首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the daily rhythm of the response to noradrenaline injections in Djungarian hamsters (Phodopus sungorus sungorus) at neutral ambient temperature, under long photoperiod (L:D 12:12) and after four weeks of acclimation to cold (10ºC) and short photoperiod (L:D 8:16). Animals were injected with noradrenaline (0.6 mg/kg) every four hours. Body temperature and gross motor activity were measured with MiniMitter transmitters implanted into abdominal cavity. Additionally, we measured body weight and food intake prior to, and after acclimation. After four weeks of acclimation, the experiment was performed under LD cycle and then repeated during one-day of constant light (LL) and constant darkness (DD). In animals acclimated to L:D 12:12 and ambient temperature of 25ºC, noradrenaline injections caused short-lasting increase in body temperature followed by marked decrease. There was no significant difference in the magnitude of the reaction between light and dark phase of the day. After acclimation to cold and L:D 8:16, under LD conditions, we recorded significant differences between the responses to the noradrenaline injections during light and dark phase of the day. Post-injection increase was higher during the day than during the night while following noradrenaline-induced hypothermia was much more pronounced in darkness. In experiments performed after acclimation to cold and short photoperiod but during one day of LL and DD regimes, these differences were attenuated. Data presented here indicate that in cold acclimated hamsters, the response to exogenous noradrenaline depends on the time of injection and it exhibits clear daily rhythm. The rhythmicity is altered under LL and DD regimes. It seems that post-injection increase in body temperature elicits following hypothermia. This hypothermia might be of a great ecological importance. Reasonable lowering of body temperature would be a protective mechanism, allowing for energy charge restoration.  相似文献   

2.
Abstract The Indian meal moth Plodia interpunctella Hübner (Lepidoptera: Pyralidae) diapauses as a last‐instar (fifth) larva. At 30 °C, no larvae enter diapause under any photoperiodic conditions; at 25 °C, the photoperiodic response curve is a long‐day type with a critical length of approximately 13 h light; at 20 °C, diapause is induced moderately even under long days (> 13 h). Cumulative effects of short days or long days on diapause induction are determined by alternate, stepwise and gradually changing regimes of photoperiod at 25 °C. When the larvae are repeatedly exposed to LD 16 : 8 h and LD 12 : 12 h photoperiods every other day, the incidence of diapause is 37%. When the larvae are placed under an LD 16 : 8 h photoperiod for 2 days and then under an LD 12 : 12 h photoperiod for 1 day, it is 38 %. Exposure to an LD 16 : 8 h photoperiod for 1 day and then to an LD 12 : 12 h photoperiod for 2 days induces only 15% diapause. This may indicate that the photoperiodic information is not accumulated in a simple fashion despite the generally accepted hypothesis (i.e. photoperiodic counter). Larvae exposed to an LD 16 : 8 h photoperiod for 5 days after oviposition express a very high incidence of diapause even under short days between an LD 2 : 22 h and LD 12 : 12 h photoperiod. After 10 days exposure to an LD 16 : 8 h photoperiod, however, the short day does not induce diapause strongly. On the other hand, an LD 12 : 12 h photoperiod in the early larval life is highly effective in the induction of diapause. A gradual increase or decrease of photoperiod (2 min day?1) shows that the direction of photoperiodic change does not affect the diapause determination.  相似文献   

3.
Hua A  Yang D  Wu S  Xue F 《Journal of insect physiology》2005,51(11):1261-1267
In the zygaenid moth, Pseudopidorus fasciata, both larval diapause induction and termination are under photoperiodic control. In this study, we investigated whether photoperiodic time measurement (with a 24-h light-dark cycle) in this moth is qualitative or quantitative. Photoperiodic response curves, at 22, 25, and 28 degrees C indicated that the incidence of diapause depended on whether the scotophases exceeded the critical night length (CNL) or not. All scotophases longer than the CNL-induced diapause; all scotophases shorter than the CNL-inhibited diapause. The CNL was 10.5h at 25 and 28 degrees C, and 10h at 22 degrees C. By transferring from various short photoperiods (LD 8:16, LD 9:15, LD 10:14, LD 11:13, LD 12:12, and LD 13:11) to a long photoperiod (LD 16:8) at different times, the number of light-dark cycles required for 50% diapause induction at 25 degrees C was 7.14 at LD 8:16, 7.2 at LD 9:15, 7.19 at LD 10:14, 7.16 at LD 11:13, and 7.13 at LD 12:12, without showing a significant difference between the treatments. Only at LD 13:11 (near the CNL), the number of light-dark cycles was significantly increased to 7.64. The intensity of diapause induced under different short photoperiods (LD 8:16, LD 9:15, LD 10:14, LD 11:13, and LD 12:12) at 25 degrees C was not significantly different with an average diapause duration of 36 days. The duration of diapause induced under LD 13:11 was significantly reduced to 32 days. All results indicate that the night-lengths are measured as either "long" or "short" compared with some critical value and suggest that photoperiodic time measurement for diapause induction in this moth is based on a qualitative principle.  相似文献   

