首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This article summarizes the current knowledge available on metabolism and the biological effects of n-3 docosapentaenoic acid (DPA). n-3 DPA has not been extensively studied because of the limited availability of the pure compound. n-3 DPA is an elongated metabolite of EPA and is an intermediary product between EPA and DHA. The literature on n-3 DPA is limited, however the available data suggests it has beneficial health effects. In vitro n-3 DPA is retro-converted back to EPA, however it does not appear to be readily metabolised to DHA. In vivo studies have shown limited conversion of n-3 DPA to DHA, mainly in liver, but in addition retro-conversion to EPA is evident in a number of tissues. n-3 DPA can be metabolised by lipoxygenase, in platelets, to form ll-hydroxy-7,9,13,16,19- and 14-hydroxy-7,10,12,16,19-DPA. It has also been reported that n-3 DPA is effective (more so than EPA and DHA) in inhibition of aggregation in platelets obtained from rabbit blood. In addition, there is evidence that n-3 DPA possesses 10-fold greater endothelial cell migration ability than EPA, which is important in wound-healing processes. An in vivo study has reported that n-3 DPA reduces the fatty acid synthase and malic enzyme activity levels in n-3 DPA-supplemented mice and these effects were stronger than the EPA-supplemented mice. Another recent in vivo study has reported that n-3 DPA may have a role in attenuating age-related decrease in spatial learning and long-term potentiation. However, more research remains to be done to further investigate the biological effects of this n-3 VLCPUFA.  相似文献   

2.
In this study the n-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid and docosahexaenoic acid appear to be effective inducers of electrophile-responsive element (EpRE) regulated genes, whereas the n-6 PUFA arachidonic acid is not. These n-3 PUFAs need to be oxidized to induce EpRE-regulated gene expression, as the antioxidant vitamin E can partially inhibit the PUFA induced dose-dependent effect. Results were obtained using a reporter gene assay, real-time RT-PCR and enzyme activity assays. The induction of EpRE-regulated phase II genes by n-3 PUFAs may be a major pathway by which n-3 PUFAs, in contrast to n-6 PUFAs, are chemopreventive and anticarcinogenic.  相似文献   

3.
4.
Anti-inflammatory effects of polyunsaturated fatty acids in THP-1 cells   总被引:9,自引:0,他引:9  
The effects of linoleic acid (LA), alpha-linolenic acid (ALA), and docosahexaenoic acid (DHA) were compared to that of palmitic acid (PA), on inflammatory responses in human monocytic THP-1 cells. When cells were pre-incubated with fatty acids for 2-h and then stimulated with lipopolysaccharide for 24-h in the presence of fatty acids, secretion of interleukin (IL)-6, IL-1beta, and tumor necrosis factor-alpha (TNFalpha) was significantly decreased after treatment with LA, ALA, and DHA versus PA (P < 0.01 for all); ALA and DHA elicited more favorable effects. These effects were comparable to those for 15-deoxy-delta12,14-prostaglandin J2 (15d-PGJ2) and were dose-dependent. In addition, LA, ALA, and DHA decreased IL-6, IL-1beta, and TNFalpha gene expression (P < 0.05 for all) and nuclear factor (NF)-kappaB DNA-binding activity, whereas peroxisome proliferator-activated receptor-gamma (PPARgamma) DNA-binding activity was increased. The results indicate that the anti-inflammatory effects of polyunsaturated fatty acids may be, in part, due to the inhibition of NF-kappaB activation via activation of PPARgamma.  相似文献   

