首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Phosphatidylcholine and choline homeostasis   总被引:3,自引:0,他引:3  
Phosphatidylcholine (PC) is made in mammalian cells from choline via the CDP-choline pathway. Animals obtain choline primarily from the diet or from the conversion of phosphatidylethanolamine (PE) to PC followed by catabolism to choline. The main fate of choline is the synthesis of PC. In addition, choline is oxidized to betaine in kidney and liver and converted to acetylcholine in the nervous system. Mice that lack choline kinase (CK) alpha die during embryogenesis, whereas mice that lack CKbeta unexpectedly develop muscular dystrophy. Mice that lack CTP:phosphocholine cytidylyltransferase (CT) alpha also die during early embryogenesis, whereas mice that lack CTbeta exhibit gonadal dysfunction. The cytidylyltransferase beta isoform also plays a role in the branching of axons of neurons. An alternative PC biosynthetic pathway in the liver uses phosphatidylethanolamine N-methyltransferase to catalyze the formation of PC from PE. Mice that lack the methyltransferase survive but die from steatohepatitis and liver failure when placed on a choline-deficient diet. Hence, choline is an essential nutrient. PC biosynthesis is required for normal very low density lipoprotein secretion from hepatocytes. Recent studies indicate that choline is recycled in the liver and redistributed from kidney, lung, and intestine to liver and brain when choline supply is attenuated.  相似文献   

3.
Choline is an important nutrient for mammals. Choline can also be generated by the catabolism of phosphatidylcholine synthesized in the liver by the methylation of phosphatidylethanolamine by phosphatidylethanolamine N-methyltransferase (PEMT). Complete choline deprivation is achieved by feeding Pemt(-)(/)(-) mice a choline-deficient diet and is lethal due to liver failure. Mice that lack both PEMT and MDR2 (multiple drug-resistant protein 2) successfully adapt to choline deprivation via hepatic choline recycling. We now report another mechanism involved in this adaptation, choline redistribution. Normal levels of choline-containing metabolites were maintained in the brains of choline-deficient Mdr2(-)(/)(-)/Pemt(-)(/)(-) mice for 90 days despite continued choline consumption via oxidation. Choline oxidase activity had not been previously detected in the brain. Plasma levels of choline were also maintained for 90 days, whereas plasma phosphatidylcholine levels decreased by >60%. The injection of [(3)H]choline into Mdr2(-)(/)(-)/Pemt(-)(/)(-) mice revealed a redistribution of choline among tissues. Although CD-Pemt(-)(/)(-) mice failed to adapt to choline deprivation, choline redistribution was also initiated in these mice. The data suggest that adaptation to choline deprivation is not restricted to liver via choline recycling but also occurs in the whole animal via choline redistribution.  相似文献   

4.
Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are major phospholipids in mammalian membranes. In liver, PC is synthesized via the choline pathway or by methylation of PE via phosphatidylethanolamine N-methyltransferase (PEMT). Pemt(-/-) mice fed a choline-deficient (CD) diet develop rapid steatohepatitis leading to liver failure. Steatosis is observed in CD mice that lack both PEMT and multiple drug-resistant protein 2 (MDR2), required for PC secretion into bile. We demonstrate that liver failure in CD-Pemt(-/-) mice is due to loss of membrane integrity caused by a decreased PC/PE ratio. The CD-Mdr2(-/-)/Pemt(-/-) mice escape liver failure by maintaining a normal PC/PE ratio. Manipulation of PC/PE levels suggests that this ratio is a key regulator of cell membrane integrity and plays a role in the progression of steatosis into steatohepatitis. The results have clinical implications as patients with nonalcoholic steatohepatitis have a decreased ratio of PC to PE compared to control livers.  相似文献   

