首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Na+-coupled symporter BetP catalyzes the uptake of the compatible solute betaine in the soil bacterium Corynebacterium glutamicum. BetP also senses hyperosmotic stress and regulates its own activity in response to stress level. We determined a three-dimensional (3D) map (at 8 Å in-plane resolution) of a constitutively active mutant of BetP in a C. glutamicum membrane environment by electron cryomicroscopy of two-dimensional crystals. The map shows that the constitutively active mutant, which lacks the C-terminal domain involved in osmosensing, is trimeric like wild-type BetP. Recently, we reported the X-ray crystal structure of BetP at 3.35 Å, in which all three protomers displayed a substrate-occluded state. Rigid-body fitting of this trimeric structure to the 3D map identified the periplasmic and cytoplasmic sides of the membrane. Fitting of an X-ray monomer to the individual protomer maps allowed assignment of transmembrane helices and of the substrate pathway, and revealed differences in trimer architecture from the X-ray structure in the tilt angle of each protomer with respect to the membrane. The three protomer maps showed pronounced differences around the substrate pathway, suggesting three different conformations within the same trimer. Two of those protomer maps closely match those of the atomic structures of the outward-facing and inward-facing states of the hydantoin transporter Mhp1, suggesting that the BetP protomer conformations reflect key states of the transport cycle. Thus, the asymmetry in the two-dimensional maps may reflect cooperativity of conformational changes within the BetP trimer, which potentially increases the rate of glycine betaine uptake.  相似文献   

2.
The Na+-coupled betaine symporter BetP regulates transport activity in response to hyperosmotic stress only in its trimeric state, suggesting a regulatory crosstalk between individual protomers. BetP shares the overall fold of two inverted structurally related five-transmembrane (TM) helix repeats with the sequence-unrelated Na+-coupled symporters LeuT, vSGLT, and Mhp1, which are neither trimeric nor regulated in transport activity. Conformational changes characteristic for this transporter fold involve the two first helices of each repeat, which form a four-TM-helix bundle. Here, we identify two ionic networks in BetP located on both sides of the membrane that might be responsible for BetP's unique regulatory behavior by restricting the conformational flexibility of the four-TM-helix bundle. The cytoplasmic ionic interaction network links both first helices of each repeat in one protomer to the osmosensing C-terminal domain of the adjacent protomer. Moreover, the periplasmic ionic interaction network conformationally locks the four-TM-helix bundle between the same neighbor protomers. By a combination of site-directed mutagenesis, cross-linking, and betaine uptake measurements, we demonstrate how conformational changes in individual bundle helices are transduced to the entire bundle by specific inter-helical interactions. We suggest that one purpose of bundle networking is to assist crosstalk between protomers during transport regulation by specifically modulating the transition from outward-facing to inward-facing state.  相似文献   

3.
The betaine transporter BetP from Corynebacterium glutamicum is activated by hyperosmotic stress critically depending on the presence and integrity of its sensory C-terminal domain. The conformational properties of the trimeric BetP reconstituted in liposomes in the inactive state and during osmotic activation were investigated by site-directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy. Comparison of intra- and intermolecular inter spin distance distributions obtained by double electron-electron resonance (DEER) EPR with the crystal structure of BetP by means of a rotamer library analysis suggest a rotation of BetP protomers within the trimer by about 15° as compared to the X-ray structure. Furthermore, we observed conformational changes upon activation of BetP, which are reflected in changes of the distances between positions 545 and 589 of different protomers in the trimer. Introduction of proline at positions 550 and 572, both leading to BetP variants with a permanent (low level) transport activity, caused changes of the DEER data similar to those observed for the activated and inactivated state, respectively. This indicates that not only displacements of the C-terminal domain in general but also concomitant interactions of its primary structure with surrounding protein domains and/or lipids are crucial for the activity regulation of BetP.  相似文献   

4.
The osmoregulated betaine transporter BetP is a stable trimer. Structural studies have shown that individual protomers can adopt distinct transport conformations, implying a functional role for the trimeric state in transport, although the role of trimerization in regulation is not yet understood. We designed putative monomeric mutants by molecular-dynamics simulations and in silico alanine-scanning mutagenesis. Several mutants including BetP-W101A/T351A were monomeric in detergent as well as in the membrane, as shown by blue native gel electrophoresis, crosslinking and electron microscopy. This monomeric form retains the ability to accumulate betaine, but is no longer regulated by hyperosmotic shock.  相似文献   