5.
BackgroundDietary linoleic acid (LA, 18:2n-6) lowering in rats reduces n-6 polyunsaturated fatty acid (PUFA) plasma concentrations and increases n-3 PUFA (eicosapentaenoic (EPA) and docosahexaenoic acid (DHA)) concentrations.ObjectiveTo evaluate the extent to which 12 weeks of dietary n-6 PUFA lowering, with or without increased dietary n-3 PUFAs, alters unesterified and esterified plasma n-6 and n-3 PUFA concentrations in subjects with chronic headache.DesignSecondary analysis of a randomized trial. Subjects with chronic headache were randomized for 12 weeks to (1) average n-3, low n-6 (L6) diet; or (2) high n-3, low n-6 LA (H3–L6) diet. Esterified and unesterified plasma fatty acids were quantified at baseline (0 weeks) and after 12 weeks on a diet.ResultsCompared to baseline, the L6 diet reduced esterified plasma LA and increased esterified n-3 PUFA concentrations (nmol/ml), but did not significantly change plasma arachidonic acid (AA, 20:4n-6) concentration. In addition, unesterified EPA concentration was increased significantly among unesterified fatty acids. The H3–L6 diet decreased esterified LA and AA concentrations, and produced more marked increases in esterified and unesterified n-3 PUFA concentrations.ConclusionDietary n-6 PUFA lowering for 12 weeks significantly reduces LA and increases n-3 PUFA concentrations in plasma, without altering plasma AA concentration. A concurrent increase in dietary n-3 PUFAs for 12 weeks further increases n-3 PUFA plasma concentrations and reduces AA.  相似文献   

6.
Changes in n-3 highly unsaturated fatty acids (HUFA, ≥20 carbons and ≥3 carbon–carbon double bonds) at baseline, during fish oil supplementation (4 weeks) and during washout (8 weeks) were compared in venous plasma, erythrocytes, whole blood and fingertip prick blood (weeks 0, 4, 8 and 12) with additional weekly fingertip prick samples. Correlations between the various blood fractions were slightly stronger when n-3 HUFA status was expressed as the percentage of n-3 HUFA in total HUFA as compared with the sum of EPA and DHA. Increases and decreases in n-3 HUFA were more dramatic in plasma, and EPA responded rapidly (within 1 week) with fish oil supplementation and cessation. Sex differences in the proportions of n-3 HUFA in blood were also apparent at baseline with females (n=7) having a tendency for higher docosahexaenoic acid (DHA, 22:6n-3) relative to eicosapentaenoic acid (EPA, 20:5n-3) and n-3 docosapentaenoic acid (DPAn-3, 22:5n-3) as compared with males (n=9). Further n-3 biomarker research in larger populations is required.  相似文献   

7.
(1) Phase II enzyme inducer is a kind of compound which can promote the expression of antioxidative enzymes through nuclear factor erythroid 2-related factor 2 (Nrf2) activation. Recently, it has been reported that these compounds show neuroprotective effect via combating oxidative stress. The purpose of this study is to determine whether phase II enzyme inducers have neuroprotective effects on traumatic spinal cord injury. (2) An organotypic spinal cord culture system was used, Phase II enzyme inducers were added to culture medium for 1 week, motor neurons were counted by SMI-32 staining, glutamate, Nrf2, and Heme oxygenase-1(HO-1) mRNA were tested. (3) This study showed motor neuron loss within 1 week in culture. After 1 week in culture, the system was stable. Moreover, Glutamate was increased when in culture 48 h and decreased after 1 week in culture. There was no significant change between 1 and 4 weeks in culture. Necrotic motor neuron and damaged mitochondrial were observed in culture 48 h. Furthermore, phase II enzyme inducers: tert-butyhydroquinone (t-BHQ), 3H-1,2-dithiole-3-thione (D3T), and 5,6-dihydrocyclopenta-1,2-dithiole-3-thione (CPDT) were shown to promote motor neuron survival after dissection, it was due to increasing Nrf2 and HO-1 mRNA expression and protecting mitochondrial not due to decreasing glutamate level. (4) The loss of motor neuron due to dissection can mimic severe traumatic spinal cord injury. These results demonstrate that glutamate excitotoxicity and the damage of mitochondrial is possibly involve in motor neuron death after traumatic spinal cord injury and phase II enzyme inducers show neuroprotective potential on motor neuron survival in traumatic spinal cord injury in vitro.  相似文献   

