首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of membrane components to arrange themselves heterogeneously within the bilayer induces the formation of microdomains. Much work has been devoted to mimicking domain-assembly in artificial bilayers and characterizing their physico-chemical properties. Ternary lipid mixtures composed of unsaturated phospholipids, sphingomyelin and cholesterol give rise to large, round domains. Here, we replaced the unsaturated phospholipid in the ternary mixture with sphingomyelin and cholesterol by saturated glycero-phospholipids of different chain length and characterized the critical role of cholesterol in sorting these lipids by confocal imaging and fluorescence correlation spectroscopy (FCS). More cholesterol is needed to obtain phase segregation in ternary mixtures, in which the unsaturated phospholipid is replaced by a saturated one. Finally, lipid dynamics in distinct phases is very low and astonishingly similar, thereby suggesting the poor ability of cholesterol in sorting short-chain saturated glycero-phospholipids and sphingomyelin.  相似文献   

2.
Multilamellar and unilamellar vesicles can be generated by a variety of techniques which lead to systems with differing lamellarity, size, trapped volume and solute distribution. The straight-forward hydration of lipid to produce multilamellar vesicles (MLVs) results in systems which exhibit low trapped volumes and where solutes contained in the aqueous buffer are partially excluded from the MLV interior. Large trapped volumes and equilibrium solute distributions can be achieved by freeze-thawing or by ‘reverse phase’ procedures where the lipid is hydrated after being solubilized in organic solvent. Unilamellar vesicles can be produced directly from MLVs by extrusion or sonication or, alternatively, can be obtained by reverse phase or detergent removal procedures. The advantages and limitations of these techniques are discussed.  相似文献   

3.
Small-angle neutron scattering (SANS) measurements are performed on pure dimyristoyl phosphatidylcholine (DMPC) unilamellar vesicles (ULV) and those containing either 20 or 47 mol% cholesterol, ergosterol or lanosterol. From the SANS data, we were able to determine the influence of these sterols on ULV bilayer thickness and vesicle area expansion coefficients. While these parameters have been determined previously for membranes containing cholesterol, to the best of our knowledge, this is the first time such results have been presented for membranes containing the structurally related sterols, ergosterol and lanosterol. At both molar concentrations and at temperatures ranging from 10 to 45 degrees C, the addition of the different sterols leads to increases in bilayer thickness, relative to pure DMPC. We observe large differences in the influence of these sterols on the membrane thermal area expansion coefficient. All three sterols, however, produce very similar changes to membrane thickness.  相似文献   

4.
Small phospholipid vesicles, prepared so as to minimize impurities, fuse relatively slowly resulting in the time-dependent development of a characteristic endotherm in differential scanning calorimetry and corresponding changes in the Raman spectrum. The stability of small vesicles towards fusion increases with increasing acyl chain length for the series C-14 through 18. Within the protocols of these experiments, the fusion rate remains unchanged whether the vesicles are held at 10°C below Tm or at Tm itself. We have determined enthalpies of transition for small vesicles and fusion product for C-14 through C-18. In each case ΔH for small vesicles is lower than that of the corresponding multilamellar vesicles, while the fusion product ΔH is intermediate between small and multilamellar vesicles. The apparent lack of concensus in the literature as to the nature of the fusion process is ascribed to the variety of protocols used as well as the presence or absence of fusion-inducing impurities.  相似文献   

5.
N E Gabriel  M F Roberts 《Biochemistry》1987,26(9):2432-2440
Asymmetric unilamellar vesicles are produced when short-chain phospholipids (fatty acyl chain lengths of 6-8 carbons) are mixed with long-chain phospholipids (fatty acyl chain lengths of 14 carbons or longer) in ratios of 1:4 short-chain/long-chain component. Short-chain lecithins are preferentially distributed on the outer monolayer, while a short-chain phosphatidylethanolamine derivative appears to localize on the inner monolayer of these spontaneously forming vesicles. Lanthanide NMR shift experiments clearly show a difference in head-group/ion interactions between the short-chain and long-chain species. Two-dimensional 1H NMR studies reveal efficient spin diffusion networks for the short-chain species embedded in the long-chain bilayer matrix. The short-chain lecithin is considerably more mobile than the long-chain component but has hindered motion compared to short-chain lecithin micelles. This differentiation in physical characteristics of the two phospholipid components is critical to understanding the activity of phospholipases toward these binary systems.  相似文献   

