首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
At least 48 mutations in the CACNA1F gene encoding retinal Ca(v)1.4 L-type Ca(2+) channels have been linked to X-linked recessive congenital stationary night blindness type 2 (CSNB2). A large number of these are missense mutations encoding full-length alpha1-subunits that can potentially form functional channels. We have previously shown that such missense mutations can confer their phenotype by different pathological mechanisms, such as complete lack of alpha1 subunit protein expression or dramatic changes in channel gating. Here we investigated the functional consequences of CSNB2 missense mutations R508Q and L1364H. We found no (R508Q) or only minor (L1364H) changes in the gating properties of both mutants after heterologous expression in Xenopus laevis oocytes (at 20 degrees C). However, both mutants resulted in altered expression density of Ca(v)1.4 currents. When expressed in the mammalian cell line tsA-201, the current amplitude of L1364H channels was reduced when cells were grown at 30 degrees C and both mutations affected total alpha1 protein expression. This effect was temperature dependent. Our data provide evidence that, in contrast to previously characterized CSNB2 missense mutations, the clinical phenotype of R508Q and L1364H is unlikely to be explained by changes in channel gating. Instead, these mutations affect the protein expression of Ca(v)1.4 Ca(2+) channels.  相似文献   

3.
Proper function of Cav1.4 L-type calcium channels is crucial for neurotransmitter release in the retina. Our understanding about how different levels of Cav1.4 channel activity affect retinal function is still limited. In the gain-of-function mouse model Cav1.4-IT we expected a reduction in the photoreceptor dynamic range but still transmission toward retinal ganglion cells. A fraction of Cav1.4-IT ganglion cells responded to light stimulation in multielectrode array recordings from whole-mounted retinas, but showed a significantly delayed response onset. Another significant number of cells showed higher activity in darkness. In addition to structural remodeling observed at the first retinal synapse of Cav1.4-IT mice the functional data suggested a loss of contrast enhancement, a fundamental feature of our visual system. In fact, Cav1.4-IT mouse retinas showed a decline in spatial response and changes in their contrast sensitivity profile. Photoreceptor degeneration was obvious from the nodular structure of cone axons and enlarged pedicles which partly moved toward the outer nuclear layer. Loss of photoreceptors was also expressed as reduced expression of proteins involved in chemical and electrical transmission, as such metabotropic glutamate receptor mGluR6 and the gap junction protein Connexin 36. Such gross changes in retinal structure and function could also explain the diminished visual performance of CSNB2 patients. The expression pattern of the plasma-membrane calcium ATPase 1 which participates in the maintenance of the intracellular calcium homeostasis in photoreceptors was changed in Cav1.4-IT mice. This might be part of a protection mechanism against increased calcium influx, as this is suggested for Cav1.4-IT channels.  相似文献   

4.
Cav1.4 L-type Ca2+ channels are crucial for synaptic transmission in retinal photoreceptors and bipolar neurons. Recent studies suggest that the activity of this channel is regulated by the Ca2+-binding protein 4 (CaBP4). In the present study, we explored this issue by examining functional effects of CaBP4 on heterologously expressed Cav1.4. We show that CaBP4 dramatically increases Cav1.4 channel availability. This effect crucially depends on the presence of the C-terminal ICDI (inhibitor of Ca2+-dependent inactivation) domain of Cav1.4 and is absent in a Cav1.4 mutant lacking the ICDI. Using FRET experiments, we demonstrate that CaBP4 interacts with the IQ motif of Cav1.4 and that it interferes with the binding of the ICDI domain. Based on these findings, we suggest that CaBP4 increases Cav1.4 channel availability by relieving the inhibitory effects of the ICDI domain on voltage-dependent Cav1.4 channel gating. We also functionally characterized two CaBP4 mutants that are associated with a congenital variant of human night blindness and other closely related nonstationary retinal diseases. Although both mutants interact with Cav1.4 channels, the functional effects of CaBP4 mutants are only partially preserved, leading to a reduction of Cav1.4 channel availability and loss of function. In conclusion, our study sheds new light on the functional interaction between CaBP4 and Cav1.4. Moreover, it provides insights into the mechanism by which CaBP4 mutants lead to loss of Cav1.4 function and to retinal disease.  相似文献   

