首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Group 3 late embryogenesis abundant (G3LEA) proteins have amino acid sequences with characteristic 11-mer motifs and are known to reduce aggregation of proteins during dehydration. Previously, we clarified the structural and thermodynamic properties of the 11-mer repeating units in G3LEA proteins using synthetic peptides composed of two or four tandem repeats originating from an insect (Polypedilum vanderplanki), nematodes and plants. The purpose of the present study is to test the utility of such 22-mer peptides as protective reagents for aggregation-prone proteins. For lysozyme, desiccation-induced aggregation was abrogated by low molar ratios of a 22-mer peptide, PvLEA-22, derived from a P. vanderplanki G3LEA protein sequence. However, an unexpected behavior was noted for the milk protein, α-casein. On drying, the resultant aggregation was significantly suppressed in the presence of PvLEA-22 with its molar ratios>25 relative to α-casein. However, when the molar ratio was <10, aggregation occurred on addition of PvLEA-22 to aqueous solutions of α-casein. Other peptides derived from nematode, plant and randomized G3LEA protein sequences gave similar results. Such an anomalous solubility change in α-casein was shown to be due to a pH shift to ca. 4, a value nearly equal to the isoelectric point (pI) of α-casein, when any of the 22-mer peptides was mixed. These results demonstrate that synthetic peptides derived from G3LEA protein sequences can reduce protein aggregation caused both by desiccation and, at high molar ratios, also by pH effects, and therefore have potential as stabilization reagents.  相似文献   

2.
We have investigated the membrane destabilizing properties of synthetic amphiphilic cationic peptides, MAX1 and MAX35, which have the propensity to form β-hairpin structures under certain conditions, and a control non-β-hairpin-forming peptide MAX8V16E. All three peptides bind to liposomes containing a mixture of zwitterionic POPC and negatively charged POPS lipids as determined by Zeta potential measurements. Circular dichroism measurements indicated folding of MAX1 and MAX35 in the presence of the POPC/POPS liposomes, whereas no such folding was observed with MAX8V16E. There was no binding or folding of these peptides to liposomes containing only POPC. MAX1 and MAX35 induced release of contents from negatively charged liposomes, whereas MAX8V16E failed to promote solute release under identical conditions. Thus, MAX1 and MAX35 bind to, and fold at the surface of negatively charged liposomes adopting a lytic conformation. We ruled out leaky fusion as a mechanism of release by including 2 mol % PEG-PE in the liposomes, which inhibits aggregation/fusion but not folding of MAX or MAX-induced leakage. Using a concentration-dependent quenching probe (calcein), we determined that MAX-induced leakage of liposome contents was an all-or-none process. At MAX1 concentrations, which cause release of ∼50% of the liposomes that contain small (Rh <1.5 nm) markers, only ∼15% of those liposomes release a fluorescent dextran of 40 kDa. A multimeric model of the pore is presented based on these results. Atomistic molecular dynamics simulations show that barrels consisting of 10 β-hairpin MAX1 and MAX35 peptides are relatively more stable than MAX8V16E barrels in the bilayer, suggesting that barrels of this size are responsible for the peptides lytic action.  相似文献   

3.
Late embryogenesis abundant (LEA) proteins are a highly diverse group of polypeptides expected to play important roles in desiccation tolerance of plant seeds. They are also found in other plant tissues and in some anhydrobotic invertebrates, fungi, protists and prokaryotes. The LEA protein LEAM accumulates in the matrix space of pea (Pisum sativum) mitochondria during late seed maturation. LEAM is an intrinsically disordered protein folding into amphipathic α-helix upon desiccation. This suggests that it could interact with the inner mitochondrial membrane, providing structural protection in dry seeds. Here, we have used Fourier-transform infrared and fluorescence spectroscopy to gain insight into the molecular details of interactions of LEAM with phospholipid bilayers in the dry state and their effects on liposome stability. LEAM interacted specifically with negatively charged phosphate groups in dry phospholipids, increasing fatty acyl chain mobility. This led to an enhanced stability of liposomes during drying and rehydration, but also upon freezing. Protection depended on phospholipid composition and was strongly enhanced in membranes containing the mitochondrial phospholipid cardiolipin. Collectively, the results provide strong evidence for a function of LEAM as a mitochondrial membrane protectant during desiccation and highlight the role of lipid composition in the interactions between LEA proteins and membranes.  相似文献   