4.
It has been demonstrated that an endogenous mechanism is involved in photoperiodic time measurement in the mink, a short-day-breeding mannal. A study of testicular activity (testicular volume, plasma testosterone concentration) and plasma prolactin level was carried out in sexually resting minks (the experiment began in November). Groups of minks were kept in the natural photoperiod or subjected to different resonance light-dark (LD) cycles (LD 4:8, LD 4:20, LD 4:32, LD 4:44); an additional group of animals was reared in an ahemeral photoperiod (LD 4:16). A rapid increase of testicular activity was observed in control animals or those kept in LD 4:20 (T 24) and LD 4:44 (T 48). In the other groups of animals, those kept in LD 4:8 (T 12), LD 4:32 (T 36), and LD 4:16 (T 20), testicular function remained at rest. Prolactin secretion was, in contrast, stimulated in the groups kept in LD 4:8 (T 12). LD 4:32 (T 36), and LD 4:16 (T 20), and remained low in the groups kept in LD 4:20 (T 24) and LD 4:44 (T 48). These results show that the effects of the different photoperiodic regimens do not depend on the duration of the photophase, but rather on the period of the LD cycles. The LD cycles that allow an increase of testicular function are those that are inhibitory to reproduction in birds and long-day-breeding mammals. To explain these results, it is suggested that in the mink exposure to light during the circadian photosensitive phase induces inhibition of testicular activity and stimulation of prolactin secretion. To explain the opposite effects of a single photoperiod on testicular function and secretion of prolactin, the hypothesis has been advanced that, in the mink, long days might simultaneously inhibit hypothalamic luteinizing-hormone-releasing hormone (LH-RH) activity and prolactin-inhibiting factor (PIF) activity.  相似文献   

5.
A photoperiod-related seasonal rhythm in active period (scotophase), metabolic rate and core temperature was documented for animals held at 21.0 +/- 0.1 degrees C ambient; animals that were habituated to long nights (10:14LD) had a greater metabolic reserve than those held in summer photoperiods (14:10LD). While relative weights of gonads and sex accessory tissues of mice show typical "winter" regression, interscapular brown adipose tissue mass was unaffected by photoperiod; moreover, IBAT beta adrenergic responses under "winter" photoperiods did not differ from "summer" photoperiods in the absence of cold stimulus. Thermogenic efficiency, measured as the increment of active temperature level achieved per increment of active period metabolic effort, was highest for animals exposed to short photoperiods. Thermal conductance was reduced in animals exposed to short (10:14LD) photoperiods. Heat conservation and thermogenic response capacity was enhanced by melatonin treatment and short photoperiod.  相似文献   

6.
Summary The effect of photoperiod on the upper thermal tolerance of two species of frogs was studied by using the critical thermal maximum (CTM) as the end point. Both species are heliotropic and from temperate climates, but Hyla labialis lives under a near constant tropical photoperiod while Rana pipiens lives under a varying temperatezone photoperiod. The CTM of both species was studied over a 24-hour period to determine if a rhythm of temperature tolerance exists. In all but one of the acclimatization conditions used, the CTM of R. pipiens was higher than that of H. labialis. This agrees with what is known of their thermal ecology. Photoperiod significantly affects the CTM of both species. For Rana pipiens long (LD 16:8) photoperiods result in significantly higher thermal tolerance than short (LD 8:16) or moderate (LD 12:12) photoperiods at both 15 and 25° C. H. labialis shows a different pattern, having highest CTM at 25°C, LD 12:12 and lowest at 15°C, LD 12:12. When acclimated to a short (LD 8:16) photoperiod certain aspects of the frogs' tolerance of high temperatures are altered. At the same acclimatization the CTM of R. pipiens is higher than that of H. labialis, except under a combination short light regime and low temperature, and H. labialis at LD 8:16 shows no thermal acclimation between 15 and 25°C. Significant variation in the CTM over a 24-hour period occurred in H. labialis acclimatized at 25°C, LD 12:12 and R. pipiens at 25°C, LD 8:16 and 15°C, LD 12:12. For both species the 24-hour rhythm of temperature tolerance, when it occurs at LD 12:12, might be of adaptive value. Times of highest thermal tolerance are in the late morning or early afternoon and lowest tolerance is during the dark period. For R. pipiens under the unnatural combination of 25°C, LD 8:16, the pattern is reversed. When all three significant cycles are phase shifted so that the times of highest tolerance coincide, the pattern of the curves is very similar.  相似文献   