8.
LL202, a newly synthesized flavonoid derivative, has been confirmed to inhibit the mitogen-activated protein kinase pathway and activation protein-1 activation in monocytes; however, the anti-inflammatory mechanism has not been clearly studied. Uncontrolled overproduction of reactive oxygen species (ROS) has involved in oxidative damage of inflammatory bowel disease. In this study, we investigated that LL202 reduced lipopolysaccharide (LPS)-induced ROS production and malondialdehyde levels and increased superoxide dismutase, glutathione, and total antioxidant capacity in RAW264.7 cells. Mechanically, LL202 could upregulate heme oxygenase-1 (HO-1) via promoting nuclear translocation of nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) to regulate LPS-induced oxidative stress in macrophages. In vivo, we validated the role of LL202 in dextran sulfate sodium- and TNBS-induced colitis models, respectively. The results showed that LL202 decreased the proinflammatory cytokine expression and regulated colonic oxidative stress by activating the Nrf2/HO-1 pathway. In conclusion, our study showed that LL202 exerts an anti-inflammatory effect by enhancing the antioxidant capacity of the Nrf2/HO-1 pathway to macrophages.  相似文献   

9.
n-3 polyunsaturated fatty acids (PUFA), derived from marine oils, have been shown to protect against various neurological diseases. However, very little is known about their potential anticonvulsant properties. The objective of the present study was to determine whether enrichment of brain lipids with n-3 PUFA inhibits seizures induced by pentylenetetrazol. We demonstrate that increased brain levels of n-3 PUFA in transgenic fat-1 male mice, which are capable of de novo synthesis of n-3 PUFA from n-6 PUFA, increases latency to seizure onset by 45%, relative to wildtype controls ( p  = 0.08). Compared with wildtype littermates, transgenic fat-1 mice have significantly ( p  < 0.05) higher levels of docosahexaenoic acid and total n-3 PUFA in brain total lipid extracts and phospholipids. Levels of brain docosahexaenoic acid were positively correlated to seizure latency ( p  < 0.05). These findings demonstrate that n-3 PUFA have anticonvulsant properties and suggest the possibility of a novel, non-drug dietary approach for the treatment of epilepsy.  相似文献   

10.
11.
A phosphopantetheinyl transferase (PPTase) gene (pfaE), cloned from the docosahexaenoic acid (DHA)-producing bacterium Moritella marina strain MP-1, has an open reading frame of 861 bp encoding a 287-amino acid protein. When the pfaE gene was expressed with pfaA-D, which are four out of five essential genes for biosynthesis of eicosapentaenoic acid (EPA) derived from Shewanella pneumatophori SCRC-2738 in Escherichia coli, the recombinant produced 12% EPA of total fatty acids. This suggests that pfaE encodes a PPTase required for producing n-3 polyunsaturated fatty acids, which is probably involved in the synthesis of DHA in M. marina strain MP-1.  相似文献   

12.
Hwang YP  Jeong HG 《FEBS letters》2008,582(17):2655-2662
In this study, we investigated the mechanisms of kahweol protection of neuronal cells from cell death induced by the Parkinson's disease-related neurotoxin 6-hydroxydopamine (6-OHDA). Pretreatment of SH-SY5Y cells with kahweol significantly reduced 6-OHDA-induced generation of ROS, caspase-3 activation, and subsequent cell death. Kahweol also up-regulated heme oxygenase-1 (HO-1) expression, which conferred neuroprotection against 6-OHDA-induced oxidative injury. Moreover, kahweol induced PI3K and p38 activation, which are involved in the induction of Nrf2, HO-1 expression, and neuroprotection. These results suggest that regulation of the anti-oxidant enzyme HO-1 via the PI3K and p38/Nrf2 signaling pathways controls the intracellular levels of ROS.  相似文献   