5.
Proper function of Cav1.4 L-type calcium channels is crucial for neurotransmitter release in the retina. Our understanding about how different levels of Cav1.4 channel activity affect retinal function is still limited. In the gain-of-function mouse model Cav1.4-IT we expected a reduction in the photoreceptor dynamic range but still transmission toward retinal ganglion cells. A fraction of Cav1.4-IT ganglion cells responded to light stimulation in multielectrode array recordings from whole-mounted retinas, but showed a significantly delayed response onset. Another significant number of cells showed higher activity in darkness. In addition to structural remodeling observed at the first retinal synapse of Cav1.4-IT mice the functional data suggested a loss of contrast enhancement, a fundamental feature of our visual system. In fact, Cav1.4-IT mouse retinas showed a decline in spatial response and changes in their contrast sensitivity profile. Photoreceptor degeneration was obvious from the nodular structure of cone axons and enlarged pedicles which partly moved toward the outer nuclear layer. Loss of photoreceptors was also expressed as reduced expression of proteins involved in chemical and electrical transmission, as such metabotropic glutamate receptor mGluR6 and the gap junction protein Connexin 36. Such gross changes in retinal structure and function could also explain the diminished visual performance of CSNB2 patients. The expression pattern of the plasma-membrane calcium ATPase 1 which participates in the maintenance of the intracellular calcium homeostasis in photoreceptors was changed in Cav1.4-IT mice. This might be part of a protection mechanism against increased calcium influx, as this is suggested for Cav1.4-IT channels.  相似文献   

6.
Mutations in the Cav2.1 alpha1-subunit of P/Q-type Ca2+ channels cause human diseases, including familial hemiplegic migraine type-1 (FHM1). FHM1 mutations alter channel gating and enhanced channel activity at negative potentials appears to be a common pathogenetic mechanism. Different beta-subunit isoforms (primarily beta4 and beta3) participate in the formation of Cav2.1 channel complexes in mammalian brain. Here we investigated not only whether FHM1 mutations K1336E (KE), W1684R (WR), and V1696I (VI) can affect Cav2.1 channel function but focused on the important question whether mutation-induced changes on channel gating depend on the beta-subunit isoform. Mutants were co-expressed in Xenopus oocytes together with beta1, beta3, or beta4 and alpha2delta1 subunits, and channel function was analyzed using the two-electrode voltage-clamp technique. WR shifted the voltage dependence for steady-state inactivation of Ba2+ inward currents (IBa) to more negative voltages with all beta-subunits tested. In contrast, a similar shift was observed for KE only when expressed with beta3. All mutations promoted IBa decay during pulse trains only when expressed with beta1 or beta3 but not with beta4. Enhanced decay could be explained by delayed recovery from inactivation. KE accelerated IBa inactivation only when co-expressed with beta3, and VI slowed inactivation only with beta1 or beta3. KE and WR shifted channel activation of IBa to more negative voltages. As the beta-subunit composition of Cav2.1 channels varies in different brain regions, our data predict that the functional FHM1 phenotype also varies between different neurons or even within different neuronal compartments.  相似文献   

