共查询到20条相似文献,搜索用时 15 毫秒
1.
This article reviews the current status of information regarding the role of energy in the process of oxidative phosphorylation by mitochondria. The available data suggest that in submitochondrial particles (SMP) energy is utilized for the binding of ADP and Pi and for the release of ATP bound at the catalytic sites of F1-ATPase. The process of ATP synthesis on the surface of F1 from F1-bound ADP and Pi appears to be associated with negligible free energy change. The rate of energy production by the respiratory chain modulates the kinetics of ATP synthesis between a lowK
m
(for ADP and Pi)-lowV
max mode and a highK
m
-highV
max mode. TheK
m
extremes for ADP are 2–3 µM and 120–150 µM, andV
max
for ATP synthesis at high rates of energy production by bovine-heart SMP is about 440 s–1 (mole F1)–1 at 30°C, which corresponds to 11 µmol ATP (min · mg of protein)–1. The interaction of dicyclohexylcarbodiimide (DCCD) or oligomycin at the proteolipid (subunitc) of the membrane sector (F0) of the ATP synthase complex alters the mode of ATP binding at the catalytic sites of F1, probably to one of lower affinity. It has been suggested that protonic energy might be conveyed to the catalytic sites of F1 in an analogous manner, i.e., via conformation changes in the ATP synthase complex initiated by proton-induced alterations in the structure of the DCCD-binding proteolipid. Finally, the relationship between the steady-state membrane potential () and the rates of electron transfer and ATP synthesis has been discussed. It has been shown, in agreement with the delocalized chemiosmotic mechanism, that under appropriate conditions is exquisitely sensitive to changes in the rates of energy production and consumption. 相似文献
2.
3.
Oxidative phosphorylation (OXPHOS) is the main source of energy in eukaryotic cells. This process is performed by means of electron flow between four enzymes, of which three are proton pumps, in the inner mitochondrial membrane. The energy accumulated in the proton gradient over the inner membrane is utilized for ATP synthesis by a fifth OXPHOS complex, ATP synthase. Four of the OXPHOS protein complexes associate into stable entities called respiratory supercomplexes. This review summarises the current view on the arrangement of the electron transport chain in mitochondrial cristae. The functional role of the supramolecular organisation of the OXPHOS system and the factors that stabilise such organisation are highlighted. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components. 相似文献
4.
Dudkina NV Sunderhaus S Boekema EJ Braun HP 《Journal of bioenergetics and biomembranes》2008,40(5):419-424
The organization of the oxidative phosphorylation (OXPHOS) system within the inner mitochondrial membrane appears to be far more complicated than previously thought. In particular, the individual protein complexes of the OXPHOS system (complexes I to V) were found to specifically interact forming defined supramolecular structures. Blue-native polyacrylamide gel electrophoresis and single particle electron microscopy proved to be especially valuable in studying the so-called "respiratory supercomplexes". Based on these procedures, increasing evidence was presented supporting a "solid state" organization of the OXPHOS system. Here, we summarize results on the formation, organisation and function of the various types of mitochondrial OXPHOS supercomplexes. 相似文献
5.
In biological microscopy, the ever expanding range of applications requires quantitative approaches that analyze several distinct fluorescent molecules at the same time in the same sample. However, the spectral properties of the fluorescent proteins and dyes presently available set an upper limit to the number of molecules that can be detected simultaneously with common microscopy methods. Spectral imaging and linear unmixing extends the possibilities to discriminate distinct fluorophores with highly overlapping emission spectra and thus the possibilities of multicolor imaging. This method also offers advantages for fast multicolor time-lapse microscopy and fluorescence resonance energy transfer measurements in living samples. Here we discuss recent progress on the technical implementation of the method, its limitations and applications to the imaging of biological samples. 相似文献
6.
7.
Terrell L. Hill 《Cell biochemistry and biophysics》1979,1(4):309-329
Alexandre et al. have proposed a four-system model of oxidative phosphorylation. The thermodynamic consequences of this model
are explored, assuming as a first approximation that these four systems can be treated as a self-contained group. The method
can be generalized, in higher approximations, to include further systems and other complications. Respiratory control is considered
from the point of view of the model. Self-consistent numerical examples are given to represent mitochondrial activity in state
3 and in state 4. 相似文献
8.
