首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Light induced isomerization of the retinal chromophore activates biological function in all retinal protein (RP) driving processes such as ion-pumping, vertebrate vision and phototaxis in organisms as primitive as archea, or as complex as mammals. This process and its consecutive reactions have been the focus of experimental and theoretical research for decades. The aim of this review is to demonstrate how the experimental and theoretical research efforts can now be combined to reach a more comprehensive understanding of the excited state process on the molecular level. Using the Anabaena Sensory Rhodopsin as an example we will show how contemporary time-resolved spectroscopy and recently implemented excited state QM/MM methods consistently describe photochemistry in retinal proteins. This article is part of a Special Issue entitled: Retinal Proteins — You can teach an old dog new tricks.  相似文献   

2.
Solid-state 2H NMR spectroscopy gives a powerful avenue to investigating the structures of ligands and cofactors bound to integral membrane proteins. For bacteriorhodopsin (bR) and rhodopsin, retinal was site-specifically labeled by deuteration of the methyl groups followed by regeneration of the apoprotein. 2H NMR studies of aligned membrane samples were conducted under conditions where rotational and translational diffusion of the protein were absent on the NMR time scale. The theoretical lineshape treatment involved a static axial distribution of rotating C-C2H3 groups about the local membrane frame, together with the static axial distribution of the local normal relative to the average normal. Simulation of solid-state 2H NMR lineshapes gave both the methyl group orientations and the alignment disorder (mosaic spread) of the membrane stack. The methyl bond orientations provided the angular restraints for structural analysis. In the case of bR the retinal chromophore is nearly planar in the dark- and all-trans light-adapted states, as well upon isomerization to 13-cis in the M state. The C13-methyl group at the “business end” of the chromophore changes its orientation to the membrane upon photon absorption, moving towards W182 and thus driving the proton pump in energy conservation. Moreover, rhodopsin was studied as a prototype for G protein-coupled receptors (GPCRs) implicated in many biological responses in humans. In contrast to bR, the retinal chromophore of rhodopsin has an 11-cis conformation and is highly twisted in the dark state. Three sites of interaction affect the torsional deformation of retinal, viz. the protonated Schiff base with its carboxylate counterion; the C9-methyl group of the polyene; and the β-ionone ring within its hydrophobic pocket. For rhodopsin, the strain energy and dynamics of retinal as established by 2H NMR are implicated in substituent control of activation. Retinal is locked in a conformation that is twisted in the direction of the photoisomerization, which explains the dark stability of rhodopsin and allows for ultra-fast isomerization upon absorption of a photon. Torsional strain is relaxed in the meta I state that precedes subsequent receptor activation. Comparison of the two retinal proteins using solid-state 2H NMR is thus illuminating in terms of their different biological functions.  相似文献   

3.
Fluorescence spectroscopy has become an established tool at the interface of biology, chemistry and physics because of its exquisite sensitivity and recent technical advancements. However, rhodopsin proteins present the fluorescence spectroscopist with a unique set of challenges and opportunities due to the presence of the light-sensitive retinal chromophore. This review briefly summarizes some approaches that have successfully met these challenges and the novel insights they have yielded about rhodopsin structure and function. We start with a brief overview of fluorescence fundamentals and experimental methodologies, followed by more specific discussions of technical challenges rhodopsin proteins present to fluorescence studies. Finally, we end by discussing some of the unique insights that have been gained specifically about visual rhodopsin and its interactions with affiliate proteins through the use of fluorescence spectroscopy. This article is part of a Special Issue entitled: Retinal Proteins — You can teach an old dog new tricks.  相似文献   

4.
5.
Since the discovery of proteorhodopsins, the ubiquitous marine light-driven proton pumps of eubacteria, a large number of other eubacterial rhodopsins with diverse structures and functions have been characterized. Here, we review the body of knowledge accumulated on the four major groups of eubacterial rhodopsins, with the focus on their biophysical characterization. We discuss advances and controversies on the unique eubacterial sensory rhodopsins (as represented by Anabaena sensory rhodopsin), proton-pumping proteorhodopsins and xanthorhodopsins, as well as novel non-proton ion pumps. This article is part of a Special Issue entitled: Retinal Proteins — You can teach an old dog new tricks.  相似文献   