6.
Small unilamellar vesicles were used to measure the permeability of saturated phosphatidylcholine bilayers to glucose. The presented method circumvents most of the common restrictions of classical permeability experiments. Increasing the fatty acid chain length of the lipids reduced the permeation rate significantly. Raising the temperature above that of the lipid phase transition drastically increased membrane permeability. Arrhenius plots demonstrated the activation energy to be independent of membrane composition and the phase-state of the lipids. The permeation process is discussed in terms of a constant energy to disrupt all hydrogen bonds between permeant and aqueous solvent prior to penetrating the membrane. The magnitude of the permeability coefficient is partly determined by a unfavourable change in entropy of activation on crossing the water/lipid interface. All results indicate that the penetration of the dehydrated permeant into the hydrophobic barrier is the rate-limiting step in the permeation of glucose.  相似文献   

7.
Small unilamellar vesicles were used to measure the permeability of saturated phosphatidylcholine bilayers to glucose. The presented method circumvents most of the common restriction of classical permeability experiments. Increasing the fatty acid chain length of the lipids reduced the permeation rate significantly. Raising the temperature above that of the lipid phase transition drastically increased membrane permeability. Arrhenius plots demonstrated the activation energy to be independent of membrane composition and the phase-state of the lipids. The permeation process is discussed in terms of a constant energy to disrupt all hydrogen bonds between permeant and aqueous solvent prior to penetrating the membrane. The magnitude of the permeability coefficient is partly determined by a unfavourable change in entropy of activation on crossing the water/lipid interface. All results indicate that the penetration of the dehydrated permeant into the hydrophobic barrier is the rate-limiting step in the permeation of glucose.  相似文献   

8.
Cholesterol is a major component of biological membranes, yet there is very little information concerning its distribution across the membrane. Recent experiments in our laboratory, using cholesterol oxidase, have demonstrated that cholesterol can undergo a rapid transbilayer movement in lecithin-cholesterol vesicles in a half-time of 1 min or less at 37°C. In order to support this conclusion, we have sought other approaches to the measurement of this process. We now report our finding that the transbilayer movement of thiocholesterol in phospholipid vesicles occurs in a half-time of 1 min or less at 20°C.  相似文献   

9.
A method has been developed for making large unilamellar vesicles (LUV) with low polydispersity. The LUV, constituted of dioleoylphosphatidic acid (DOPA), 300 nm in diameter are made by a modification of the pH adjustment technique (Hauser, H. and Gains, N. (1982) Proc. Natl. Acad. Sci. USA 79, 1683–1687). This size is 10 times that (30 nm) of vesicles prepared by prolonged sonication. Vesicle size is increased stepwise by adding cholesterol (to a maximum of 40 mol% cholesterol) to form vesicles in 0.15 M KCl with up to 600 nm diameter. The vesicle size is measured by photon correlation spectroscopy, electron microscopy, and by measurement of the internal volume with cyanocobalamin while calculating the number of DOPA molecules per vesicle. Vesicles are stable for at least three weeks. Sepharose 4B column chromatography of the preparation yields a peak of fractions with the same polydispersity as the original sample and shows that 30 to 40% of the original lipid in a sample is recovered as LUV. Less than 2% of the sample forms small unilamellar vesicles (SUV) (diameter = 30 nm), which emerge from the column in a separate peak. Since the remaining lipid is not suspended in the buffer during vesicle formation, for most purposes the vesicles may be used immediately after titration so that they can be prepared in less than 40 min.  相似文献   