The oxidative phosphorylation system (OXPHOS) is organized in five multi-protein complexes, comprising four complexes (I-IV) of the respiratory chain and ATP synthase (complex V). OXPHOS has a vital role in cellular energy metabolism and ATP production. Enzyme analysis of individual OXPHOS complexes in a skeletal muscle biopsy remains the mainstay of the diagnostic process for patients suspected of mitochondrial cytopathy. A fresh muscle biopsy is preferable to a frozen muscle biopsy because of the possibility to measure the overall capacity of the OXPHOS system. In about 25% of patients referred to our center for muscle biopsy, reduced substrate oxidation rates and ATP + creatine phosphate production rates were found without any defect in complex I-V and the pyruvate dehydrogenase complex. In a subset of patients it is necessary to investigate fibroblasts for diagnostic purposes. The indications for biochemical investigations in fibroblasts are: (a) If no muscle sample is available; (b) If prenatal diagnosis is required; (c) To clarify the results obtained in muscle tissue if no clear-cut diagnosis can be made; (d) If molecular-genetic investigations are required; (e) For research purposes. Fibroblasts are less suitable than fresh muscle for investigating respiratory chain disorders, for the following reasons: (i) A defect that is present in a muscle is not always expressed in fibroblasts. (ii) Exclusion of a defect in fibroblasts does not exclude the diagnosis with regard to muscle. (iii) A specific pattern of abnormalities demonstrated in fibroblasts may not be reflected in muscle tissue. (iv) Enzyme deficiencies found in muscle are generally more pronounced than in fibroblasts. An exact diagnosis of respiratory chain defects is a prerequisite for rational therapy and genetic counseling. Provided guidelines for specimen collection are followed, there are now reliable methods for identifying respiratory chain defects. 相似文献
9.
The room-temperature fluorescence induction transients from stroma-free chloroplast membranes (in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea) have been analyzed to determine the effects of membrane protein phosphorylation on the connectivity between Photosystem (PS) II centers. Chloroplast membranes which have been incubated in the light with ATP exhibit: (1) a decrease in the variable fluorescence as a function of the initial fluorescence, (2) a shift from a sigmoidal to an exponential fluorescence induction curve, and (3) a reduced amount of the fast () component of the induction transient. These phenomenona are completely reversible by dark incubation of the samples (leading to protein dephosphorylation). We conclude that connectivity between PS II centers is reduced as a function of thylakoid membrane protein phosphorylation. This may in turn be the mechanism which increases the amount of absorbed excitation energy available to PS I. 相似文献
10.
Ryota Iino Tatsuya Iida Akihiko Nakamura Ei-ichiro Saita Huijuan You Yasushi Sako 《Biochimica et Biophysica Acta (BBA)/General Subjects》2018,1862(2):241-252
Background
Biological molecular machines support various activities and behaviors of cells, such as energy production, signal transduction, growth, differentiation, and migration.Scope of review
We provide an overview of single-molecule imaging methods involving both small and large probes used to monitor the dynamic motions of molecular machines in vitro (purified proteins) and in living cells, and single-molecule manipulation methods used to measure the forces, mechanical properties and responses of biomolecules. We also introduce several examples of single-molecule analysis, focusing primarily on motor proteins and signal transduction systems.Major conclusions
Single-molecule analysis is a powerful approach to unveil the operational mechanisms both of individual molecular machines and of systems consisting of many molecular machines.General significance
Quantitative, high-resolution single-molecule analyses of biomolecular systems at the various hierarchies of life will help to answer our fundamental question: “What is life?” This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato. 相似文献11.
Recent advances in the in vivo control and regulation of glycolysis and oxidative phosphorylation in yeast and tumor cells is revised. New insigths are presented from old and new experimental data interpreted in the light of powerful new technologies (e.g. NMR confocal microscopy) and quantitative techniques combined with mathematical modeling. Those new aspects are mainly concerned with the dynamical organization of glycolysis and oxidative phosphorylation which emerges from the multiple interactions between compartments and processes inside the cells. Those compartments may be of structural origin, e.g. plasma membrane defining the cell boundary, mitochondrial-cytoplasmic, or functional ones such as the alternative association-dissociation of enzymes to subcellular structures (e.g. mitochondria, cytoskeleton) with different kinetic properties in each state. A novel regulatory mechanism concerning polymerization-depolymerization of microtubular protein may add a new dimension to the in vivo physiological properties of cells. One main suggestion coming from the modulatory power of the polymeric status and concentration of cytoskeleton components is that it could function as an intracellular mechanism of synchronization between microscopic (local) to macroscopic (global) processes. How the cell "mixes" or switches on or off those regulatory steps or effectors under different physiological and environmental conditions and for different genetic backgrounds, is a main avenue of systematic research for the future. 相似文献
12.