13.
Omega-3 fatty acids from fish oils and cardiovascular disease   总被引:10,自引:0,他引:10  
Fish and fish oils contain the omega-3 fatty acids known as eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA). Epidemiological studies have shown an inverse relation between the dietary consumption of fish containing EPA/DHA and mortality from coronary heart disease. These relationships have been substantiated from blood measures of omega-3 fatty acids including DHA as a physiological biomarker for omega-3 fatty acid status. Controlled intervention trials with fish oil supplements enriched in EPA/DHA have shown their potential to reduce mortality in post-myocardial infarction patients with a substantial reduction in the risk of sudden cardiac death. The cardioprotective effects of EPA/DHA are widespread, appear to act independently of blood cholesterol reduction, and are mediated by diverse mechanisms. Their overall effects include anti-arrhythmic, blood triglyceride-lowering, anti-thrombotic, anti-inflammatory, endothelial relaxation, plus others. Current dietary intakes of EPA/DHA in North America and elsewhere are well below those recommended by the American Heart Association for the management of patients with coronary heart disease. (Mol Cell Biochem 263: 217–225, 2004)  相似文献   

14.
15.
We tested the hypothesis that stress responses mediated by the Nrf2-antioxidant responsive element (ARE) pathway are involved in the initiation of retinal neuroprotection provided by bright-cyclic-light rearing. Albino rats born and raised in dim (5 lux) or bright (400 lux) cyclic light were exposed to damaging light (3000 lux, 6 h). After exposure, the outer nuclear layer thickness and area and the electroretinogram a- and b-wave amplitudes were significantly reduced in the dim-light-reared rats compared to the bright-light-reared rats, demonstrating a light adaptation neuroprotection phenomenon. In bright-cyclic-light-reared rats, the retinal levels of thioredoxin (Trx) (2.4-fold), Trx reductase (TrxR) (2.9-fold), and proteins modified by 4-hydroxynonenal (4-HNE) (1.5-fold) were upregulated by Western blot analyses, and the nuclear translocation of Nrf2 (2.2-fold) and the DNA binding activity of Nrf2, small Maf, and cJun to the ARE were increased as determined by electrophoretic mobility shift assays. In mouse photoreceptor-derived 661W cells, pretreatment with a sublethal dose of 4-HNE protected against H2O2-induced cell damage. Treatment with 4-HNE upregulated cellular Trx, TrxR, and heme oxygenase-1 (HO-1) levels in addition to DNA binding activity of Nrf2, small Maf, and cJun to the ARE. Downregulation of Nrf2 using RNA interference technology diminished 4-HNE-mediated upregulation of Trx and Trx reductase but did not affect the upregulation of HO-1 by 4-HNE. Cytoprotection by 4-HNE pretreatment against H2O2-induced cell damage was not observed in 661W cells with a silenced Nrf2 gene. The results suggest that upregulation of the Trx system by 4-HNE via the Nrf2–ARE pathway may be involved in the molecular mechanism of the retinal neuroprotection phenomenon.  相似文献   

16.
The effect of oxLDL on CD36 expression has been assessed in preadipocytes induced to differentiate. Novel evidence is provided that oxLDL induce a peroxisome proliferator-activated receptor gamma-independent CD36 overexpression, by up-regulating nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2). The nuclear translocation of Nrf2 appeared to depend on PKC pathway activation. In adipocytes, the CD36 up-regulation may indicate a compensation mechanism to meet the demand of excess oxLDL and oxidised lipids in blood, reducing the risk of atherogenesis. Besides strengthening the hypothesis that oxLDL can contribute to the onset of insulin-resistance, data herein presented highlight the significance of oxLDL-induced CD36 overexpression within the cellular defence response.  相似文献   

17.
The mammalian pineal gland is a prominent secretory organ with a high metabolic activity. Melatonin (N-acetyl-5-methoxytryptamine), the main secretory product of the pineal gland, efficiently scavenges both the hydroxyl and peroxyl radicals counteracting lipid peroxidation in biological membranes. Approximately 25% of the total fatty acids present in the rat pineal lipids are represented by arachidonic acid (20:4n-6) and docosahexaenoic acid (22:6n-3). These very long chain polyunsaturated fatty acids play important roles in the pineal gland. In addition to the production of melatonin, the mammalian pineal gland is able of convert these polyunsaturated fatty acids into bioactive lipid mediators. Lipoxygenation is the principal lipoxygenase (LOX) activity observed in the rat pineal gland. Lipoxygenation in the pineal gland is exceptional because no other brain regions express significant LOX activities under normal physiological conditions. The rat pineal gland expresses both 12- and 15-lipoxygenase (LOX) activities, producing 12- and 15-hydroperoxyeicosatetraenoic acid (12- and 15-HpETE) from arachidonic acid and 14- and 17-hydroxydocosahexaenoic acid (14- and 17-HdoHE) from docosahexaenoic acid, respectively. The rat pineal also produces hepoxilins via LOX pathways. The hepoxilins are bioactive epoxy-hydroxy products of the arachidonic acid metabolism via the 12S-lipoxygenase (12S-LOX) pathway. The two key pineal biochemical functions, lipoxygenation and melatonin synthesis, may be synergistically regulated by the status of n-3 essential fatty acids.  相似文献   