7.
The locomotor activity of Nereis virens Sars associated with food prospecting was investigated in response to photoperiod and season using an actograph. Experimental animals which had been reared under natural photoperiods were exposed to two constant photoperiodic treatments, LD 16:8 and LD 8:16, in both the autumn and winter and in the absence of tidal entrainment. Autocorrelation analysis of rhythmicity showed that during the autumn, animals under the LD 16:8 photoperiod displayed a strong nocturnal rhythm of activity, whereas animals under the LD 8:16 photoperiod showed only a weak nocturnal activity rhythm. This is believed to represent an autumn feeding cessation that is triggered when the animals pass through a critical photoperiod LD(crit) <12:>12. Later in the winter, however, animals exposed to both photoperiodic treatments showed strong rhythms of foraging activity irrespective of the imposed photoperiod. It is suggested that the autumn cessation may maximize the fitness of N. virens, a spring-breeding semelparous organism, by reducing risk during gamete maturation, while spontaneous resurgence of activity after the winter solstice permits animals that are not physiologically competent to spawn to accrue further metabolic reserves. This response is believed to be initiated by a seasonal (possibly circannual) endogenous oscillator or interval timer.  相似文献   

8.
Rodents representative of a diurnal species (Rhabdomys pumilio) as well as a nocturnal species (Praomys natalensis) were acclimated to cold (Ta = 8°C) at a photoperiod of LD 12:12 and a long scotophase (LD 8; 16) at a temperature of 25° C(Ta). Control groups were kept for both species at Ta = 25° C and LD 12:12 and winter acclimated individuals were obtained during July and August to serve as further reference. Blood samples obtained from the tail were analysed for enzymes representative of three major biochemical pathways. The enzymatic activity of LDH (glycolytic pathway), MDH (Krebs cycle) and G6PDH (hexose monophosphate shunt, as an indicator of gonadal activity) were monitored to represent metabolic activity of the respective cycles. Cold acclimated as well as winter acclimatized mice revealed similar enzymatic patterns for both species and significant increases in LDH and MDH were recorded with a concurrent decrease in G6PDH activity. Specimens exposed to long scotophase exhibited similar enzymatic patterns for both species studied, but enzymatic activity was higher than those of cold acclimated individuals. From these results it is concluded that cold as well as long scotophase induce metabolic adaptations through biochemical activity in the experimental animals. The effect of long scotophase is assumed to be an important factor in the induction of winter acclimatization.Present address: University of Haifa, Oramin, P.O. Kiryat Tivon, Israel.Presented at the Eighth International Congress of Biometeorology, 9–14 September 1979, Shefayim, Israel.  相似文献   

9.
Many nontropical rodent species experience predictable annual variation in resource availability and environmental conditions. Individuals of many animal species engage in energetically expensive processes such as breeding during the spring and summer but bias investment toward processes that promote survival such as immune function during the winter. Generally, the suite of responses associated with the changing seasons can be induced by manipulating day length (photoperiod). Collared lemmings (Dicrostonyx groenlandicus) are arvicoline rodents that inhabit parts of northern Canada and Greenland. Despite the extreme conditions of winter in their native habitat, these lemmings routinely breed during the winter. In the laboratory, collared lemmings have divergent responses to photoperiod relative to other seasonally breeding rodents; short day lengths can stimulate, rather than inhibit, the reproductive system. Male and female collared lemmings were maintained for 11 weeks in 1 of 3 photoperiods (LD 22:2, LD 16:8, or LD 8:16) that induce markedly different phenotypes. Following photoperiod treatment, cell-mediated immune function as assessed by delayed-type hypersensitivity reactions was elevated in lemmings housed in LD 16:8 and LD 8:16 relative to LD 22:2. However, antibody production to a novel antigen was unaffected by photoperiod. Exposure to LD 8:16 induced weight gain, molt to a winter pelage, and in contrast to previous studies, regression of the male, but not the female, reproductive tract. In conclusion, these data indicate that components of immune function among collared lemmings are responsive to changes in day length.  相似文献   