《DNA Repair》2015
The mammalian apurinic/apyrimidinic (AP) endonuclease 1 (APE1) is an essential DNA repair/gene regulatory protein. Decrease of APE1 in cells by inducible shRNA knockdown or by conditional gene knockout caused apoptosis. Here we succeeded in establishing a unique mouse embryonic fibroblast (MEF) line expressing APE1 at a level far lower than those achieved with shRNA knockdown. The cells, named MEFla (MEFlowAPE1), were hypersensitive to methyl methanesulfonate (MMS), and showed little activity for repairing AP-sites and MMS induced DNA damage. While these results were consistent with the essential role of APE1 in repair of AP sites, the MEFla cells grew normally and the basal activation of poly(ADP-ribose) polymerases in MEFla was lower than that in the wild-type MEF (MEFwt), indicating the low DNA damage stress in MEFla under the normal growth condition. Oxidative phosphorylation activity in MEFla was lower than in MEFwt, while the glycolysis rates in MEFla were higher than in MEFwt. In addition, we observed decreased intracellular oxidative stress in MEFla. These results suggest that cells with low APE1 reversibly suppress mitochondrial respiration and thereby reduce DNA damage stress and increases the cell viability. 相似文献
13.
Nancy Xu XH Brownlow W Huang S Chen J 《Biochemical and biophysical research communications》2003,305(1):79-86
Real-time single-molecule microscopy and spectroscopy were used to monitor single molecules moving in and out of live bacterial cells, Pseudomonas aeruginosa. Ethidium bromide (EtBr) was chosen as the fluorescence probe because it emitted a weak fluorescence in aqueous solution (outside of the cells) and became strongly fluorescent as it entered the cells and intercalated with DNA. Such changes in fluorescence intensity by individual EtBr molecules were measured to determine the influx and efflux rates of EtBr by the cells. The transport rates for EtBr through the energized extrusion pumps of these strains (WT, nalB-1, and DeltaABM) of P. aeruginosa were measured and showed stochastic behavior with the average being (2.86+/-0.12), (2.80+/-0.13), and (2.74+/-0.39) x s(-1), respectively. The transport rates of the three strains were independent of substrate concentration at the single-molecule level. In contrast to bulk (many molecules) measurements, single-molecule detection allowed the influx and efflux kinetics to be observed in low substrate concentrations at the molecular level. 相似文献
14.
The individual protein complexes of the oxidative phosphorylation system (OXPHOS complexes I to V) specifically interact and form defined supramolecular structures, the so-called “respiratory supercomplexes”. Some supercomplexes appear to associate into larger structures, or megacomplexes, such as a string of dimeric ATP synthase (complex V2). A row-like organization of OXPHOS complexes I, III and IV into respiratory strings has also been proposed. These transient strings cannot be purified after detergent solubilization. Hence the shape and composition of the respiratory string was approached by an extensive structural characterization of all its possible building blocks, which are the supercomplexes. About 400,000 molecular projections of supercomplexes from potato mitochondria were processed by single particle electron microscopy. We obtained two-dimensional projection maps of at least five different supercomplexes, including the supercomplex I + III2, III2 + IV1, V2, I + III2 + IV1 and I2 + III2 in different types of position. From these maps the relative position of the individual complexes in the largest unit, the I2 + III2 + IV2 supercomplex, could be determined in a coherent way. The maps also show that the I + III2 + IV1 supercomplex, or respirasome, differs from its counterpart in bovine mitochondria. The new structural features allow us to propose a consistent model of the respiratory string, composed of repeating I2 + III2 + IV2 units, which is in agreement with dimensions observed in former freeze-fracture electron microscopy data. 相似文献
15.
16.
The contribution of different steps to the control of oxidative phosphorylation in isolated rat liver mitochondria was investigated by a combination of experiments and computer simulations. The parameters of the mathematical model of phosphorylating mitochondria were derived from experimental data. The model correctly describes the competition between ATP utilization inside and outside mitochondria for the ATP generated in mitochondria. On the basis of the good agreement between experiments and simulations, the contribution of different steps to the control of respiration was estimated by computing their control strengths, i.e., the influence of their activities on the rate of respiration. The rate-controlling influences vary depending on the load of oxidative phosphorylation. The predominant steps are: in the fully active state (State 3) — the hydrogen supply to the respiratory chain; in the resting state (State 4) — the proton leak of the mitochondrial inner membrane; in states of non-maximum ATP export — the adenine nucleotide translocator. Titrations of respiration with phenylsuccinate, antimycin, oligomycin and carboxyatractyloside completely support these conclusions. 相似文献
17.