4.
Late embryogenesis abundant (LEA) proteins, which accumulate to high levels in seeds during late maturation, are associated with desiccation tolerance. A member of the LEA protein family was found in cultured cells of the liverwort Marchantia polymorpha; preculture treatment of these cells with 0.5 M sucrose medium led to their acquisition of desiccation tolerance. We characterized this preculture-induced LEA protein, designated as MpLEA1. MpLEA1 is predominantly hydrophilic with a few hydrophobic residues that may represent its putative signal peptide. The protein also contains a putative endoplasmic reticulum (ER) retention sequence, HEEL, at the C-terminus. Microscopic observations indicated that GFP-fused MpLEA1 was mainly localized in the ER. The recombinant protein MpLEA1 is intrinsically disordered in solution. On drying, MpLEA1 shifted predominantly toward α-helices from random coils. Such changes in conformation are a typical feature of the group 3 LEA proteins. Recombinant MpLEA1 prevented the aggregation of α-casein during desiccation–rehydration events, suggesting that MpLEA1 exerts anti-aggregation activity against desiccation-sensitive proteins by functioning as a “molecular shield”. Moreover, the anti-aggregation activity of MpLEA1 was ten times greater than that of BSA or insect LEA proteins, which are known to prevent aggregation on drying. Here, we show that an ER-localized LEA protein, MpLEA1, possesses biochemical and structural features specific to group 3 LEA proteins.  相似文献   

5.
We have investigated the membrane destabilizing properties of synthetic amphiphilic cationic peptides, MAX1 and MAX35, which have the propensity to form β-hairpin structures under certain conditions, and a control non-β-hairpin-forming peptide MAX8V16E. All three peptides bind to liposomes containing a mixture of zwitterionic POPC and negatively charged POPS lipids as determined by Zeta potential measurements. Circular dichroism measurements indicated folding of MAX1 and MAX35 in the presence of the POPC/POPS liposomes, whereas no such folding was observed with MAX8V16E. There was no binding or folding of these peptides to liposomes containing only POPC. MAX1 and MAX35 induced release of contents from negatively charged liposomes, whereas MAX8V16E failed to promote solute release under identical conditions. Thus, MAX1 and MAX35 bind to, and fold at the surface of negatively charged liposomes adopting a lytic conformation. We ruled out leaky fusion as a mechanism of release by including 2 mol % PEG-PE in the liposomes, which inhibits aggregation/fusion but not folding of MAX or MAX-induced leakage. Using a concentration-dependent quenching probe (calcein), we determined that MAX-induced leakage of liposome contents was an all-or-none process. At MAX1 concentrations, which cause release of ∼50% of the liposomes that contain small (Rh <1.5 nm) markers, only ∼15% of those liposomes release a fluorescent dextran of 40 kDa. A multimeric model of the pore is presented based on these results. Atomistic molecular dynamics simulations show that barrels consisting of 10 β-hairpin MAX1 and MAX35 peptides are relatively more stable than MAX8V16E barrels in the bilayer, suggesting that barrels of this size are responsible for the peptides lytic action.  相似文献   