6.
The new and vibrant field of optogenetics was founded by the seminal discovery of channelrhodopsin, the first light-gated cation channel. Despite the numerous applications that have revolutionised neurophysiology, the functional mechanism is far from understood on the molecular level. An arsenal of biophysical techniques has been established in the last decades of research on microbial rhodopsins. However, application of these techniques is hampered by the duration and the complexity of the photoreaction of channelrhodopsin compared with other microbial rhodopsins. A particular interest in resolving the molecular mechanism lies in the structural changes that lead to channel opening and closure. Here, we review the current structural and mechanistic knowledge that has been accomplished by integrating the static structure provided by X-ray crystallography and electron microscopy with time-resolved spectroscopic and electrophysiological techniques. The dynamical reactions of the chromophore are effectively coupled to structural changes of the protein, as shown by ultrafast spectroscopy. The hierarchical sequence of structural changes in the protein backbone that spans the time range from 10− 12 s to 10− 3 s prepares the channel to open and, consequently, cations can pass. Proton transfer reactions that are associated with channel gating have been resolved. In particular, glutamate 253 and aspartic acid 156 were identified as proton acceptor and donor to the retinal Schiff base. The reprotonation of the latter is the critical determinant for channel closure. The proton pathway that eventually leads to proton pumping is also discussed. This article is part of a Special Issue entitled: Retinal Proteins — You can teach an old dog new tricks.  相似文献   

7.
The molecular mechanism of transmembrane signal transduction is still a pertinent question in cellular biology. Generally, a receptor can transfer an external signal via its cytoplasmic surface, as found for G-protein-coupled receptors such as rhodopsin, or via the membrane domain, such as that in sensory rhodopsin II (SRII) in complex with its transducer, HtrII. In the absence of HtrII, SRII functions as a proton pump. Here, we report on the crystal structure of the active state of uncomplexed SRII from Natronomonas pharaonis, NpSRII. The problem with a dramatic loss of diffraction quality upon loading of the active state was overcome by growing better crystals and by reducing the occupancy of the state. The conformational changes in the region comprising helices F and G are similar to those observed for the NpSRII-transducer complex but are much more pronounced. The meaning of these differences for the understanding of proton pumping and signal transduction by NpSRII is discussed.  相似文献   

8.
Archaeal rhodopsins possess retinal molecule as their chromophores, and their light-energy and light-signal conversions are triggered by all-trans to 13-cis isomerization of the retinal chromophore. Relaxation through structural changes of protein then leads to functional processes, light-driven ion pump or transducer activation. Internal water molecules were considered to play an important role in the functional processes of archaeal rhodopsins, although limited information has been obtained about the structure and function of internal water molecules. Recent progress in Fourier-transform infrared (FTIR) spectroscopy and X-ray crystallography provided new information of water molecules inside archaeal rhodopsins. This article reviews studies on internal water molecules of archaeal rhodopsins by means of low-temperature FTIR spectroscopy.  相似文献   

9.
Microbial rhodopsins are a family of seven-helical transmembrane proteins containing retinal as chromophore. Sensory rhodopsin II (SRII) triggers two very different responses upon light excitation, depending on the presence or the absence of its cognate transducer HtrII: Whereas light activation of the NpSRII/NpHtrII complex activates a signalling cascade that initiates the photophobic response, NpSRII alone acts as a proton pump.Using single-molecule force spectroscopy, we analysed the stability of NpSRII and its complex with the transducer in the dark and under illumination. By improving force spectroscopic data analysis, we were able to reveal the localisation of occurring forces within the protein chain with a resolution of about six amino acids. Distinct regions in helices G and F were affected differently, depending on the experimental conditions. The results are generally in line with previous data on the molecular stability of NpSRII. Interestingly, new interaction sites were identified upon light activation, whose functional importance is discussed in detail.  相似文献   

10.
MD simulation of sensory rhodopsin II was executed for three intermediates (ground-state, K-state, M-state) appearing in its photocycle. We observed a large displacement of the cytoplasmic side of helixF only in M-state among the three intermediates. This displacement was transmitted to TM2, and the cytoplasmic side of TM2 rotated clockwise. These transient movements are in agreement with the results of an EPR experiment. That is, the early stage of signal transduction in a sRII-HtrII complex was successfully reproduced by the in silico MD simulation. By analyzing the structure of the sRII-HtrII complex, the following findings about the photocycle of sRII were obtained: (1) The hydrogen bonds between helixF and other helices determine the direction of the movement of helixF; (2) three amino acids (Arg162, Thr189, Tyr199) are essential for sRII-HtrII binding and contribute to the motion transfer from sRII to HtrII; (3) after the isomerization of retinal, a major conformational change of retinal was caused by proton transfer from Schiff base to Asp75, which, in turn, triggers the steric collision of retinal with Trp171. This is the main reason for the movement of the cytoplasmic side of helixF.  相似文献   