10.
Abstract Sericinus montelus overwinters as diapausing pupae. In the present study, the effects of photoperiod and temperature on diapause induction and termination of diapause are investigated. The results obtained demonstrate that high temperature can reverse the effect of short day‐lengths on diapause induction. Under an LD 12 : 12 h photoperiod, all pupae enter diapause at 15, 20 and 25 °C, whereas all pupae develop without diapause at 35 °C. No pupae enter diapause under an LD 14 : 10 h photoperiod when the temperature is above 20 °C. Photoperiodic response curves obtained at 25 and 30 °C indicate that S. montelus is a long‐day species and the critical day‐length is approximately 13 h at 25 °C. At 25 °C, the duration of diapause is shortest when the diapausing pupae are maintained under an LD 16 : 8 h photoperiod and increases under LD 14 : 10 h and LD 12 : 12 h photoperiods. Under an LD 16 : 8 h photoperiod, the duration of diapause is shortest when the diapausing pupae are maintained at 25 °C, followed by 20 and 30 °C, and then at 15 °C. These results suggest that a moderate temperature favours diapause development under a diapause‐averting photoperiod in this species. The duration of diapause induced by an LD 12 : 12 h photoperiod is significantly longer at 25 °C than those at 15, 20 and 30 °C, and is shortest at 15 °C. At 25 °C, the duration of diapause induced by LD 6 : 18, LD 12 : 12 and LD 13 : 11 h photoperiods is similar and longer than 90 days. Thus, the diapause‐inducing conditions may affect diapause intensity and a photoperiod close to the critical day‐length has significant influence on diapause intensity in S. montelus.  相似文献   

11.
The suprachiasmatic nucleus (SCN) is an endogenous circadian pacemaker, and SCN neurons exhibit circadian rhythms of electrophysiological activity in vitro. In vivo, the functional state of the pacemaker depends on changes in day length (photoperiod), but it is not known if this property persists in SCN tissue isolated in vitro. To address this issue, we prepared brain slices from hamsters previously entrained to light-dark (LD) cycles of different photoperiods and analyzed rhythms of SCN multiunit neuronal activity using single electrodes. Rhythms in SCN slices from hamsters entrained to 8:16-, 12:12-, and 14:10-h LD cycles were characterized by peak discharge rates relatively higher during subjective day than subjective night. The mean duration of high neuronal activity was photoperiod dependent, compressed in slices from the short (8:16 and 12:12 LD) photoperiods, and decompressed (approximately doubled) in slices from the long (14:10 LD) photoperiod. In slices from all photoperiods, the mean phase of onset of high neuronal activity appeared to be anchored to subjective dawn. Our results show that the electrophysiological activity of the SCN pacemaker depends on day length, extending previous in vivo data, and demonstrate that this capacity is sustained in vitro.  相似文献   

12.
Abstract. The intensity of larval diapause in Sesamia nonagrioides Lef (Lepidoptera: Noctuidae) was investigated under laboratory conditions. Newly hatched larvae were exposed to different stationary photoperiods (from LD 7 : 17 h to LD 14 : 10 h), at a constant temperature of 25 °C. Diapause incidence was higher when larvae were exposed to daylengths shorter than the critical value (LD 12 : 12 h), whereas the within‐treatment variation in the larval period appeared to be significantly correlated with the photoperiod applied. The incidences of diapause and the duration of larval development were also measured after exposing larvae to short photoperiods (LD 8 : 16 h, LD 10 : 14 h or LD 12 : 12 h) in combination with various temperatures (20, 22.5 or 25 °C). Although an increase in the incidence of diapause appeared with the lowering of the temperature, no statistical differences were observed in the time needed for pupation within the photoperiodic treatments at the temperatures of 20 and 22.5 °C. Furthermore, when diapausing larvae were transferred to the long photoperiod of LD 16 : 8 h, they immediately proceeded to pupation, regardless of the photoperiod or the temperature to which they had been previously exposed, indicating that there were no differences in the intensity of diapause. Photoperiodic changes from LD 10 : 14 h to LD 12 : 12 h or to LD 14 : 10 h at different larval ages reduced the intensity of diapause with (a) early age of transfer and (b) increase of daylength. By contrast, when larvae were transferred from the long photoperiod of LD 14 : 10 h to shorter, such as LD 10 : 14 h or LD 12 : 12 h, a small increase in the intensity of diapause with the shortening of the daylength was apparent. These results support the hypothesis that insects may compare the duration of the photoperiod and could classify them as either longer or shorter in relation to the critical value.  相似文献   