5.
Phosphatidylcholine (PC) is synthesized from choline via the CDP-choline pathway. Liver cells can also synthesize PC via the sequential methylation of phosphatidylethanolamine, catalyzed by phosphatidylethanolamine N-methyltransferase (PEMT). The current study investigates whether or not hepatic PC biosynthesis is linked to diet-induced obesity. Pemt+/+ mice fed a high fat diet for 10 weeks increased in body mass by 60% and displayed insulin resistance, whereas Pemt−/− mice did not. Compared with Pemt+/+ mice, Pemt−/− mice had increased energy expenditure and maintained normal peripheral insulin sensitivity; however, they developed hepatomegaly and steatosis. In contrast, mice with impaired biosynthesis of PC via the CDP-choline pathway in liver became obese when fed a high fat diet. We, therefore, hypothesized that insufficient choline, rather than decreased hepatic phosphatidylcholine, was responsible for the lack of weight gain in Pemt−/− mice despite the presence of 1.3 g of choline/kg high fat diet. Supplementation with an additional 2.7 g of choline (but not betaine)/kg of diet normalized energy metabolism, weight gain, and insulin resistance in high fat diet-fed Pemt−/− mice. Furthermore, Pemt+/+ mice that were fed a choline-deficient diet had increased oxygen consumption, had improved glucose tolerance, and gained less weight. Thus, de novo synthesis of choline via PEMT has a previously unappreciated role in regulating whole body energy metabolism.  相似文献   

6.
Choline kinase in mammals is encoded by two genes, Chka and Chkb. Disruption of murine Chka leads to embryonic lethality, whereas a spontaneous genomic deletion in murine Chkb results in neonatal forelimb bone deformity and hindlimb muscular dystrophy. Surprisingly, muscular dystrophy isn't significantly developed in the forelimb. We have investigated the mechanism by which a lack of choline kinase β, encoded by Chkb, results in minimal muscular dystrophy in forelimbs. We have found that choline kinase β is the major isoform in hindlimb muscle and contributes more to choline kinase activity, while choline kinase α is predominant in forelimb muscle and contributes more to choline kinase activity. Although choline kinase activity is decreased in forelimb muscles of Chkb−/− mice, the activity of CTP:phosphocholine cytidylyltransferase is increased, resulting in enhanced phosphatidylcholine biosynthesis. The activity of phosphatidylcholine phospholipase C is up-regulated while the activity of phospholipase A2 in forelimb muscle is not altered. Regeneration of forelimb muscles of Chkb−/− mice is normal when challenged with cardiotoxin. In contrast to hindlimb muscle, mega-mitochondria are not significantly formed in forelimb muscle of Chkb−/− mice. We conclude that the relative lack of muscle degeneration in forelimbs of Chkb−/− mice is due to abundant choline kinase α and the stable homeostasis of phosphatidylcholine.  相似文献   

7.
Phosphatidylethanolamine N-methyltransferase (PEMT) converts phosphatidylethanolamine (PE) to phosphatidylcholine (PC) in the liver. Mice lacking PEMT are protected from high-fat diet-induced obesity and insulin resistance, and exhibit increased whole-body energy expenditure and oxygen consumption. Since skeletal muscle is a major site of fatty acid oxidation and energy utilization, we determined if rates of fatty acid oxidation/oxygen consumption in muscle are higher in Pemt/ mice than in Pemt+/+ mice. Although PEMT is abundant in the liver, PEMT protein and activity were undetectable in four types of skeletal muscle. Moreover, amounts of PC and PE in the skeletal muscle were not altered by PEMT deficiency. Thus, we concluded that any influence of PEMT deficiency on skeletal muscle would be an indirect consequence of lack of PEMT in liver. Neither the in vivo rate of fatty acid uptake by muscle nor the rate of fatty acid oxidation in muscle explants and cultured myocytes depended upon Pemt genotype. Nor did PEMT deficiency increase oxygen consumption or respiratory function in skeletal muscle mitochondria. Thus, the increased whole body oxygen consumption in Pemt/ mice, and resistance of these mice to diet-induced weight gain, are not primarily due to increased capacity of skeletal muscle for utilization of fatty acids as an energy source.  相似文献   