11.
Molecular interactions between the photoreceptor G protein and rhodopsin   总被引:1,自引:0,他引:1  
1. The visual transduction system of the vertebrate retina is a well-studied model for biochemical and molecular studies of signal transduction. The structure and function of rhodopsin, a prototypical G protein-coupled receptor, and transducin or Gt, the photoreceptor G protein, have been particularly well studied. Mechanisms of rhodopsin-Gt interaction are discussed in this review. 2. The visual pigment rhodopsin contains a chromophore, and thus conformational changes leading to activation can be monitored spectroscopically. A model of the conformational changes in the activated receptor is presented based on biophysical and biochemical data. 3. The current information on sites of interaction on receptors and cognate G proteins is summarized. Studies using synthetic peptides from amino acid sequences corresponding to Gt and rhodopsin have provided information on the sites of rhodopsin-Gt interaction. Synthetic peptides from the carboxyl terminal region of alpha t mimic Gt by stabilizing the active conformation of rhodopsin, Metarhodopsin II. 4. The conformation of one such peptide when it is bound to Metarhodopsin II was determined by 2D NMR. The model based on the NMR data was tested using peptide analogs predicted to stabilize or break the structure. These studies yield molecular insight into why toxin-treated and mutant G proteins are uncoupled from receptors.  相似文献   

12.
A putative model for the structure of the relatively independent carboxyl-terminal domain of (rhod)opsin has been developed by use of a combination of several secondary structure prediction methods. The validity of this approach was confirmed by comparing the secondary structure for bacteriorhodopsin as predicted by these methods with its known low resolution structure. The resulting predicted structure agreed well with the experimental data. The model obtained for opsin incorporates two transmembrane α-helical rods linked by an intradiscal loop. Each of the helical sections is interrupted by a short irregular region. One of these includes the lysyl residue to which the chromophore 11-cis retinal is attached. The second non-regular segment, almost opposite the first, contains a cysteinyl and a tryptophanyl residue which may be involved in protein—chromophore interaction. The proposed structure of this whole domain could prove instructive in the elucidation of the primary events of visual transduction.  相似文献   

13.
Solid-state 2H NMR spectroscopy gives a powerful avenue to investigating the structures of ligands and cofactors bound to integral membrane proteins. For bacteriorhodopsin (bR) and rhodopsin, retinal was site-specifically labeled by deuteration of the methyl groups followed by regeneration of the apoprotein. 2H NMR studies of aligned membrane samples were conducted under conditions where rotational and translational diffusion of the protein were absent on the NMR time scale. The theoretical lineshape treatment involved a static axial distribution of rotating C-C2H3 groups about the local membrane frame, together with the static axial distribution of the local normal relative to the average normal. Simulation of solid-state 2H NMR lineshapes gave both the methyl group orientations and the alignment disorder (mosaic spread) of the membrane stack. The methyl bond orientations provided the angular restraints for structural analysis. In the case of bR the retinal chromophore is nearly planar in the dark- and all-trans light-adapted states, as well upon isomerization to 13-cis in the M state. The C13-methyl group at the "business end" of the chromophore changes its orientation to the membrane upon photon absorption, moving towards W182 and thus driving the proton pump in energy conservation. Moreover, rhodopsin was studied as a prototype for G protein-coupled receptors (GPCRs) implicated in many biological responses in humans. In contrast to bR, the retinal chromophore of rhodopsin has an 11-cis conformation and is highly twisted in the dark state. Three sites of interaction affect the torsional deformation of retinal, viz. the protonated Schiff base with its carboxylate counterion; the C9-methyl group of the polyene; and the beta-ionone ring within its hydrophobic pocket. For rhodopsin, the strain energy and dynamics of retinal as established by 2H NMR are implicated in substituent control of activation. Retinal is locked in a conformation that is twisted in the direction of the photoisomerization, which explains the dark stability of rhodopsin and allows for ultra-fast isomerization upon absorption of a photon. Torsional strain is relaxed in the meta I state that precedes subsequent receptor activation. Comparison of the two retinal proteins using solid-state 2H NMR is thus illuminating in terms of their different biological functions.  相似文献   