6.
A 15-residue peptide dimer G15 derived from the cell lytic protein granulysin has been shown to exert potent activity against microbes, including E. coli, but not against human Jurkat cells [Z. Wang, E. Choice, A. Kaspar, D. Hanson, S. Okada, S.C. Lyu, A.M. Krensky, C. Clayberger, Bactericidal and tumoricidal activities of synthetic peptides derived from granulysin. J. Immunol. 165 (2000) 1486-1490]. We investigated the target membrane selectivity of G15 using fluorescence, circular dichroism and 31P NMR methods. The ANS uptake assay shows that the extent of E. coli outer membrane disruption depends on G15 concentration. 31P NMR spectra obtained from E. coli total lipid bilayers incorporated with G15 show disruption of lipid bilayers. Fluorescence binding studies on the interaction of G15 with synthetic liposomes formed of E. coli lipids suggest a tight binding of the peptide at the membrane interface. The peptide also binds to negatively charged POPC/POPG (3:1) lipid vesicles but fails to insert deep into the membrane interior. These results are supported by the peptide-induced changes in the measured isotropic chemical shift and T1 values of POPG in 3:1 POPC:POPG multilamellar vesicles while neither a non-lamellar phase nor a fragmentation of bilayers was observed from NMR studies. The circular dichroism studies reveal that the peptide exists as a random coil in solution but folds into a less ordered conformation upon binding to POPC/POPG (3:1) vesicles. However, G15 does not bind to lipid vesicles made of POPC/POPG/Chl (9:1:1) mixture, mimicking tumor cell membrane. These results explain the susceptibility of E. coli and the resistance of human Jurkat cells to G15, and may have implications in designing membrane-selective therapeutic agents.  相似文献   

7.
8.
We tested whether a short model peptide derived from a group 3 late embryogenesis abundant (G3LEA) protein is able to maintain the fluorescence activity of a red fluorescent protein, mKate2, in the dry state. The fluorescence intensity of mKate2 alone decreased gradually through repeated dehydration-rehydration treatments. However, in the presence of the LEA model peptide, the peak intensity was maintained almost perfectly during such stress treatments, which implies that the three dimensional structure of the active site of mKate2 was protected even under severe desiccation conditions. For comparison, similar experiments were performed with other additives such as a native G3LEA protein, trehalose and BSA, all of whose protective abilities were lower than that of the LEA model peptide.  相似文献   

9.
10.
Rhodanese (thiosulfate cyanide sulfurtransferase; E.C. 2.8.1.1) is a mitochondrial enzyme that is unprocessed after import. We describein vitro experiments showing that partially folded rhodanese can interact with lipid bilayers. The interaction was monitored by measuring the ability of rhodanese to disrupt small unilamellar vesicles composed of phosphatidylserine and to release 6-carboxyfluorescein that was trapped in the liposomes. Partially folded rhodanese, derived by dilution of urea-unfolded enzyme, efficiently induced liposome leakage. Native rhodanese had no effect on liposome integrity. Liposome disruption progressively decreased as rhodanese was given the opportunity to refold or aggregate before introduction of the liposomes. A synthetic 23 amino acid peptide representing the N-terminal sequence of rhodanese was very efficient at disrupting the liposomes. Shorter peptides chosen from within this sequence (residues 11–23 or residues 1–17) had no effect on liposome disruption. A peptide representing the tether region that connects the domains of the enzyme was also without effect. These results are consistent with the hypothesis that the N-terminal sequence of rhodanese is an uncleaved leader sequence, and can interact with membrane components that are involved in the mitochondrial uptake of this protein.  相似文献   

11.
The fusion between enzyme-containing liposomes and substrate-containing liposomes was studied, utilizing conformationally altered cytochrome c as fusion mediator under stress conditions. The liposomes were composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and liposome aggregation and subsequent liposome fusion were induced by the addition of cytochrome c, which was partially denatured by 0.5 M guanidinium hydrochloride (GuHCl). In the presence of 0.5 M GuHCl, cytochrome c was found to have a significantly large local hydrophobicity which was determined with the aqueous two-phase partitioning method. Under these conditions, cytochrome c could efficiently bind to POPC bilayer membranes as quantitatively evaluated by immobilized liposome chromatography (ILC). The retardation of cytochrome c treated with 0, 0.5, and 1 M GuHCl on ILC could be correlated with the corresponding local hydrophobicity of cytochrome c. The enzymatic reaction triggered by liposome fusion involved the proteolytic enzyme alpha-chymotrypsin and its substrate succinyl-L-Ala-L-Ala-L-Pro-L-Phe-p-nitroanilide (Suc-AAPF-pNA), which were separately trapped in POPC liposomes. Addition of partially denatured cytochrome c (most likely in the molten globule state) to the mixture of enzyme- and substrate-containing liposomes resulted in the release of one of the hydrolysis products, p-nitroaniline, to the outer phase of the fused liposomes, indicating that the enzymatic reaction occurred during the liposome fusion process. Such a coupled fusion-reaction system may have specific advantages over the conventional fusion analysis and may find application as drug delivery system.  相似文献   