13.
In the cabbage butterfly, Pieris melete, summer and winter diapause are induced principally by long and short daylengths, respectively; the intermediate daylengths (12-13 h) permit pupae to develop without diapause. In this study, photoperiodic control of summer and winter diapause was systematically investigated in this butterfly by examining the photoperiodic response, the number of days required to induce 50% summer and winter diapause and the duration of diapausing pupae induced under different photoperiods. Photoperiodic response curves at 18 and 20 degrees C showed that all pupae entered winter diapause at short daylengths (8-11 h), the incidence of diapause dropped to 82.3-85.5% at 22 degrees C without showing a significant difference between short daylengths, whereas the incidence of summer diapause induced by different long daylengths (14-18 h) was varied and was obviously affected by temperature. By transferring from various short daylengths (LD 8:16, LD 9:15, LD 10:14 and LD 11:13) to an intermediate daylength (LD 12.5:11.5) at different times after hatching, the number of cycles required to induce 50% winter diapause (7.28 at LD 8:16, 7.16 at LD 9:15, 7.60 at LD 10:14 and 6.94 at LD 11:13) showed no significant difference, whereas by transferring from various long daylengths (LD 14:10, LD 15:9, LD 16:8 and LD 17:7) to an intermediate daylength (LD 12.5:11.5) at different times, the number of cycles required to induce 50% summer diapause (5.95 at LD 14:10, 8.02 at LD 15:9, 6.80 at LD 16:8, 7.64 at LD 17:7) were significantly different. The intensity of winter diapause induced under different short daylengths (LD 8:16, LD 9:15, LD 10:14 and LD 11:13) was not significantly different with an average diapause duration of 87 days at a constant temperature of 20 degrees C and 92 days at a mean daily temperature of 19.0 degrees C, whereas the intensity of summer diapause induced under different long daylengths (LD 14:10, LD 15:9, LD 16:8 and LD 17:7) was significantly different (the diapause duration ranged from 75 to 86 days at a constant temperature of 20 degrees C and from 76 to 88 days at a mean daily temperature of 19.0 degrees C). All results suggested that photoperiodic control of diapause induction and termination is significantly different between aestivation and hibernation.  相似文献   

14.
A Ansart  P Vernon  J Daguzan 《Cryobiology》2001,42(4):266-273
Helix aspersa hibernates in Brittany (western France), where it may experience subzero temperatures. Studies on cold hardiness, although scarce in land snails, have shown a seasonal variation in supercooling ability, associated with high temperatures of crystallization (Tc). In the present work, two key environmental factors, temperature and photoperiod, were studied to elucidate, how they may affect the enhancement of supercooling ability in the snails from the end of summer to winter. Nine groups of adult snails were acclimated to different combinations of photoperiod (LD-16:8, LD-12:12, and LD-8:16 h) and temperature (15, 10, and 5 degrees C). Temperature of crystallization, hemolymph osmolality, and water content were measured. The results demonstrate a significant effect of the photoperiod on Tc, i.e., shorter photoperiods induce lower Tc (LD-16:8 h, mean Tc = -3.0 degrees C, SD = 2.0; LD-12:12 h, mean Tc = -4.3 degrees C, SD = 1.9; LD-8:16 h, mean Tc = -5.2 degrees C, SD = 1.9; n = 90), whereas the acclimation temperature had no effect. Measurements of hemolymph osmolality and water content showed that osmolality is negatively correlated with water content. Mechanisms such as dehydration are involved in the decrease of Tc. A declining photoperiod triggers a lower Tc, long before the onset of winter conditions. This response may have an adaptive component, allowing individuals to cope with the mild winters typically observed in oceanic regions.  相似文献   