Intramitochondrial Sr2+, similar to Ca2+, inhibits oxidative phosphorylation in intact rat-liver mitochondria. Both Ca2+ and Sr2+ also inhibit the hydrolytic activity of the ATPase in submitochondrial particles. Half-maximal inhibition of ATPase activity was attained at a concentration of 2.5 mM Ca2+ or 5.0 mM Sr2+ when the concentration of Mg2+ in the medium was 1.0 mM. The inhibition of ATPase activity by both cations was strongly decreased by increasing the Mg2+ concentration in the reaction medium. In addition, kinetical data and the determination of the concentration of MgATP, the substrate of the ATPase, in the presence of different concentrations of Ca2+ or Sr2+ strongly indicate that these cations inhibit ATP hydrolysis by competing with Mg2+ for the formation of MgATP. On the basis of a good agreement between these results with submitochondrial particles and the results of titrations of oxidative phosphorylation with carboxyatractyloside or oligomycin in mitochondria loaded with Sr2+ it can be concluded that intramitochondrial Ca2+ or Sr2+ inhibits oxidative phosphorylation in intact mitochondria by decreasing the availability of adenine nucleotides to both the ADP/ATP carrier and the ATP synthase. 相似文献
18.
Abstract Cell contents of Clostridium sphenoides , labeled with [32 P]orthophosphate under strict anaerobic conditions, were analyzed by two-dimensional gel electrophoresis. Autoradiography of these gels demonstrated the presence of at least 15 32 P-labeled protein species, of which M r and iso-electric point were determined. Treatment of the radioactively labeled cell contents with alkaline phosphatase and acid phosphatase showed that all these proteins were modified by phosphorylation. These findings demonstrate for the first time the presence of phosphorproteins in a strictly anaerobic bacterium. 相似文献
19.
Yan Li Anna Jia Yuexin Wang Lin Dong Yufei Wang Ying He Shiyao Wang Yejin Cao Hui Yang Yujing Bi Guangwei Liu 《Journal of cellular physiology》2019,234(11):20298-20309
The metabolism of immune cells reprograms inflammatory responses to protect against infection by pathogenic microorganisms, but the immune effects of glycolysis and the oxidative phosphorylation (OXPHOS) metabolic pathway remain unclear. Herein, the effects of glycolysis or OXPHOS on the neutrophils and T cells were investigated using a pharmacological approach in mice. 2-Deoxy-d -glucose (2-DG), which blocks the key enzyme hexokinase of glycolysis, and dimethyl malonate (DMM), which blocks the key element succinate of OXPHOS, both efficiently expanded the population of neutrophils, but significantly inhibited tumor necrosis factor a secretion and reactive oxygen species (ROS) production. These compounds also effectively inhibited the differentiation of type 1 T helper cells (Th1) but had no effects on the differentiation of type 2 T helper cells (Th2) and regulatory T cells. A study of the underlying mechanism showed that hypoxia-inducible factor 1-alpha (HIF1α) was an upstream signal in the regulation of glycolysis, but not OXPHOS. In thioglycolate broth-induced neutrophil peritonitis, blockade of glycolysis or OXPHOS efficiently expanded the population of neutrophils, but diminished their abilities to secrete proinflammatory factors, produce ROS, and phagocytose bacteria. In Listeria monocytogenes bacteria-infected mice, 2-DG or DMM treatment consistently inhibited antibacterial activity and Th1 function. Thus, our results provide a basis for comprehensively understanding the role of glycolysis and OXPHOS in anti-infectious immunity. 相似文献
20.
Patrice X. Petit Marianne Sommarin Christophe Pical Ian M. Møller 《Physiologia plantarum》1990,80(4):493-499
Purified mitochondria from potato ( Solanum tuberosum L. cv. Bintje) tubers were incubated with [γ32 P]-ATP, respiratory substrates and various effectors. The total incorporation of 32 P into proteins was measured and the phosphoprotein pattern investigated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and autoradiography. Total incorporation was strongly reduced (by 70–80%) by the respiratory substrates, succinate, pyruvate and NADH. The half-maximal inhibition was at 0.03, 0.3, and 0.3 m M , respectively. The labelling of the major phosphoproteins of 40 and 42 kDa (probably both the α-subunit of the pyruvate dehydrogenase, EC 1.2.4.1) as well as of minor polypeptides of 26–33 kDa was reduced. A concomittant increase in the labelling of the 14 and 16 kDa bands occurred in the presence of succinate in fall but this increase could not be detected in late winter. The reduction in total labelling caused by NADH and succinate was unaffected by changes in the membrane potential (e.g. addition of uncouplers) or by inhibition of electron transport (e.g. by KCN). Malonate inhibition of succinate oxidation reversed the effects of succinate on labelling- The mechanism(s) by which respiratory substrates might affect protein kinase activity is discussed. 相似文献