14.
So Young Kim  Leonid S. Brown 《BBA》2008,1777(6):504-513
Proteorhodopsin is photoactive 7-transmembrane protein, which uses all-trans retinal as a chromophore. Proteorhodopsin subfamilies are spectrally tuned in accordance with the depth of habitat of the host organisms, numerous species of marine picoplankton. We try to find residues critical for the spectral tuning through the use of random PCR mutagenesis and endogenous retinal biosynthesis. We obtained 16 isolates with changed color by screening in Escherichia coli with internal retinal biosynthesis system containing genes for beta-carotene biosynthesis and retinal synthase. Some isolates contained multiple substitutions, which could be separated to give 20 single mutations influencing the spectral properties. The color-changing residues are distributed through the protein except for the helix A, and about a half of the mutations is localized on the helices C and D, implying their importance for color tuning. In the pumping form of the pigment, absorption maxima in 8 mutants are red-shifted and in 12 mutants are blue-shifted compared to the wild-type. The results of flash-photolysis showed that most of the low pumping activity mutants possess slower rates of M decay and O decay. These results suggest that the color-tuning residues are not restricted to the retinal binding pocket, in accord with a recent evolutionary analysis.  相似文献   

15.
Kloppmann E  Becker T  Ullmann GM 《Proteins》2005,61(4):953-965
The color tuning mechanism of the rhodopsin protein family has been in the focus of research for decades. However, the structural basis of the tuning mechanism in general and of the absorption shift between rhodopsins in particular remains under discussion. It is clear that a major determinant for spectral shifts between different rhodopsins are electrostatic interactions between the chromophore retinal and the protein. Based on the Poisson-Boltzmann equation, we computed and compared the electrostatic potential at the retinal of three archaeal rhodopsins: bacteriorhodopsin (BR), halorhodopsin (HR), and sensory rhodopsin II (SRII) for which high-resolution structures are available. These proteins are an excellent test case for understanding the spectral tuning of retinal. The absorption maxima of BR and HR are very similar, whereas the spectrum of SRII is considerably blue shifted--despite the structural similarity between these three proteins. In agreement with their absorption maxima, we find that the electrostatic potential is similar in BR and HR, whereas significant differences are seen for SRII. The decomposition of the electrostatic potential into contributions of individual residues, allowed us to identify seven residues that are responsible for the differences in electrostatic potential between the proteins. Three of these residues are located in the retinal binding pocket and have in fact been shown to account for part of the absorption shift between BR and SRII by mutational studies. One residue is located close to the beta-ionone ring of retinal and the remaining three residues are more than 8 A away from the retinal. These residues have not been discussed before, because they are, partly because of their location, no obvious candidates for the spectral shift among BR, HR, and SRII. However, their contribution to the differences in electrostatic potential is evident. The counterion of the Schiff base, which is frequently discussed to be involved in the spectral tuning, does not contribute to the dissimilarities between the electrostatic potentials.  相似文献   

16.
Sensory rhodopsin II (SRII, also called pharaonis phoborhodopsin, ppR) is responsible for negative phototaxis in Natronomonas pharaonis. Photoisomerization of the retinal chromophore from all- trans to 13- cis initiates conformational changes in the protein, leading to activation of the cognate transducer protein (HtrII). We previously observed enhancement of the C 14-D stretching vibration of the retinal chromophore at 2244 cm (-1) upon formation of the K state and interpreted that a steric constraint occurs at the C 14D group in SRII K. Here, we identify the counterpart of the C 14D group as Thr204, because the C 14-D stretching signal disappeared in T204A, T204S, and T204C mutants as well as a C 14-HOOP (hydrogen out-of-plane) vibration at 864 cm (-1). Although the K state of the wild-type bacteriorhodopsin (BR), a light-driven proton pump, possesses neither 2244 nor 864 cm (-1) bands, both signals appeared for the K state of a triple mutant of BR that functions as a light sensor (P200T/V210Y/A215T). We found a positive correlation between these vibrational amplitudes of the C 14 atom at 77 K and the physiological phototaxis response. These observations strongly suggest that the steric constraint between the C 14 group of retinal and Thr204 of the protein is a prerequisite for light-signal transduction by SRII.  相似文献   