8.
Phosphatidylethanolamine N-methyltransferase (PEMT) is a quatrotopic membrane protein that catalyzes the conversion of phosphatidylethanolamine to phosphatidylcholine through three sequential methylation reactions. Analysis of mice lacking a functional PEMT gene revealed a severe reduction in plasma homocysteine levels. Homocysteine is generated by the hydrolysis of S-adenosylhomocysteine, which is also a product of the PEMT reaction. To gain insight into the PEMT transmethylation reaction and the mechanism by which PEMT regulates homocysteine levels, we sought to define residues that are required for binding of the methyl group donor, S-adenosylmethionine (AdoMet). Bioinformatic analysis of the predicted amino acid sequence of human PEMT identified two putative AdoMet-binding motifs (98GXG100 and 180EE181). Site-directed mutagenesis experiments demonstrated the requirement for the conserved motifs in PEMT specific activity. Analysis of the AdoMet binding ability of mutant recombinant PEMT derivatives established that residues Gly100 and Glu180 are essential for binding of the AdoMet moiety. A significantly elevated KD with respect to AdoMet is observed following conservative mutagenesis of residues Gly98 (400 pmol) and Glu181 (666.7 pmol), relative to the unmodified enzyme (303.1 pmol), suggesting that these residues also participate in AdoMet binding. A model positions two separate AdoMet-binding motifs of PEMT in close proximity at the external leaflet of the endoplasmic reticulum membrane.  相似文献   

9.
In mammals, the only endogenous pathway for choline biosynthesis is the methylation of phosphatidylethanolamine to phosphatidylcholine (PC) by phosphatidylethanolamine N-methyltransferase (PEMT) coupled to PC degradation. Complete choline deprivation in mice by feeding Pemt(-/-) mice a choline-deficient (CD) diet decreases hepatic PC by 50% and is lethal within 5 days. PC secretion into bile is mediated by a PC-specific flippase, multiple drug-resistant protein 2 (MDR2). Here, we report that mice that lack both PEMT and MDR2 and are fed a CD diet survive for >90 days. Unexpectedly, the amount of PC also decreases by 50% in the livers of Mdr2(-/-)/Pemt(-/-) mice. The Mdr2(-/-)/Pemt(-/-) mice adapt to the severe choline deprivation via choline recycling by induction of phospholipase A(2), choline kinase, and CTP:phosphocholine cytidylyltransferase activities and by a strikingly decreased expression of choline oxidase. The ability of Mdr2(-/-)/Pemt(-/-) mice to survive complete choline deprivation suggests that acute lethality in CD-Pemt(-/-) mice results from rapid depletion of hepatic PC via biliary secretion.  相似文献   

10.
Phosphatidylcholine (PC) synthesis by the direct cytidine diphosphate choline (CDP-choline) pathway in rat liver generates predominantly mono- and di-unsaturated molecular species, while polyunsaturated PC species are synthesized largely by the phosphatidylethanolamine-N-methyltransferase (PEMT) pathway. Although altered PC synthesis has been suggested to contribute to development of hepatocarcinoma and nonalcoholic steatohepatitis, analysis of the specificity of hepatic PC metabolism in human patients has been limited by the lack of sensitive and safe methodologies. Here we incorporated a deuterated methyl-D(9)-labled choline chloride, to quantify biosynthesis fluxes through both of the PC synthetic pathways in vivo in human volunteers and compared these fluxes with those in mice. Rates and molecular specificities of label incorporated into mouse liver and plasma PC were very similar and strongly suggest that label incorporation into human plasma PC can provide a direct measure of hepatic PC synthesis in human subjects. Importantly, we demonstrate for the first time that the PEMT pathway in human liver is selective for polyunsaturated PC species, especially those containing docosahexaenoic acid. Finally, we present a multiple isotopomer distribution analysis approach, based on transfer of deuterated methyl groups to S-adenosylmethionine and subsequent sequential methylations of PE, to quantify absolute flux rates through the PEMT pathway that are applicable to studies of liver dysfunction in clinical studies.  相似文献   

11.
Phosphatidylcholine (PC) is the major membrane-forming phospholipid in eukaryotes and is estimated to be present in about 15% of the domain Bacteria. Usually, PC can be synthesized in bacteria by either of two pathways, the phospholipid N-methylation (Pmt) pathway or the phosphatidylcholine synthase (Pcs) pathway. The three subsequent enzymatic methylations of phosphatidylethanolamine are performed by a single phospholipid N-methyltransferase in some bacteria whereas other bacteria possess multiple phospholipid N-methyltransferases each one performing one or several distinct methylation steps. Phosphatidylcholine synthase condenses choline directly with CDP-diacylglycerol to form CMP and PC. Like in eukaryotes, bacterial PC also functions as a biosynthetic intermediate during the formation of other biomolecules such as choline, diacylglycerol, or diacylglycerol-based phosphorus-free membrane lipids. Bacterial PC may serve as a specific recognition molecule but it affects the physicochemical properties of bacterial membranes as well. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.  相似文献   