7.
8.
When transiently expressed in tsA-201 cells, Ca(v)1.4 calcium channels support only modest whole-cell currents with unusually slow voltage-dependent inactivation kinetics. To examine the basis for this unique behavior we used cell-attached patch single-channel recordings using 100 mM external barium as the charge carrier to determine the single-channel properties of Ca(v)1.4 and to compare them to those of the Ca(v)1.2. Ca(v)1.4 channel openings occurred infrequently and were of brief duration. Moreover, openings occurred throughout the duration of the test depolarization, indicating that the slow inactivation kinetics observed at the whole-cell level are caused by sustained channel activity. Ca(v)1.4 and Ca(v)1.2 channels displayed similar latencies to first opening. Because of the rare occurrence of events, the probability of opening could not be precisely determined but was estimated to be <0.015 over a voltage range of -20 to +20 mV. The single-channel conductance of Ca(v)1.4 channels was approximately 4 pS compared with approximately 20 pS for Ca(v)1.2 under the same experimental conditions. Additionally, in the absence of divalent cations, Ca(v)1.4 channels pass cesium ions with a single-channel conductance of approximately 21 pS. Although Ca(v)1.2 opening events were best described kinetically with two open time constants, Ca(v)1.4 open times were best described by a single time constant. BayK8644 slightly enhanced the single-channel conductance in addition to increasing the open time constant for Ca(v)1.4 channels by approximately 45% without, however, causing the appearance of an additional slower gating mode. Overall, our data indicate that single Ca(v)1.4 channels support only minute amounts of calcium entry, suggesting that large numbers of these channels are needed to allow for significant whole-cell current activity, and providing a mechanism to reduce noise in the visual system.  相似文献   

9.
The mechanism of channel opening for voltage-gated calcium channels is poorly understood. The importance of a conserved isoleucine residue in the pore-lining segment IIS6 has recently been highlighted by functional analyses of a mutation (I745T) in the Ca(V)1.4 channel causing severe visual impairment (Hemara-Wahanui, A., Berjukow, S., Hope, C. I., Dearden, P. K., Wu, S. B., Wilson-Wheeler, J., Sharp, D. M., Lundon-Treweek, P., Clover, G. M., Hoda, J. C., Striessnig, J., Marksteiner, R., Hering, S., and Maw, M. A. (2005) Proc. Natl. Acad. Sci. U. S. A. 102, 7553-7558). In the present study we analyzed the influence of amino acids in segment IIS6 on gating of the Ca(V)1.2 channel. Substitution of Ile-781, the Ca(V)1.2 residue corresponding to Ile-745 in Ca(V)1.4, by residues of different hydrophobicity, size and polarity shifted channel activation in the hyperpolarizing direction (I781P > I781T > I781N > I781A > I781L). As I781P caused the most dramatic shift (-37 mV), substitution with this amino acid was used to probe the role of other residues in IIS6 in the process of channel activation. Mutations revealed a high correlation between the midpoint voltages of activation and inactivation. A unique kinetic phenotype was observed for residues 779-782 (LAIA) located in the lower third of segment IIS6; a shift in the voltage dependence of activation was accompanied by a deceleration of activation at hyperpolarized potentials, a deceleration of deactivation at all potentials (I781P and I781T), and decreased inactivation. These findings indicate that Ile-781 substitutions both destabilize the closed conformation and stabilize the open conformation of Ca(V)1.2. Moreover there may be a flexible center of helix bending at positions 779-782 of Ca(V)1.2. These four residues are completely conserved in high voltage-activated calcium channels suggesting that these channels may share a common mechanism of gating.  相似文献   

10.
beta subunits of voltage-gated calcium channels influence channel behavior in numerous ways, including enhancing the targeting of alpha1 subunits to the plasma membrane and shifting the voltage dependence of activation and inactivation. Of the four beta subunits that have been identified, beta 4 is of particular interest because mutation of its alpha1 subunit interaction domain produces severe neurological defects. Its differential distribution in the hippocampus prompted us to examine whether this subunit was responsible for the heterogeneity of hippocampal L-type calcium channels. To study the functional effects of the beta 4 subunit on native L-type calcium channels, we transfected beta 4 cDNA subcloned out of embryonic hippocampal neurons into PC12 cells, a cell line that contains the beta 1, beta 2, and beta 3 subunits but not the beta 4 subunit. Cell-attached single-channel recordings of L-type channel activity from untransfected and transfected PC12 cells compared with recordings obtained from hippocampal neurons revealed an effect of the beta 4 subunit on single-channel conductance. L-type channels in untransfected PC12 cells had a significantly smaller conductance (19.8 picosiemens (pS)) than L-type channels in hippocampal neurons (22 pS). After transfection of beta 4, however, L-type single-channel conductance was indistinguishable between the two cell types. Our data suggest that calcium channel beta 4 subunits affect the conductance of L-type calcium channels and that native hippocampal L-type channels contain the beta 4 subunit.  相似文献   