10.
The interaction of carbonmonoxyhemoglobin and heme with small unilamellar phospholipid vesicles was studied using dynamic light scattering. Addition of carbonmonoxyhemoglobin to dimyristoylphosphatidylcholine:dimyristoylphosphatidylserine small unilamellar vesicles resulted in an increase of average vesicle size from 17.4 to 32.0nm. Addition of heme to vesicles produced a smaller size increase, from 17.4 to 21.0nm. Also reported is a method for preparing small unilamellar lipid vesicles of a uniform size, suitable for use in NMR spectroscopy.  相似文献   

11.
Changes in the fluorescence of partially self-quenched 5(6)-carboxyfluorescein trapped within the internal aqueous compartment of small unilamellar dipalmitoylphosphatidylcholine vesicles indicate that the trapped volume of these vesicles decreases when the phospholipid undergoes the liquid crystalline to gel state transition. This volume change is completely reversible and is not caused by vesicle-vesicle fusion. Furthermore, this decrease in volume of the internal aqueous compartment may be attributed to a change in vesicle shape upon undergoing the phase transition.  相似文献   

12.
Small unilamellar vesicles consisting of sphingomyelin, cholesterol and phosphatidylserine in a molar ratio of 4:5:1 containing [3H]inulin as a marker of the aqueous space or [Me-14C]choline-labeled sphingomyelin as a marker of the lipid phase were injected intravenously into rats. After separation of the non-parenchymal cells into a Kupffer cell fraction and an endothelial cell fraction by elutriation centrifugation analysis of the radioactivity contents demonstrated that Kupffer cells were actively involved in the uptake of the vesicles whereas endothelial cells did not contribute at all. Uptake by total parenchymal cells was also substantial but, on a per cell base, significantly lower than that by the Kupffer cells. By comparising the fate of the [3H]inulin label and the [14C]sphingomyelin label it was concluded that release of liposomal lipid degradation products especially occurred from Kupffer cells rather than from parenchymal cells. In both cell types, however, substantial proportions of the 14C-label accumulated in the phosphatidylcholine fraction, indicating intracellular degradation of sphingomyelin and subsequent phosphatidylcholine synthesis. Treatment of the animals with the lysosomotropic agent chloroquine prior to liposome injection effectively blocked the conversion of the choline-labeled sphingomyelin into phosphatidylcholine in both cell types. This observation indicates that uptake of the vesicles occurred by way of an endocytic mechanism.  相似文献   

13.
Under appropriate conditions, in vitro microtubule preparations self-organise over macroscopic distances by a process of reaction and diffusion. To investigate whether such self-organisation can also occur in objects as small as a cell or an embryo we carried out experiments in miniature containers of cellular dimension. When assembled under self-organising conditions in wells of 120–500 μm, microtubules developed organised structures. Self-organisation is strongly affected by shape, being highly favoured by elongated forms. In wells of more complex shape, geometrical factors may either oppose or strengthen one another and so inhibit or reinforce self-organisation. Microtubules were also assembled within phospholipid vesicles of 2–5 μm diameter. Under self-organising conditions, we observed large shape changes from spheroids to long tubes (50–100 μm) and intertwined coils. We conclude that self-organisation of microtubules by reaction–diffusion processes can occur in containers of cellular dimensions and is capable of strongly deforming the cellular membrane.  相似文献   