12.
Choline is (95%) found largely in the biosphere as a component of phosphatidylcholine (PC) which is made from choline via the CDP-choline pathway. Animals obtain choline from both the diet and via endogenous biosynthesis that involves the conversion of phosphatidylethanolamine into PC by phosphatidylethanolamine N-methyltransferase (PEMT), followed by PC catabolism. We have uncovered a striking gender-specific conservation of choline in female mice that does not occur in male mice. Female Pemt(-/-) mice maintained hepatic PC/total choline levels during the first day of choline deprivation and escaped liver damage whereas male Pemt(-/-) mice did not. Plasma PC levels in high-density lipoproteins (HDLs) were higher in male Pemt(-/-) mice than those in females before choline deprivation. Interestingly, after choline deprivation for 1 day, female, but not male, Pemt(-/-) mice increased HDL-PC levels. Glybenclamide, an inhibitor of PC efflux mediated by ABC transporters, eliminated this response to choline deprivation in females. These data suggest that (i) increased PC efflux from extra-hepatic tissues to HDLs in the circulation provided sufficient choline for the liver and compensated for loss of hepatic PC during the initial stages of choline deprivation in female, but not male, Pemt(-/-) mice, and (ii) plasma HDL in female mice has an important function in maintenance of hepatic PC as an acute response to severe choline deprivation.  相似文献   

13.
Retinyl esters are the major chemical forms of vitamin A stored in the liver, and can be delivered to peripheral tissues for conversion into biologically active forms. The function and regulation of the hepatic genes that are potentially involved in catalyzing the hydrolysis of retinyl esters remain unclear. Here we show that two lipid hydrolytic genes, pancreatic-related protein 2 (mPlrp2) and procolipase (mClps), expressed specifically in the mouse pancreas, are associated with the ratio of S-adenosylmethionine (AdoMet) to S-adenosylhomocysteine (AdoHcy). Light illumination deficiency or administration of 5'-AMP elevated the ratio of AdoMet to AdoHcy and induced the expression in the liver of mPlrp2 and mClps, which was blocked by all-trans retinoic acid. Mice fed a vitamin A-free diet exhibited increased activation of hepatic mPlrp2 and mClps expression, which was associated with increased methylation of histone H3K4 residues located near the mPlrp2 and mClps promoters. Inhibition of hepatic mPlrp2 and mClps expression by a methylase inhibitor, methylthioadenosine, markedly decreased plasma retinol levels in these mice. The activated hepatic stellate cell (HSC)-T6 cell line specifically expressed mClps and mPlrp2. Inhibition of mClps gene expressions by short hairpin RNA (shRNA) decreased hydrolysis of retinyl esters in the HSC-T6 cell line. These data suggest that the conditional expression of mPlrp2 and mClps is involved in the hydrolysis of retinyl esters in the mouse liver.  相似文献   

14.
Choline is an important nutrient for humans and animals. Animals obtain choline from the diet and from the catabolism of phosphatidylcholine made by phosphatidylethanolamine N-methyltransferase (PEMT). The unique model of complete choline deprivation is Pemt(-/-) mice that are fed a choline-deficient diet. This model, therefore, can be used for the examination of choline substitutes in mammalian systems. Recently, propanolamine was found to be a replacement for choline in yeast. Thus, we tested to see whether or not choline can be replaced by propanolamine in mice. Mice were fed a choline-deficient diet and supplemented with either methionine, 2-amino-propanol, 2-amino-isopropanol and 3-amino-propanol. We were unable to detect the formation of any of the possible phosphatidylpropanolamines. Moreover, none of them prevented liver damage, reduction of hepatic phosphatidylcholine levels or fatty liver induced in choline-deficient-Pemt(-/-) mice. These results suggest that choline in mice cannot be replaced by any of the three propanolamine derivatives.  相似文献   