11.
EF-hand Ca2+-binding proteins such as calmodulin and CaBP1 have emerged as important regulatory subunits of voltage-gated Ca2+ channels. Here, we show that caldendrin, a variant of CaBP1 enriched in the brain, interacts with and distinctly modulates Cav1.2 (L-type) voltage-gated Ca2+ channels relative to other Ca2+-binding proteins. Caldendrin binds to the C-terminal IQ-domain of the pore-forming alpha1-subunit of Cav1.2 (alpha(1)1.2) and competitively displaces calmodulin and CaBP1 from this site. Compared with CaBP1, caldendrin causes a more modest suppression of Ca2+-dependent inactivation of Cav1.2 through a different subset of molecular determinants. Caldendrin does not bind to the N-terminal domain of alpha11.2, a site that is critical for functional interactions of the channel with CaBP1. Deletion of the N-terminal domain inhibits CaBP1, but spares caldendrin modulation of Cav1.2 inactivation. In contrast, mutations of the IQ-domain abolish physical and functional interactions of caldendrin and Cav1.2, but do not prevent channel modulation by CaBP1. Using antibodies specific for caldendrin and Cav1.2, we show that caldendrin coimmunoprecipitates with Cav1.2 from the brain and colocalizes with Cav1.2 in somatodendritic puncta of cortical neurons in culture. Our findings reveal functional diversity within related Ca2+-binding proteins, which may enhance the specificity of Ca2+ signaling by Cav1.2 channels in different cellular contexts.  相似文献   

12.
Fluorophore-assisted light inactivation (FALI) is an investigative tool to inactivate fluorescently labeled proteins by a mechanism of in situ photodestruction. We found that Cav 1.2 (L-type) and Cav 3.1 (T-type) calcium channels, labeled by genetic fusion with GFP derivatives, show differential sensitivity to FALI. Specifically, FALI silences Cav 1.2 calcium channels containing EYFP-labeled α 1C subunits but does not affect the EYFP-α 1G Cav 3.1 calcium channels or Cav 1.2 channels containing EYFP-labeled β subunits. Our findings limit the applicability of acceptor photobleaching for the measurements of FRET but open an opportunity to combine the fluorescent imaging of the live cell expressing labeled calcium channels with selective functional inactivation of their specific subsets.  相似文献   

13.
Zhen XG  Xie C  Yamada Y  Zhang Y  Doyle C  Yang J 《FEBS letters》2006,580(24):5733-5738
The activity of voltage-gated calcium channels (VGCCs) decreases with time in whole-cell and inside-out patch-clamp recordings. In this study we found that substituting a single amino acid (I1520) at the intracellular end of IIIS6 in the alpha(1) subunit of P/Q-type Ca(2+) channels with histidine or aspartate greatly attenuated channel rundown in inside-out patch-clamp recordings. The homologous mutations also slowed rundown of N- and L-type Ca(2+) channels, albeit to a lesser degree. In P/Q-type channels, the attenuation of rundown is accompanied by an increased apparent affinity for phosphatidylinositol-4,5-bisphosphate, which has been shown to be critical for maintaining Ca(2+) channel activity [L. Wu, C.S. Bauer, X.-G. Zhen, C. Xie, J. Yang, Dual regulation of voltage-gated calcium channels by PtdIns(4,5)P2. Nature 419 (2002) 947-952]. Furthermore, the histidine mutation significantly stabilized the open state, making the channels easier to open, slower to close, harder to inactivate and faster to recover from inactivation. Our finding that mutation of a single amino acid can greatly attenuate rundown provides an easy and efficient way to slow the rundown of VGCCs, facilitating functional studies that require direct access to the cytoplasmic side of the channel.  相似文献   