12.
Common amino acid sequence domains among the LEA proteins of higher plants   总被引:41,自引:0,他引:41  
LEA proteins are late embryogenesis abundant in the seeds of many higher plants and are probably universal in occurrence in plant seeds. LEA mRNAs and proteins can be induced to appear at other stages in the plant's life by desiccation stress and/or treatment with the plant hormone abscisic acid (ABA). A role in protecting plant structures during water loss is likely for these proteins, with ABA functioning in the stress transduction process. Presented here are conserved tracts of amino acid sequence among LEA proteins from several species that may represent domains functionally important in desiccation protection. Curiously, an 11 amino acid sequence motif is found tandemly repeated in a group of LEA proteins of vastly different sizes. Analysis of this motif suggests that it exists as an amphiphilic helix which may serve as the basis for higher order structure.  相似文献   

13.
We report on the reversible association of anionic liposomes induced by an antimicrobial peptide (LAH4). The process has been characterized for mixed membranes of POPC and POPS at molar ratios of 1:1, 3:1, and 9:1. Although the vesicles remain in suspension in the presence of excess amounts of peptide, the addition of more lipids results in surface charge neutralization, aggregation of the liposomes, and formation of micrometer-sized structures that coexist in equilibrium with vesicles in suspension. At low ratios of anionic lipids, vesicle aggregation is a reversible process, and vesicle disassembly is observed upon inversion of the surface charge by further supplementation with anionic vesicles. In contrast, a different process, membrane fusion, occurs in the presence of high phosphatidylserine concentrations. Upon binding to membranes containing low POPS concentrations, the peptide adopts an in-plane α-helical structure, a secondary structure that is conserved during vesicle association and dissociation. Our finding that peptides are essential for vesicle aggregation contributes to a better understanding of the activity of antimicrobial peptides, and suggests an additional layer of complexity in membrane-protein lipid interactions.  相似文献   

14.
The reovirus p10 fusion-associated small transmembrane (FAST) proteins are the smallest known membrane fusion proteins, and evolved specifically to mediate cell–cell, rather than virus–cell, membrane fusion. The 36–40-residue ectodomains of avian reovirus (ARV) and Nelson Bay reovirus (NBV) p10 contain an essential intramolecular disulfide bond required for both cell–cell fusion and lipid mixing between liposomes. To more clearly define the functional, biochemical and biophysical features of this novel fusion peptide, synthetic peptides representing the p10 ectodomains of ARV and NBV were analyzed by solution-state NMR spectroscopy, circular dichroism spectroscopy, fluorescence spectroscopy-based hydrophobicity analysis, and liposome binding and fusion assays. Results indicate that disulfide bond formation promotes exposure of hydrophobic residues, as indicated by bis-ANS binding and time-dependent peptide aggregation under aqueous conditions, implying the disulfide bond creates a small, geometrically constrained, cystine noose. Noose formation is required for peptide partitioning into liposome membranes and liposome lipid mixing, and electron microscopy revealed that liposome–liposome fusion occurs in the absence of liposome tubulation. In addition, p10 fusion peptide activity, but not membrane partitioning, is dependent on membrane cholesterol.  相似文献   