15.
Heat production by means of oxygen consumptionVo2 (at Ta = 6° C, 25° C, 30° C, and 32° C) and non-shivering thermogenesis (NST) were studied in individuals of a diurnal rodent (Rhabdomys pumilio) and a nocturnal rodent (Praomys natalensis). The studied mice were acclimated to cold at Ta=8°C with a photoperiod of LD 12:12. On the otherhand specimens of these two species were acclimated at Ta=25°C with a long scotophase LD8:16. The results were compared with a control group (Ta=25° C, LD 12:12) and winter acclimatized individuals of both species.Vo2 in cold acclimated mice of both species was significantly increased when compared to the control group and was even higher than the winter acclimatized group when measured below the lower critical temperature. Long scotophase acclimated mice of both species also increased their oxygen consumption significantly when compared to the control group. NST was significantly increased in long scotophase acclimated mice from both species when compared to the control group. The results of this study indicate that the effects of acclimation to long scotophase are similar to those of cold acclimation. As changes in photoperiod are regular, it may be assumed that heat production mechanisms in acclimatization to winter will respond to changes in photoperiodicity.Present address: University of Haifa, Oranim, P.O. Kiryat Tivon, Israel.Presented at the Eighth International Congress of Biometeorology, 9–14 September 1979, Shefayim, Israel.  相似文献   

16.
Abstract.  The effects of photoperiod on nymphal growth and adult reproduction were investigated in a small cockroach, Margattea satsumana, living on the subtropical, Hachijo island (33°N), Japan. Nymphal development is slow under constant photoperiods at 25 °C. The shortest mean duration of nymphal development (176 days) is observed at LD 14 : 10 h, followed by LD 12 : 12 h (221 days) and LD 16 : 8 h (309 days). Nymphal development is further prolonged when the nymphs are transferred from LD 12 : 12 to LD 16 : 8 h at 90 days after hatching. However, rapid and synchronized development is observed when nymphs were transferred in the opposite direction. A decreased change in photoperiod from LD 14 : 10 to LD 12 : 12 h also reduces the duration of nymphal development, and this cannot be explained by the results obtained at constant photoperiods. Similarly, nymphs reared at LD 16 : 8 h during the first 60 days mature more rapidly when transferred to LD 12 : 12 h than when transferred to LD 14 : 10 h. The developmental suppression induced by long days may represent a form of summer diapause that is terminated rapidly by short days. Based on these observations and field-census data, it is suggested that this cockroach has a univoltine life cycle overwintering as nondiapause adults, and that this life cycle is stabilized by the response to changing photoperiod.  相似文献   

17.
Summary

Specimens of Cepaea nemoralis were raised from egg to adult in the laboratory for 15.5 months in two artificial photoperiods: short-day (LD 8:16) and long-day (LD 16:8). Over 20% of the snails in each photoperiod were functional adults by the end of the experiment and had fully developed male and female reproductive systems as determined both by dissection and by oviposition. A total of 925 eggs were laid by animals reared in a long-day photoperiod, whereas animals in a short-day photoperiod laid 677 eggs. Animals reared in a long-day photoperiod grew slightly faster (2.04 mg/day compared to 1.73 mg/day), began laying eggs about 18 days sooner, and suffered higher mortality (19% compared to 11%) than animals reared in a short-day photoperiod. These results clearly establish for C. nemoralis that gametogenesis and the development of a functional hermaphroditic reproductive system are neither prevented nor significantly retarded by exposing the animals to a short-day photoperiod for their entire pre-reproductive life.  相似文献   

18.
To understand the geographical differences between diapause systems and synchronization of adult occurrence in the soybean pod borer Leguminivora glycinivorella (Lepidoptera: Tortricidae), we examined the timing of winter diapause termination and intensity of summer diapause using univoltine and potentially bivoltine individuals in Iwate, Japan. In laboratory rearing experiments of mature larvae maintained at constant temperature (20 °C), winter diapause intensity weakened by January without photoperiodic responses. Meanwhile, summer diapause was maintained by the long day length and presumably terminated with the photoperiodic transition from long to short day length. The intensity of summer diapause was stronger for cocoons that transitioned from a 16 h light to 8 h dark (LD 16:8) to a LD 15:9 photoperiod than for those that transitioned from LD 15:9 to LD 14:10. These results suggest that populations distributed in relatively low-latitude areas, with partly or potentially bivoltine individuals, would have a weaker summer diapause or none at all. Moreover, sexual differences in the number of days to emergence were not detected when individuals experienced a photoperiodic transition from long to short day length, suggesting that the summer diapause system may function to synchronize the emergence of males and females in the population examined.  相似文献   