18.
19.
In the liver, maintaining lipid homeostasis is regulated by physiological and exogenous factors. These lipids are synthesized by Fasn, elongases and desaturases. Interactions in an organism among these factors are quite complex and, to date, relatively little is known about them. The aim of this study was to evaluate the coexisting role of physiological (insulin, fasting and feeding) and exogenous (dietary lipids) factors in the control of gene expression of Fasn, elongases and desaturases via Srebf-1c in liver from rats. Gene expression of encoding enzymes for fatty acid synthesis and fatty acid composition was evaluated in liver from rats in fasting and feeding (at 30, 60, 90 and 120 min after feeding) when food intake (adequate or high-lipid diet) was synchronized to a restricted period of 7h. Fasn, Scd and Fads2 were induced during 120 min after initial feeding in both dietary groups. This induction may be activated in part by insulin via Srebf-1c. Also, we showed for the first time that Elovl7 may be regulated by insulin and dietary lipids. The failure to synthesize saturated and monounsaturated fatty acids is consistent with a downregulation of Fasn and Scd, respectively, by dietary lipids. A higher content of LC-PUFAs was observed due to a high expression of Elovl2 and Elovl5, although Fads2 was suppressed by dietary lipids. Therefore, elongases may have a mechanism that is Srebf-1c-independent. This study suggests that a high-lipid diet triggers, during 120 min after initial feeding, a tight coordination among de novo lipogenesis, elongation, and desaturation and may not always be regulated by Srebf-1c. Finally, upregulation by feeding (insulin) of Fasn, Scd, Fads2 and Srebf-1c is insufficient to compensate for the inhibitory effect of dietary lipids.  相似文献   

20.
Regulation of polyunsaturated fatty acid (PUFA) biosynthesis in proliferating and NGF-differentiated PC12 pheochromocytoma cells deficient in n − 3 docosahexaenoic acid (DHA 22:6n − 3) was studied. A dose- and time-dependent increase in eicosapentaenoic acid (EPA, 20:5n − 3), docosapentaenoic acid (DPA, 22:5n − 3) and DHA in phosphatidylethanolamine (PtdEtn) and phosphatidylserine (PtdSer) glycerophospholipids (GPL) via the elongation/desaturation pathway following alpha-linolenic acid (ALA, 18:3n − 3) supplements was observed. That was accompanied by a marked reduction of eicosatrienoic acid (Mead acid 20:3n − 9), an index of PUFA deficiency. EPA supplements were equally effective converted to 22:5n − 3 and 22:6n − 3. On the other hand, supplements of linoleic acid (LNA, 18:2n − 6) were not effectively converted into higher n − 6 PUFA intermediates nor did they impair elongation/desaturation of ALA. Co-supplements of DHA along with ALA did not interfere with 20:5n − 3 biosynthesis but reduced further elongation to 22-hydrocarbon PUFA intermediates. A marked decrease in the newly synthesized 22:5n − 3 and 22:6n − 3 following ALA or EPA supplements was observed after nerve growth factor (NGF)-induced differentiation. NGF also inhibited the last step in 22:5n − 6 formation from LNA. These results emphasize the importance of overcoming n − 3 PUFA deficiency and raise the possibility that growth factor regulation of the last step in PUFA biosynthesis may constitute an important feature of neuronal phenotype acquisition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号