15.
Enzymes that use distinct active site structures to perform identical reactions are known as analogous enzymes. The isolation of analogous enzymes suggests the existence of multiple enzyme structural pathways that can catalyze the same chemical reaction. A fundamental question concerning analogous enzymes is whether their distinct active-site structures would confer the same or different kinetic constraints to the chemical reaction, particularly with respect to the control of enzyme turnover. Here, we address this question with the analogous enzymes of bacterial TrmD and its eukaryotic and archaeal counterpart Trm5. TrmD and Trm5 catalyze methyl transfer to synthesize the m1G37 base at the 3′ position adjacent to the tRNA anticodon, using S-adenosyl methionine (AdoMet) as the methyl donor. TrmD features a trefoil-knot active-site structure whereas Trm5 features the Rossmann fold. Pre-steady-state analysis revealed that product synthesis by TrmD proceeds linearly with time, whereas that by Trm5 exhibits a rapid burst followed by a slower and linear increase with time. The burst kinetics of Trm5 suggests that product release is the rate-limiting step of the catalytic cycle, consistent with the observation of higher enzyme affinity to the products of tRNA and AdoMet. In contrast, the lack of burst kinetics of TrmD suggests that its turnover is controlled by a step required for product synthesis. Although TrmD exists as a homodimer, it showed half-of-the-sites reactivity for tRNA binding and product synthesis. The kinetic differences between TrmD and Trm5 are parallel with those between the two classes of aminoacyl-tRNA synthetases, which use distinct active site structures to catalyze tRNA aminoacylation. This parallel suggests that the findings have a fundamental importance for enzymes that catalyze both methyl and aminoacyl transfer to tRNA in the decoding process.  相似文献   

16.
Spontaneous protein deamidation of labile asparagines (Asn), generating abnormal l-isoaspartyl residues (IsoAsp), is associated with cell aging and enhanced by an oxidative microenvironment. The presence of isopeptide bonds impairs protein structure/function. To minimize the damage, IsoAsp can be “repaired” by the protein l-isoaspartyl/d-aspartyl O-methyltransferase (PIMT) and S-adenosylmethionine (AdoMet) is the methyl donor of this reaction. PIMT is a repair enzyme that initiates the conversion of l-isoAsp (or d-Asp) residues to l-Asp residues. Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease principally affecting motor neurons. The condition of oxidative stress reported in familial and sporadic forms of ALS prompted us to investigate Asn deamidation in ALS tissue. Erythrocytes (RBCs) were selected as a model system since they are unable to replace damaged proteins and protein methylesterification is virtually the only AdoMet-consuming reaction operating in these cells. Our data show that, in vitro assay, abnormal IsoAsp residues were significantly higher in ALS patients erythrocyte membrane proteins with an increased methyl accepting capability relative to controls (p < 0.05). Moreover, we observed a reduction in AdoMet levels, while AdoHcy concentration was comparable to that detected in the control, resulting in a lower [AdoMet]/[AdoHcy] ratio. Then, the accumulation of altered aspartyl residues in ALS patients is probably related to a reduced efficiency of the S-adenosylmethionine (AdoMet)-dependent repair system causing increased protein instability at Asn sites. The increase of abnormal residues represents a new protein alteration that may be present not only in red blood cells but also in other cell types of patients suffering from ALS.  相似文献   

17.
Mice that lack phosphatidylethanolamine N-methyltransferase (Pemt−/− mice) are protected from high-fat (HF) diet-induced obesity. HF-fed Pemt−/− mice show higher oxygen consumption and heat production, indicating that more energy might be utilized for thermogenesis and might account for the resistance to diet-induced weight gain. To test this hypothesis, HF-fed Pemt−/− and Pemt+/+ mice were challenged with acute cold exposure at 4°C. Unexpectedly, HF-fed Pemt−/− mice developed hypothermia within 3 h of cold exposure. In contrast, chow-fed Pemt−/− mice, possessing similar body mass, maintained body temperature. Lack of PEMT did not impair the capacity for thermogenesis in skeletal muscle or brown adipose tissue. Plasma catecholamines were not altered by Pemt genotype, and stimulation of lipolysis was intact in brown and white adipose tissue of Pemt−/− mice. HF-fed Pemt−/− mice also developed higher systolic blood pressure, accompanied by reduced cardiac output. Choline supplementation reversed the cold-induced hypothermia in HF-fed Pemt−/− mice with no effect on blood pressure. Plasma glucose levels were ∼50% lower in HF-fed Pemt−/− mice compared with Pemt+/+ mice. Choline supplementation normalized plasma hypoglycemia and the expression of proteins involved in gluconeogenesis. We propose that cold-induced hypothermia in HF-fed Pemt−/− mice is linked to plasma hypoglycemia due to compromised hepatic glucose production.  相似文献   