15.
In our laboratory we developed a series of antimicrobial peptides that exhibit selectivity and potency for prokaryotic over eukaryotic cells (Hicks et al., 2007). Circular dichroism (CD), isothermal calorimetry (ITC) and calcein leakage assays were conducted to determine the mechanism of lipid binding of a representative peptide 1 (Ac-GF-Tic-Oic-GK-Tic-Oic-GF-Tic-Oic-GK-Tic-KKKK-CONH2) to model membranes. POPC liposomes were used as a simple model for eukaryotic membranes and 4:1 POPC:POPG liposomes were used as a simple model for prokaryotic membranes. CD, ITC and calcein leakage data clearly indicate that compound 1 interacts via very different mechanisms with the two different liposome membranes. Compound 1 exhibits weaker binding and induces less calcein leakage in POPC liposomes than POPC:POPG (4:1 mole ratio) liposomes. The predominant binding mechanism to POPC appears to be limited to surface interactions while the mechanism of binding to 4:1 POPC:POPG most likely involves some type of pore formation.  相似文献   

16.
Phospholipid-ethanol-aqueous mixtures containing bilayer-forming lipids and 20-50 wt.% of water form viscous gels. Further hydration of these gels results in the formation of liposomes whose morphology depends upon the lipid type. Upon hydration of gels containing mixtures of the lipids 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) and 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG), small homogeneous and unilamellar liposomes were produced. In contrast, hydration of gels containing only POPC resulted in formation of large multilamellar liposomes. Likewise, mulitlamellar liposomes resulted when this method was applied to form highly fusogenic liposomes comprised of the novel negatively charged N-acyl-phosphatidylethanolamine (NAPE) mixed with di-oleoyl-phosphatidylcholine (DOPC) (7:3) [T. Shangguan, C.C. Pak, S. Ali, A.S. Janoff, P. Meers, Cation-dependent fusogenicity of an N-acyl phosphatidylethanolamine, Biochim. Biophys. Acta 1368 (1998) 171-183]. In all cases, the measured aqueous entrapment efficiencies were relatively high. To better understand how the molecular organization of these various gels affects liposome morphology, we examined samples by freeze-fracture transmission electron microscopy and X-ray diffraction. We found that phospholipid-ethanol-water gels are comprised of highly organized stacks of lamellae. A distinct feature of the gel samples that result in small unilamellar liposomes is the combination of acyl chain interdigitation and net electrostatic charge. We speculate that the mechanism of unilamellar liposome formation proceeds via formation of stalk contacts between neighboring layers similar to membrane hemifusion intermediates, and the high aqueous entrapment efficiencies make this liposome formation process attractive for use in drug delivery applications.  相似文献   

17.
Embryos of the brine shrimp, Artemia franciscana, are genetically programmed to develop either ovoviparously or oviparously depending on environmental conditions. Shortly upon their release from the female, oviparous embryos enter diapause during which time they undergo major metabolic rate depression while simultaneously synthesize proteins that permit them to tolerate a wide range of stressful environmental events including prolonged periods of desiccation, freezing, and anoxia. Among the known stress-related proteins that accumulate in embryos entering diapause are the late embryogenesis abundant (LEA) proteins. This large group of intrinsically disordered proteins has been proposed to act as molecular shields or chaperones of macromolecules which are otherwise intolerant to harsh conditions associated with diapause. In this research, we used two model systems to study the potential function of the group 1 LEA proteins from Artemia. Expression of the Artemia group 1 gene (AfrLEA-1) in Escherichia coli inhibited growth in proportion to the number of 20-mer amino acid motifs expressed. As well, clones of E. coli, transformed with the AfrLEA-1 gene, expressed multiple bands of LEA proteins, either intrinsically or upon induction with isopropyl-β-thiogalactoside (IPTG), in a vector-specific manner. Expression of AfrLEA-1 in E. coli did not overcome the inhibitory effects of high concentrations of NaCl and KCl but modulated growth inhibition resulting from high concentrations of sorbitol in the growth medium. In contrast, expression of the AfrLEA-1 gene in Saccharomyces cerevisiae did not alter the growth kinetics or permit yeast to tolerate high concentrations of NaCl, KCl, or sorbitol. However, expression of AfrLEA-1 in yeast improved its tolerance to drying (desiccation) and freezing. Under our experimental conditions, both E. coli and S. cerevisiae appear to be potentially suitable hosts to study the function of Artemia group 1 LEA proteins under environmentally stressful conditions.