19.
The European hamster (Cricetus cricetus) is a circannual species in which the synchronization of the circannual cycle to the natural year occurs during 2 annual phases of sensitivity. Around the summer solstice, the animals are sensitive to a shortening of photoperiod. During this sensitive phase, pronounced changes in circadian output parameters are observed, indicating a different functional state of the circadian system. This special state is assumed to be necessary to develop the extreme sensitivity to short day length in European hamsters during this phase. In natural conditions, the animals are able to recognize the shortening of photoperiod already in mid-July, when the photoperiod is reduced only by 30 min. To investigate the short-day response in sensitive European hamsters on the basis of the 2-coupled oscillator model of Pittendrigh and Daan (1976), daily activity and the reproductive state of European hamsters were recorded after an asymmetrical reduction of photoperiod from long (LD 16:08) to short (LD 08:16) photoperiods. The activity pattern of the animals showed an immediate response to the short photoperiod at the day of transfer when the night was extended only into the evening, but there was a significant delay in the response time when the night was extended into the morning. Thus, the evening oscillator E is more important in inducing the photoperiodic response than the morning oscillator M. Moreover, the broad intragroup variation in the latter conditions strongly suggests that the changes in the activity pattern were endogenously induced and that the animals were not able to recognize a lengthening of the night into the morning. Gonadal regression started in both groups 3 weeks after the change in the activity pattern, indicating that this process is initiated when the circadian system has received the short-day signal either through changes in photoperiod or through the circannual clock.  相似文献   

20.
Wu SH  Yang D  Lai XT  Xue FS 《Journal of insect physiology》2006,52(11-12):1095-1104
The seasonal life cycle of the zygaenid moth, Pseudopidorus fasciata is complicated by two different developmental arrests: a winter diapause as a fourth larval instar and a summer diapause as a prepupa in a cocoon. Both larval diapause induction and termination are under photoperiodic control. Short days induce larval diapause with a critical daylength of 13.5h and long days terminate diapause with a critical daylength of 14h. In the present study photoperiodic control of summer diapause was investigated in Pseudopidorus fasciata. Under long photoperiods ranging from LD 14:10 to LD 18:6, only part of the population entered summer diapause, the rest continued to develop. The lowest number of prepupae entered diapause at LD 14:10, followed by LD 16:8 and LD 17:7. The highest incidence of diapause occurred with photoperiods of LD 15:9 and LD 18:6. By transferring the diapausing prepupae induced by various long photoperiods (LD 14:10, LD 15:9, LD 16:8, LD 17:7, LD 18:6) to LD 13:11, 25 degrees C, the duration of diapause induced by LD 14:10 was significantly shorter than those induced by longer photoperiods. By keeping aestivating prepupae induced by LD 15:9, 28 degrees C or by natural conditions at short photoperiods (LD 11:13 and LD 13:11) and at a long photoperiod (LD 15:9), the duration of diapause at LD 15:9 was more than twice as long as than those at LD 11:13 and LD 13:11. Moreover, adult emergence was highly dispersed with a high mortality at LD 15:9 but was synchronized with low mortality at LD 11:13 and LD 13:11. When the naturally induced aestivating prepupae were kept under natural conditions, the early aestivating prepupae formed in May exhibited a long duration of diapause (mean 126 days), whereas the later-aestivating prepupae formed in July exhibited a short duration of diapause (mean 69 days). These results indicate that aestivating prepupae require short or shortening photoperiod to terminate their diapause successfully. By transferring naturally induced aestivating prepupae to 25, 28 and 30 degrees C, the duration of diapause at the high temperature of 30 degrees C was significantly longer than those at 25 and 28 degrees C, suggesting that high temperature during summer also plays an important role in the maintenance of summer diapause in Pseudopidorus fasciata. All results reveal that summer diapause can serve as a "bet hedging" against unpredictable risks due to fluctuating environments or as a feedback mechanism to synchronize the period of autumn emergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号