18.
Malaria, a disease affecting humans and other animals, is caused by a protist of the genus Plasmodium. At the intraerythrocytic stage, the parasite synthesizes a high amount of phospholipids through a bewildering number of pathways. In the human Plasmodium falciparum species, a plant-like pathway that relies on serine decarboxylase and phosphoethanolamine N-methyltransferase activities diverts host serine to provide additional phosphatidylcholine and phosphatidylethanolamine to the parasite. This feature of parasitic dependence toward its host was investigated in other Plasmodium species. In silico analyses led to the identification of phosphoethanolamine N-methyltransferase gene orthologs in primate and bird parasite genomes. However, the gene was not detected in the rodent P. berghei, P. yoelii, and P. chabaudi species. Biochemical experiments with labeled choline, ethanolamine, and serine showed marked differences in biosynthetic pathways when comparing rodent P. berghei and P. vinckei, and human P. falciparum species. Notably, in both rodent parasites, ethanolamine and serine were not significantly incorporated into phosphatidylcholine, indicating the absence of phosphoethanolamine N-methyltransferase activity. To our knowledge, this is the first study to highlight a crucial difference in phospholipid metabolism between Plasmodium species. The findings should facilitate efforts to develop more rational approaches to identify and evaluate new targets for antimalarial therapy.  相似文献   

19.
Choline kinase in mice is encoded by two genes, Chka and Chkb. Disruption of murine Chka leads to embryonic lethality, whereas a spontaneously occurring genomic deletion in murine Chkb results in neonatal bone deformity and hindlimb muscular dystrophy. We have investigated the mechanism by which a lack of choline kinase β, encoded by Chkb, causes hindlimb muscular dystrophy. The biosynthesis of phosphatidylcholine (PC) is impaired in the hindlimbs of Chkb−/− mice, with an accumulation of choline and decreased amount of phosphocholine. The activity of CTP:phosphocholine cytidylyltransferase is also decreased in the hindlimb muscle of mutant mice. Concomitantly, the activities of PC phospholipase C and phospholipase A2 are increased. The mitochondria in Chkb−/− mice are abnormally large and exhibit decreased inner membrane potential. Despite the muscular dystrophy in Chkb−/− mice, we observed increased expression of insulin like growth factor 1 and proliferating cell nuclear antigen. However, regeneration of hindlimb muscles of Chkb−/− mice was impaired when challenged with cardiotoxin. Injection of CDP-choline increased PC content of hindlimb muscle and decreased creatine kinase activity in plasma of Chkb−/− mice. We conclude that the hindlimb muscular dystrophy in Chkb−/− mice is due to attenuated PC biosynthesis and enhanced catabolism of PC.  相似文献   

20.
Protein arginine methyltransferase (PRMT) 8 is unique among the PRMTs, as it has a highly restricted tissue expression pattern and an N terminus that contains two automethylation sites and a myristoylation site. PRMTs catalyze the transfer of a methyl group from S-adenosylmethionine (AdoMet) to a peptidylarginine on a protein substrate. Currently, the physiological roles, regulation, and cellular substrates of PRMT8 are poorly understood. However, a thorough understanding of PRMT8 kinetics should provide insights into each of these areas, thereby enhancing our understanding of this unique enzyme. In this study, we determined how automethylation regulates the enzymatic activity of PRMT8. We found that preventing automethylation with lysine mutations (preserving the positive charge of the residue) increased the turnover rate and decreased the Km of AdoMet but did not affect the Km of the protein substrate. In contrast, mimicking automethylation with phenylalanine (i.e. mimicking the increased hydrophobicity) decreased the turnover rate. The inhibitory effect of the PRMT8 N terminus could be transferred to PRMT1 by creating a chimeric protein containing the N terminus of PRMT8 fused to PRMT1. Thus, automethylation of the N terminus likely regulates PRMT8 activity by decreasing the affinity of the enzyme for AdoMet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号