5.
The secondary active, Na+ coupled glycine betaine carrier BetP from Corynebacterium glutamicum BetP was shown to harbor two different functions, transport catalysis (betaine uptake) and stimulus sensing, as well as activity regulation in response to hyperosmotic stress. By analysis in a reconstituted system, the rise in the cytoplasmic K+ concentration was identified as a primary stimulus for BetP activation. We have now studied regulation of BetP in vivo by independent variation of both the cytoplasmic K+ concentration and the transmembrane osmotic gradient. The rise in internal K+ was found to be necessary but not sufficient for BetP activation in cells. In addition hyperosmotic stress is required for full transport activity in cells, but not in proteoliposomes. This second stimulus of BetP could be mimicked in cells by the addition of the amphiphile tetracaine which hints to a relationship of this type of stimulus to a change in membrane properties. Determination of the molecular activity of BetP in both cells and proteoliposomes provided experimental evidence that in proteoliposomes BetP exists in a pre-stimulated condition and reaches full activity already in response to the K+ stimulus.  相似文献   

6.
The Na+-coupled betaine symporter BetP senses changes in the membrane state and increasing levels of cytoplasmic K+ during hyperosmotic stress latter via its C-terminal domain and regulates transport activity according to both stimuli. This intriguing sensing and regulation behavior of BetP was intensively studied in the past. It was shown by several biochemical studies that activation and regulation depends crucially on the lipid composition of the surrounding membrane. In fact, BetP is active and regulated only when negatively charged lipids are present. Recent structural studies have revealed binding of phosphatidylglycerol lipids to functional important parts of BetP, suggesting a functional role of lipid interactions. However, a regulatory role of lipid interactions could only be speculated from the snapshot provided by the crystal structure. Here, we investigate the nature of lipid-protein interactions of BetP reconstituted in closely packed two-dimensional crystals of negatively charged lipids and probed at the molecular level with Fourier transform infrared (FTIR) spectroscopy. The FTIR data indicate that K+ binding weakens the interaction of BetP especially with the anionic lipid head groups. We suggest a regulation mechanism in which lipid-protein interactions, especially with the C-terminal domain and the functional important gating helices transmembrane helice 3 (TMH3) and TMH12, confine BetP to its down-regulated transport state. As BetP is also activated by changes in the physical state of the membrane, our results point toward a more general mechanism of how active transport can be modified by dynamic lipid-protein interactions.  相似文献   

7.
The high-affinity glycine betaine uptake system BetP, an osmosensing and osmoregulated sodium-coupled symporter from Corynebacterium glutamicum, was overexpressed in Escherichia coli with an N-terminal StrepII-tag, solubilized in beta-dodecylmaltoside and purified by streptactin affinity chromatography. Analytical ultracentrifugation indicated that BetP forms trimers in detergent solution. Detergent-solubilized BetP can be reconstituted into proteoliposomes without loss of function, suggesting that BetP is a trimer in the bacterial membrane. Reconstitution with E.coli polar lipids produced 2D crystals with unit cell parameters of 182A x 154A, gamma=90 degrees exhibiting p22(1)2(1) symmetry. Electron cryo-microscopy yielded a projection map at 7.5A. The unit cell contains four non-crystallographic trimers of BetP. Within each monomer, ten to 12 density peaks characteristic of transmembrane alpha-helices surround low-density regions that define potential transport pathways. Small but significant differences between the three monomers indicate that the trimer does not have exact 3-fold symmetry. The observed differences may be due to crystal packing, or they may reflect different functional states of the transporter, related to osmosensing and osmoregulation. The projection map of BetP shows no clear resemblance to other secondary transporters of known structure.  相似文献   