Electronic supplementary material

The online version of this article (doi:10.1007/s12192-015-0647-3) contains supplementary material, which is available to authorized users.  相似文献   

18.
Developing seeds accumulate late embryogenesis abundant (LEA) proteins, a family of intrinsically disordered and hydrophilic proteins that confer cellular protection upon stress. Many different LEA proteins exist in seeds, but their relative contribution to seed desiccation tolerance or longevity (duration of survival) is not yet investigated. To address this, a reference map of LEA proteins was established by proteomics on a hydrophilic protein fraction from mature Medicago truncatula seeds and identified 35 polypeptides encoded by 16 LEA genes. Spatial and temporal expression profiles of the LEA polypeptides were obtained during the long maturation phase during which desiccation tolerance and longevity are sequentially acquired until pod abscission and final maturation drying occurs. Five LEA polypeptides, representing 6% of the total LEA intensity, accumulated upon acquisition of desiccation tolerance. The gradual 30-fold increase in longevity correlated with the accumulation of four LEA polypeptides, representing 35% of LEA in mature seeds, and with two chaperone-related polypeptides. The majority of LEA polypeptides increased around pod abscission during final maturation drying. The differential accumulation profiles of the LEA polypeptides suggest different roles in seed physiology, with a small subset of LEA and other proteins with chaperone-like functions correlating with desiccation tolerance and longevity.  相似文献   

19.
We report the three-dimensional structure of a late embryogenesis abundant (LEA) protein from Arabidopsis thaliana gene At1g01470.1. This protein is a member of Pfam cluster PF03168, and has been classified as a LEA14 protein. LEA proteins are expressed under conditions of cellular stress, such as desiccation, cold, osmotic stress, and heat. The structure, which was determined by NMR spectroscopy, revealed that the At1g01470.1 protein has an alphabeta-fold consisting of one alpha-helix and seven beta-strands that form two antiparallel beta-sheets. The closest structural homologs were discovered to be fibronectin Type III domains, which have <7% sequence identity. Because fibronectins from animal cells have been shown to be involved in cell adhesion, cell motility, wound healing, and maintenance of cell shape, it is interesting to note that in plants wounding or stress results in the overexpression of a protein with fibronectin Type III structural features.  相似文献   

20.
Typical of many viral fusion proteins, the sequence of the Newcastle disease virus (NDV) fusion protein has several heptad repeat regions. One, HR1, is located just carboxyl terminal to the fusion peptide, while the other, HR2, is located adjacent to the transmembrane domain. The structure and function of a synthetic peptide with a sequence from the region of the NDV HR1 region (amino acids 150 to 173) were characterized. The peptide inhibited fusion with a half-maximal concentration of approximately 2 microM; however, inhibition was observed only if the peptide was added prior to protease activation of the fusion protein. This inhibition was virus specific since the peptide had minimal effect on fusion directed by the Sendai virus glycoproteins. To explore the mechanism of action, the potential HR1 peptide interaction with a previously characterized fusion inhibitory peptide with a sequence from the HR2 domain (J. K. Young, R. P. Hicks, G. E. Wright, and T. G. Morrison, Virology 238:291-304, 1997) was characterized. The results demonstrated an interaction between the two peptides both functionally and directly. First, while the individual peptides each inhibit fusion, equimolar mixtures of the two peptides had minimal effect on fusion, suggesting that the two peptides form a complex preventing their interaction with a target protein. Second, an HR2 peptide covalently linked with biotin was found to bind specifically to HR1 peptide in a Western blot. The structure of the HR1 peptide was analyzed by nuclear magnetic resonance spectroscopy and found to be an alpha helix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号