 3.6 liters O2/cm2/hr, respectively. The rate of ectodermal calcium transport and calcium-stimulated oxygen uptake is strictly dependent on the presence of sodium in the bathing medium, and complex kinetics are observed as a function of sodium concentration. On the other hand, in 140mm Na+ the rate of calcium transport exhibits simple saturation kinetics as a function of calcium concentration. Ca++/O2 ratios determined for many different rates of transport give a ratio of about 0.5, a value much lower than similar ratios determined for other transport mechanisms. The calcium transport mechanism in the ectoderm responds to changes in transport rate very sluggishly, taking 30 to 50 min to give a maximum response. The differences between the calcium transport mechanism in this membrane and other known transport systems are discussed and it is suggested that these differences may represent the adaptations necessary for transcellular calcium transport.  相似文献   

18.
Single-channel conductance fluctuations are analysed for gramicidin A incorporated into binary-mixed black lipid membranes of charged phosphatidic acid and neutral lecithin in different molar ratios. At very low Ca++ concentrations in the electrolyte (i.e. in the presence of EDTA) homogeneous lipid mixtures are identified through their conductance and life time probability distributions for integral gramicidin pores. As for the pure lipid components, the conductance histograms each show a single maximum with regular width and for all channels a single mean lifetime is found.For Ca++-levels (10-6–10-5 M) that are close to the critical demixing concentration (10-4 M) unusually broad conductance distributions and reduced lifetimes are found provided the PC content, x, of the membrane is close to the critical mixture (x crit0.5). We interpret this as a first example of the coupling of a membrane function (the transport of ions) to a lipid matrix with locally fluctuating composition close to a critical demixing point.For the conductance histogram of gramicidin A in an equimolar mixture of PA and PC shows two well-separated maxima. A correlation analysis between conductance and lifetime of the single pores shows that the two channel populations also differ significantly in their mean channel lifetime, *. This finding is interpreted as being direct evidence for Ca++-induced lateral phase separation in black lipid membranes, as has been postulated recently.Abbreviations used HEPES N-2-hydroxyethyl-piperazine-N-2-ethane-sulfonic acid - EDTA ethylenediaminetetraacetic acid  相似文献   

19.
Pediococcus halophilus possesses phosphoenolpyruvate:mannose phosphotransferase system (man:PTS) as a main glucose transporter. A man:PTS defective (man:PTSd) strain X-160 could, however, utilize glucose. A possible glucose-transport mechanism other than PTS was studied with the strain X-160 and its derivative, man:PTSd phosphofructokinase defective (PFK) strain M-13. Glucose uptake by X-160 at pH 5.5 was inhibited by any of carbonylcyanide m-chlorophenylhydrazone, nigericin, N,N-dicyclohexylcarbodiimide, or iodoacetic acid. The double mutant M-13 could still transport glucose and accumulated intracellularly a large amount of hexose-phosphates (ca. 8 mM glucose 6-phosphate and ca. 2 mM fructose 6-phosphate). Protonophores also inhibited the glucose transport at pH 5.5, as determined by the amounts of accumulated hexose-phosphates (< 4 mM). These showed involvement of proton motive force (P) in the non-PTS glucose transport. It was concluded that the non-PTS glucose transporter operated in concert with hexokinase or glucokinase for the metabolism of glucose in the man:PTSd strain.Abbreviations BM basal medium - BM-G basal medium containing glucose - CM complex medium - man:PTS phosphoenolpyruvate:mannose phosphotransferase system - CCCP carbonylcyanide m-chlorophenylhydrazone - DCCD N,N-dicyclohexyl carbodiimide - P proton motive force - pH transmembrane pH gradient - transmembrane electrical potential difference - MNNG N-methyl-N-nitro-N-nitrosoguanidine - PIPES piperazine-N,N-bis(-ethanesulfonic acid) - MES 4-morpholineethanesulfonic acid - G-6-P glucose 6-phosphate - F-6-P fructose 6-phosphate - FDP fructose 1,6-bisphosphate - EMP Embden-Meyerhof-Parnas pathway - PFK phosphofructokinase - GK glucokinase - HK hexokinase - IAA iodoacetic acid - IIman enzyme II component of man:PTS  相似文献   

20.
Zusammenfassung Die Technik des Nachweises der a. L.-Ph. in Blutausstrichen wird besprochen. Zur Fixierung wird die Methode vonKaplow empfohlen: 90% Methanol, 10% Formol 1:10, 30 sec bei 0°C. Vergleichswerte mit anderen Fixantien werden aufgeführt.Metallionen aktivieren die a. L.-Ph. in derart fixierten Ausstrichen in der Reihenfolge abnehmender Wirksamkeit:Mg++-Fe+++-Co++-Mn++-Cu++-Fe++. Die Wirkung aller Ionen erwies sich als stark konzentrationsabhängig. Ni++, Zn++ und Pb++ hemmten ebenfalls konzentrationsabhängig.In den Blutausstrichen ist die Spaltungsgeschwindigkeit des sauren Na--Naphthylphosphats (Azo-Kupplung) weit höher als die des -Glycerophosphats bei maximaler Mg++-Aktivierung mit der Calcium-Kobalt-Methode nachGomori-Takamatsu. Die Spaltungsgeschwindigkeit von -Glycerophosphat kann durch Zusetzen kleiner Mengen Fe+++ und Cu++ über die Mg++-Aktivierung hinaus gesteigert werden bei Beschleunigung der Anfangsgeschwindigkeit der Hydrolyse.
Summary A technic is described for demonstrating the activity of alkaline phosphatase in human leucocytes. For fixation the method ofKaplow is recommended: 90 per cent methanol +10 per cent formalin 1:10 for 30 seconds at 0°C. Other fixatives are evaluated.Under the conditions of the experiment metal ions activated the alkaline phosphatase of leucocytes in the following order: Mg++>Fe+++>Co++>Mn++>Cu++>Fe++.The effectiveness of all these metal ions was to a high degree dependent on concentration. Ni++, Zn++, and Pb++ showed an inhibitory effect also dependent on concentration.In fixed blood smears the velocity of hydrolysis of sodium--naphthylphosphate (simultaneous azo-coupling technic) is far greater than that of Na--glycerophosphate (Ca-Co-method of Gomori-Takamatsu). Adding small amounts of Fe+++ and Cu++ to the incubation medium, it is possible to increase the velocity of hydrolysis of glycerophosphate beyond the values of maximal Mg++ activation and simultaneously enhancing the initial velocity of the reaction.


Mit 2 Textabbildungen  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号