14.
Interaction of the local anesthetic dibucaine with small unilamellar vesicles of dimyristoylphosphatidylcholine (DMPC) and dioleoyl phosphatidylcholine (DOPC) containing different mol percents of cholesterol has been studied by fluorescence spectroscopy. Fluorescence measurements on dibucaine in presence of phospholipid vesicles containing various amounts of cholesterol yielded a pattern of variation of wavelength at emission maximum and steady-state anisotropy which indicated that the microenvironment of dibucaine is more polar and flexible in membranes that contain cholesterol than in membranes without cholesterol. Experiments on quenching of fluorescence from membrane-associated dibucaine by potassium iodide showed a marked increase in quenching efficiency as the cholesterol content of the vesicles was increased, demonstrating increased accessibility of the iodide quenchers to dibucaine in the presence of cholesterol, when compared to that in its absence. Total emission intensity decay profiles of dibucaine yielded two lifetime components of approximately 1 ns and approximately 2.8--3.1 ns with mean relative contributions of approximately 25 and approximately 75%, respectively. The mean lifetime in vesicles was 20--30% smaller than in the aqueous medium and showed a moderate variation with cholesterol content. Fluorescence measurements at two different temperatures in DMPC SUVs, one at 33 degrees C, above the phase transition temperature and another at 25 degrees C, around the main phase transition, indicated two different mode of dibucaine localization. At 25 degrees C dibucaine partitioned differentially in presence and absence of cholesterol. However, at 33 degrees C the apparent partition coefficients remained unaltered indicating differences in the microenvironment of dibucaine in presence and absence of cholesterol in the phospholipid membranes.  相似文献   

15.
We have studied the solid to liquid-crystalline phase transition of sonicated vesicles of dipalmitoylphosphatidylglycerol and dipalmitoylphosphatidylcholine. The transition was studied by both fluorescence polarization of perylene embedded in the vesicles, and by the efflux rate of trapped 22Na+.Fluorescence polarization generally decreases with temperature, showing an inflection in the region 32–42°C with a mid-point of approximately 37.5 °C. On the other hand, the perylene fluorescence intensity increases abruptly in this region. To explain this result, we have proposed that, for T < Tc where Tc is the transition temperature, perylene is excluded from the hydrocarbon interior of the membranes, whereas, T < Tc this probe may be accommodated in the membrane interior to a large extent.The self-diffusion rates of 22Na+ through dipalmitoylphosphatidylglycerol vesicles exhibit a complex dependence on temperature. There is an initial large increase in diffusion rates (approximately 100-fold) between 30 and 38 °C, followed by a decrease (approximately 4-fold) between 38 and 48 °C. A monotonic increase is then observed at temperatures higher than 48 °C. The local maximum of 22Na+ self-diffusion rates at approximately 38 °C coincides with the mid-point of phase transition as detected by changes in fluorescence polarization of perylene with the same vesicles. Vesicles composed of dipalmitoylphosphatidylcholine show the same general behavior in terms of 22Na+ self-diffusion rates at different temperatures, except that the local maximum occurs at approximately 42 °C.The temperature dependence of the permeability and the appearance of a local maximum at the phase transition region could be explained in terms of a domain structure within the plane of the membranes. This explanation is based on the possibility that boundary regions between liquid and solid domains would exhibit relatively high permeability to 22Na+.Mixed vesicles composed of equimolar amounts of dipalmitoyl phospholipids and cholesterol show no abrupt changes in the temperature dependence of either perylene fluorescence polarization or 22Na+ diffusion rate measurements. This is taken to indicate the absence of agross phase transition in the presence of cholesterol.  相似文献   

16.
Human erythrocytes have been treated with lipid vesicles in order to alter the cholesterol content of the cell membrane. Erythrocytes have been produced with cholesterol concentrations between 33 and 66 mol% of total lipid. The rate of valinomycin-mediated uptake of rubidium into the red cells at 37°C was lowered by increasing the cholesterol concentration of the cell membrane. Cholesterol increased the permeability to valinomycin at 20°C of small (less than 50 nm), unilamellar egg phosphatidylcholine vesicles formed by sonication. Cholesterol decreased the permeability to valinomycin at 20°C of large (up to 200 nm) unilamellar egg phosphatidylcholine vesicles formed by freezethaw plus brief sonication. It is concluded that cholesterol increases the permeability of small membrane vesicles to hydrophobic penetrating substances while above the transition temperature but has the opposite effect on large membrane vesicles and on the membranes of even larger cells.  相似文献   