17.
Ochromonas danica, a freshwater, planktonic chrysophyte, is capable of sensing the light conditions of its environment. This biflagellate alga has a swelling near the base of the short flagellum and a chloroplastidic stigma in close association with it. A procedure is described for the isolation of this three dimensional flagellar swelling, the presumed photoreceptor. In contrast to an earlier method developed for the isolation of the paraflagellar swelling from Euglena gracilis, the protocol reported here for Ochromonas results in higher yields that should facilitate future biochemical investigations and could open avenues of investigation for the isolation and purification of the presumptive receptor protein. To verify the hypothesis that a rhodopsin-like protein might be present in this alga, we applied a standard extraction procedure successfully used in the identification of retinal. We here report the purification and identification of all-trans retinal in Ochromonas cells by column chromatography, HPLC and GC-MS. Since retinal is the chromophore of rhodopsin-like proteins, this finding may suggest that in these unicellular algae, too, a rhodopsin-like protein could be the photoreceptor pigment.  相似文献   

18.
Channelrhodopsin-2 mediates phototaxis in green algae by acting as a light-gated cation channel. As a result of this property, it is used as a novel optogenetic tool in neurophysiological applications. Structural information is still scant and we present here the first resonance Raman spectra of channelrhodopsin-2. Spectra of detergent solubilized and lipid-reconstituted protein were recorded under pre-resonant conditions to exclusively probe retinal in its electronic ground state. All-trans retinal was identified to be the favoured configuration of the chromophore but significant contributions of 13-cis were detected. Pre-illumination hardly changed the isomeric composition but small amounts of presumably 9-cis retinal were found in the light-adapted state. Spectral analysis suggested that the Schiff base proton is strongly hydrogen-bonded to a nearby water molecule.  相似文献   

19.
Rhodopsins possess retinal chromophore surrounded by seven transmembrane α-helices, are widespread in prokaryotes and in eukaryotes, and can be utilized as optogenetic tools. Although rhodopsins work as distinctly different photoreceptors in various organisms, they can be roughly divided according to their two basic functions, light-energy conversion and light-signal transduction. In microbes, light-driven proton transporters functioning as light-energy converters have been modified by evolution to produce sensory receptors that relay signals to transducer proteins to control motility. In this study, we cloned and characterized two newly identified microbial rhodopsins from Haloquadratum walsbyi. One of them has photochemical properties and a proton pumping activity similar to the well known proton pump bacteriorhodopsin (BR). The other, named middle rhodopsin (MR), is evolutionarily transitional between BR and the phototactic sensory rhodopsin II (SRII), having an SRII-like absorption maximum, a BR-like photocycle, and a unique retinal composition. The wild-type MR does not have a light-induced proton pumping activity. On the other hand, a mutant MR with two key hydrogen-bonding residues located at the interaction surface with the transducer protein HtrII shows robust phototaxis responses similar to SRII, indicating that MR is potentially capable of the signaling. These results demonstrate that color tuning and insertion of the critical threonine residue occurred early in the evolution of sensory rhodopsins. MR may be a missing link in the evolution from type 1 rhodopsins (microorganisms) to type 2 rhodopsins (animals), because it is the first microbial rhodopsin known to have 11-cis-retinal similar to type 2 rhodopsins.  相似文献   

20.
DTG/DTS rhodopsin, which was named based on a three-residue motif (DTG or DTS) that is important for its function, is a light-driven proton-pumping microbial rhodopsin using a retinal chromophore. In contrast to other light-driven ion-pumping rhodopsins, DTG/DTS rhodopsin does not have a cytoplasmic proton donor residue, such as Asp, Glu, or Lys. Because of the lack of cytoplasmic proton donor residue, proton directly binds to the retinal chromophore from the cytoplasmic solvent. However, mutational experiments that showed the complicated effects of mutations were not able to clarify the roles played by each residue, and the detail of proton uptake pathway is unclear because of the lack of structural information. To understand the proton transport mechanism of DTG/DTS rhodopsin, here we report the three-dimensional structure of one of the DTG/DTS rhodopsins, PspR from Pseudomonas putida, by X-ray crystallography. We show that the structure of the cytoplasmic side of the protein is significantly different from that of bacteriorhodopsin, the best-characterized proton-pumping rhodopsin, and large cytoplasmic cavities were observed. We propose that these hydrophilic cytoplasmic cavities enable direct proton uptake from the cytoplasmic solvent without the need for a specialized cytoplasmic donor residue. The introduction of carboxylic residues homologous to the cytoplasmic donors in other proton-pumping rhodopsins resulted in higher pumping activity with less pH dependence, suggesting that DTG/DTS rhodopsins are advantageous for producing energy and avoiding intracellular alkalization in soil and plant-associated bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号