8.
As a response to hyperosmotic stress bacterial cells accumulate compatible solutes by synthesis or by uptake. Beside the instant activation of uptake systems after an osmotic upshift, transport systems show also a second, equally important type of regulation. In order to adapt the pool size of compatible solutes in the cytoplasm to the actual extent of osmotic stress, cells down-regulate solute uptake when the initial osmotic stress is compensated. Here we describe the role of the betaine transporter BetP, the major uptake carrier for compatible solutes in Corynebacterium glutamicum, in this adaptation process. For this purpose, betP was expressed in cells (C. glutamicum and Escherichia coli), which lack all known uptake systems for compatible solutes. Betaine uptake mediated by BetP as well as by a truncated form of BetP, which is deregulated in its response to hyperosmotic stress, was dissected into the individual substrate fluxes of unidirectional uptake, unidirectional efflux and net uptake. We determined a strong decrease of unidirectional betaine uptake by BetP in the adaptation phase. The observed decrease in net uptake was thus mainly due to a decrease of Vmax of BetP and not a consequence of the presence of separate efflux system(s). These results indicate that adaptation of BetP to osmotic compensation is different from activation by osmotic stress and also different from previously described adaptation mechanisms in other organisms. Cytoplasmic K+, which was shown to be responsible for activation of BetP upon osmotic stress, as well as a number of other factors was ruled out as triggers for the adaptation process. Our results thus indicate the presence of a second type of signal input in the adaptive regulation of osmoregulated carrier proteins.  相似文献   

9.
The transporter BetP in C. glutamicum is essential in maintaining bacterial cell viability during hyperosmotic stress and functions by co-transporting betaine and Na+ into bacterial cells. Hyperosmotic stress leads to increased intracellular K+ concentrations which in turn promotes betaine binding. While structural details of multiple end state conformations of BetP have provided high resolution snapshots, how K+ sensing by the C-terminal domain is allosterically relayed to the betaine binding site is not well understood. In this study, we describe conformational dynamics in solution of BetP using amide hydrogen/deuterium exchange mass spectrometry. These reveal how K+ alters conformation of the disordered C- and N-terminal domains to allosterically reconfigure transmembrane helices 3, 8, and 10 to enhance betaine interactions. A map of the betaine binding site, at near single amino acid resolution, reveals a critical extrahelical H-bond mediated by TM3 with betaine.  相似文献   

10.
11.
12.
In order to circumvent deleterious effects of hypo- and hyperosmotic conditions in its environment, Corynebacterium glutamicum has developed a number of mechanisms to counteract osmotic stress. The first response to an osmotic upshift is the activation of uptake mechanisms for the compatible solutes betaine, proline, or ectoine, namely BetP, EctP, ProP, LcoP and PutP. BetP, the most important uptake system responds to osmotic stress by regulation at the level of both protein activity and gene expression. BetP was shown to harbor three different properties, i.e. catalytic activity (betaine transport), sensing of appropriate stimuli (osmosensing) and signal transduction to the catalytic part of the carrier protein which adapts its activity to the extent of osmotic stress (osmoregulation). BetP is comprised of 12 transmembrane segments and carries N- and C-terminal domains, which are involved in osmosensing and/or osmoregulation. Recent results on molecular properties of these domains indicate the significance of particular amino acids within the terminal 25 amino acids of the C-terminal domain of BetP for the process of osmosensing and osmoregulation.  相似文献   

13.
Ott V  Koch J  Späte K  Morbach S  Krämer R 《Biochemistry》2008,47(46):12208-12218
The glycine betaine carrier BetP from Corynebacterium glutamicum responds to changes in external osmolality by regulation of its transport activity, and the C-terminal domain was previously identified to be involved in this process. Here we investigate the structural requirements of the C-terminal domain for osmoregulation as well as interacting domains that are relevant for intramolecular signal transduction in response to osmotic stress. For this purpose, we applied a proline scanning approach and amino acid replacements other than proline in selected positions. To analyze the impact of the surrounding membrane, BetP mutants were studied in both C. glutamicum and Escherichia coli, which strongly differ in their phospholipid composition. A region of approximately 25 amino acid residues within the C-terminal domain with a high propensity for alpha-helical structure was found to be essential in terms of its conformational properties for osmodependent regulation. The size of this region was larger in E. coli membranes than in the highly negatively charged C. glutamicum membranes. As a novel aspect of BetP regulation, interaction of the C-terminal domain with one of the cytoplasmic loops as well as with the N-terminal domain was shown to be involved in osmosensing and/or osmoregulation. These results support a functional model of BetP activation that involves the C-terminal domain shifting from interaction with the membrane to interaction with intramolecular domains in response to osmotic stress.  相似文献   