17.
Preincubation of rat liver microsomal vesicles at 37 degrees C in the presence of [3H]cholesterol/phospholipid liposomes results in a net transfer of cholesterol from liposomes to microsomal vesicles. This transfer follows first-order kinetics. For similar concentrations of the donor vesicles, rates of transfer are about 6-8 times lower with cholesterol/sphingomyelin liposomes compared with cholesterol/phosphatidylcholine liposomes. Also, transfer of cholesterol from cholesterol/sphingomyelin liposomes to microsomal vesicles reveals a larger activation energy than for the process from cholesterol/phosphatidylcholine liposomes. There is a significant correlation between the amount of liposomal cholesterol transferred to microsomal vesicles during preincubation and the increase found with acyl-CoA:cholesterol acyltransferase activity in these microsomes over their corresponding controls. If, however, liposomes made solely of phospholipids are substituted for the cholesterol/phospholipid liposomes in the preincubation system containing microsomal vesicles, then the acyl-CoA:cholesterol acyltransferase activity is decreased compared with the corresponding control system. Both sphingomyelin and phosphatidylcholine liposomes are equally effective in decreasing the enzyme activity. These results offer direct kinetic evidence for the positive correlation between cholesterol and sphingomyelin found in vivo in biological membranes.  相似文献   

18.
M Cascio  B A Wallace 《Proteins》1988,4(2):89-98
The secondary structure of alamethicin, a membrane channel-forming polypeptide, has been examined by circular dichroism spectroscopy to determine the relationship of its conformation in organic solution to its conformation in a membrane-bound state. The spectrum of alamethicin in small unilamellar dimyristoyl phosphatidylcholine vesicles is significantly different from its spectrum in 10% methanol/acetonitrile, the solvent from which it was crystallized (Fox and Richards: Nature 300:325-330, 1982), as well as its spectrum in methanol, the solvent in which NMR studies have been done (Banerjee and Chan: Biochemistry 22:3709-3713, 1983). This suggests that structural models based on studies of the molecule in organic solvents may not be entirely appropriate for the membrane-bound state. To distinguish between different models for channel formation and insertion, two different methods were used to associate the alamethicin with vesicles; in addition, the effect of oligomerization on the conformation of the membrane-bound state was investigated. These studies are consistent with a modified insertion model in which alamethicin monomers, dimers, or trimers associate with the bilayer and then spontaneously oligomerize to form a prechannel with a higher helix content. This aggregate could then "open" upon application of an appropriate gating transmembrane potential.  相似文献   

19.
Small unilamellar phosphatidylserine/phosphatidylcholine liposomes incubated on one side of planar phosphatidylserine bilayer membranes induced fluctuations and a sharp increase in the membrane conductance when the Ca2+ concentration was increased to a threshold of 3–5 mM in 100 mM NaCl, pH 7.4. Under the same ionic conditions, these liposomes fused with large (0.2 μm diameter) single-bilayer phosphatidylserine vesicles, as shown by a fluorescence assay for the mixing of internal aqueous contents of the two vesicle populations. The conductance behavior of the planar membranes was interpreted to be a consequence of the structural rearrangement of phospholipids during individual fusion events and the incorporation of domains of phosphatidylcholine into the Ca2+-complexed phosphatidylserine membrane. The small vesicles did not aggregate or fuse with one another at these Ca2+ concentrations, but fused preferentially with the phosphatidylserine membrane, analogous to simple exocytosis in biological membranes. Phosphatidylserine vesicles containing gramicidin A as a probe interacted with the planar membranes upon raising the Ca2+ concentration from 0.9 to 1.2 mM, as detected by an abrupt increase in the membrane conductance. In parallel experiments, these vesicles were shown to fuse with the large phosphatidylserine liposomes at the same Ca2+ concentration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号