14.
Increases in the environmental osmolarity are key determinants for the growth of microorganisms. To ensure a physiologically acceptable level of cellular hydration and turgor at high osmolarity, many bacteria accumulate compatible solutes. Osmotically controlled uptake systems allow the scavenging of these compounds from scarce environmental sources as effective osmoprotectants. A number of these systems belong to the BCCT family (betaine-choline-carnitine-transporter), sodium- or proton-coupled transporters (e.g. BetP and BetT respectively) that are ubiquitous in microorganisms. The BCCT family also contains CaiT, an L-carnitine/γ-butyrobetaine antiporter that is not involved in osmotic stress responses. The glycine betaine transporter BetP from Corynebacterium glutamicum is a representative for osmoregulated symporters of the BCCT family and functions both as an osmosensor and osmoregulator. The crystal structure of BetP in an occluded conformation in complex with its substrate glycine betaine and two crystal structures of CaiT in an inward-facing open conformation in complex with L-carnitine and γ-butyrobetaine were reported recently. These structures and the wealth of biochemical data on the activity control of BetP in response to osmotic stress enable a correlation between the sensing of osmotic stress by a transporter protein with the ensuing regulation of transport activity. Molecular determinants governing the high-affinity binding of the compatible solutes by BetP and CaiT, the coupling in symporters and antiporters, and the osmoregulatory properties are discussed in detail for BetP and various BCCT carriers.  相似文献   

15.
As a response to hyperosmotic stress bacterial cells accumulate compatible solutes by synthesis or by uptake. Beside the instant activation of uptake systems after an osmotic upshift, transport systems show also a second, equally important type of regulation. In order to adapt the pool size of compatible solutes in the cytoplasm to the actual extent of osmotic stress, cells down-regulate solute uptake when the initial osmotic stress is compensated. Here we describe the role of the betaine transporter BetP, the major uptake carrier for compatible solutes in Corynebacterium glutamicum, in this adaptation process. For this purpose, betP was expressed in cells (C. glutamicum and Escherichia coli), which lack all known uptake systems for compatible solutes. Betaine uptake mediated by BetP as well as by a truncated form of BetP, which is deregulated in its response to hyperosmotic stress, was dissected into the individual substrate fluxes of unidirectional uptake, unidirectional efflux and net uptake. We determined a strong decrease of unidirectional betaine uptake by BetP in the adaptation phase. The observed decrease in net uptake was thus mainly due to a decrease of Vmax of BetP and not a consequence of the presence of separate efflux system(s). These results indicate that adaptation of BetP to osmotic compensation is different from activation by osmotic stress and also different from previously described adaptation mechanisms in other organisms. Cytoplasmic K+, which was shown to be responsible for activation of BetP upon osmotic stress, as well as a number of other factors was ruled out as triggers for the adaptation process. Our results thus indicate the presence of a second type of signal input in the adaptive regulation of osmoregulated carrier proteins.  相似文献   

16.
Escherichia coli AcrB is a multidrug efflux transporter that recognizes multiple toxic chemicals having diverse structures. Recent crystallographic studies of the asymmetric trimer of AcrB suggest that each protomer in the trimeric assembly goes through a cycle of conformational changes during drug export. However, biochemical evidence for these conformational changes has not been provided previously. In this study, we took advantage of the observation that the external large cleft in the periplasmic domain of AcrB appears to become closed in the crystal structure of one of the three protomers, and we carried out in vivo cross-linking between cysteine residues introduced by site-directed mutagenesis on both sides of the cleft, as well as at the interface between the periplasmic domains of the AcrB trimer. Double-cysteine mutants with mutations in the cleft or the interface were inactive. The possibility that this was due to the formation of disulfide bonds was suggested by the restoration of transport activity of the cleft mutants in a dsbA strain, which had diminished activity to form disulfide bonds in the periplasm. Furthermore, rapidly reacting, sulfhydryl-specific chemical cross-linkers, methanethiosulfonates, inactivated the AcrB transporter with double-cysteine residues in the cleft expressed in dsbA cells, and this inactivation could be observed within a few seconds after the addition of a cross-linker in real time by increased ethidium influx into the cells. These observations indicate that conformational changes, including the closure of the external cleft in the periplasmic domain, are required for drug transport by AcrB.  相似文献   

17.
18.
The crystal structure of the modular flavin adenine dinucleotide (FAD) synthetase from Corynebacterium ammoniagenes has been solved at 1.95 Å resolution. The structure of C. ammoniagenes FAD synthetase presents two catalytic modules—a C-terminus with ATP-riboflavin kinase activity and an N-terminus with ATP-flavin mononucleotide (FMN) adenylyltransferase activity—that are responsible for the synthesis of FAD from riboflavin in two sequential steps. In the monomeric structure, the active sites from both modules are placed 40 Å away, preventing the direct transfer of the product from the first reaction (FMN) to the second catalytic site, where it acts as substrate. Crystallographic and biophysical studies revealed a hexameric assembly formed by the interaction of two trimers. Each trimer presents a head-tail configuration, with FMN adenylyltransferase and riboflavin kinase modules from different protomers approaching the active sites and allowing the direct transfer of FMN. Experimental results provide molecular-level evidences of the mechanism of the synthesis of FMN and FAD in prokaryotes in which the oligomeric state could be involved in the regulation of the catalytic efficiency of the modular enzyme.  相似文献   

19.
A major difficulty in determining the structure of an oligomeric protein by NMR is the problem of distinguishing inter- from intraprotomer NOEs. In order to address this issue in studies of the 27 kD compact trimeric domain of the MHC class II-associated invariant chain, we compared the 13C NOESY-HSQC spectrum of a uniformly 13C-labeled trimer with the spectrum of the same trimer labeled with 13C in only one protomer, and with deuterium in the other two protomers. The spectrum of the unmixed trimer included both inter- and intraprotomer NOEs while the spectrum of the mixed trimer included only intraprotomer peaks. NOEs clearly absent from the spectrum of the mixed trimer could be confidently assigned to interprotomer interactions. Asymmetrically labeled trimers were isolated by refolding a 13C-labeled shorter form of the protein with a 2H-labeled longer form, chromatographically purifying trimers with only one short chain, and then processing with trypsin to yield only protomers with the desired N- and C-termini. In contrast to earlier studies, in which statistical mixtures of differently labeled protomers were analyzed, our procedure generated only a well-defined 1:2 oligomer, and no other mixed oligomers were present. This increased the maximum possible concentration of NMR-active protomers and thus the sensitivity of the experiments. Related methods should be applicable to many oligomeric proteins, particularly those with slow protomer exchange rates.  相似文献   

20.
The gram-positive soil bacterium Corynebacterium glutamicum, a major amino acid-producing microorganism in biotechnology, is equipped with several osmoregulated uptake systems for compatible solutes, which is relevant for the physiological response to osmotic stress. The most significant carrier, BetP, is instantly activated in response to an increasing cytoplasmic K(+) concentration. Importantly, it is also activated by chill stress independent of osmotic stress. We show that the activation of BetP by both osmotic stress and chill stress is altered in C. glutamicum cells grown at and adapted to low temperatures. BetP from cold-adapted cells is less sensitive to osmotic stress. In order to become susceptible for chill activation, cold-adapted cells in addition needed a certain amount of osmotic stimulation, indicating that there is cross talk of these two types of stimuli at the level of BetP activity. We further correlated the change in BetP regulation properties in cells grown at different temperatures to changes in the lipid composition of the plasma membrane. For this purpose, the glycerophospholipidome of C. glutamicum grown at different temperatures was analyzed by mass spectrometry using quantitative multiple precursor ion scanning. The molecular composition of glycerophospholipids was strongly affected by the growth temperature. The modulating influence of membrane lipid composition on BetP function was further corroborated by studying the influence of artificial modulation of membrane dynamics by local anesthetics and the lack of a possible influence of internally accumulated betaine on BetP activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号