14.
15.
Calcium-activated potassium channels of the KCa1.1 class are known to regulate repolarization of action potential discharge through a molecular association with high voltage-activated calcium channels. The current study examined the potential for low voltage-activated Cav3 (T-type) calcium channels to interact with KCa1.1 when expressed in tsA-201 cells and in rat medial vestibular neurons (MVN) in vitro. Expression of the channel α-subunits alone in tsA-201 cells was sufficient to enable Cav3 activation of KCa1.1 current. Cav3 calcium influx induced a 50 mV negative shift in KCa1.1 voltage for activation, an interaction that was blocked by Cav3 or KCa1.1 channel blockers, or high internal EGTA. Cav3 and KCa1.1 channels coimmunoprecipitated from lysates of either tsA-201 cells or rat brain, with Cav3 channels associating with the transmembrane S0 segment of the KCa1.1 N-terminus. KCa1.1 channel activation was closely aligned with Cav3 calcium conductance in that KCa1.1 current shared the same low voltage dependence of Cav3 activation, and was blocked by voltage-dependent inactivation of Cav3 channels or by coexpressing a non calcium-conducting Cav3 channel pore mutant. The Cav3-KCa1.1 interaction was found to function highly effectively in a subset of MVN neurons by activating near –50 mV to contribute to spike repolarization and gain of firing. Modelling data indicate that multiple neighboring Cav3-KCa1.1 complexes must act cooperatively to raise calcium to sufficiently high levels to permit KCa1.1 activation. Together the results identify a novel Cav3-KCa1.1 signaling complex where Cav3-mediated calcium entry enables KCa1.1 activation over a wide range of membrane potentials according to the unique voltage profile of Cav3 calcium channels, greatly extending the roles for KCa1.1 potassium channels in controlling membrane excitability.  相似文献   

16.
Understanding the structure and functional mechanisms of voltage-gated calcium channels remains a major task in membrane biophysics. In the absence of three dimensional structures, homology modelling techniques are the method of choice, to address questions concerning the structure of these channels. We have developed models of the open Cav1.2 pore, based on the crystal structure of the mammalian voltage-gated potassium channel Kv1.2 and a model of the bacterial sodium channel NaChBac. Our models are developed to be consistent with experimental data and modelling criteria. The models highlight major differences between voltage-gated potassium and calcium channels, in the P segments, as well as the inner pore helices. Molecular dynamics simulations support the hypothesis of a clockwise domain arrangement and experimental observations of asymmetric calcium channel behaviour. In the accompanying paper these models were used to study structural effects of a channelopathy mutation.  相似文献   

17.
18.
Here we report the first assessment of the expression and modulation of an invertebrate alpha1 subunit homolog of mammalian presynaptic Cav2 calcium channels (N-type and P/Q-type) in mammalian cells. Our data show that molluscan channel (LCav2a) isolated from Lymnaea stagnalis is effectively membrane-targeted and electrophysiologically recordable in tsA-201 cells only when the first 44 amino acids of LCav2a are substituted for the corresponding region of rat Cav2.1. When coexpressed with rat accessory subunits, the biophysical properties of LCav2a-5'rbA resemble those of mammalian N-type calcium channels with respect to activation and inactivation, lack of pronounced calcium dependent inactivation, preferential permeation of barium ions, and cadmium block. Consistent with reports of native Lymnaea calcium currents, the LCav2a-5'rbA channel is insensitive to micromolar concentrations of omega-conotoxin GVIA and is not affected by nifedipine, thus confirming that it is not of the L-type. Interestingly, the LCav2a-5'rbA channel is almost completely and irreversibly inhibited by guanosine 5'-3-O-(thio)triphosphate but not regulated by syntaxin1, suggesting that invertebrate presynaptic calcium channels are differently modulated from their vertebrate counterparts.  相似文献   

19.
Mutation S218L in the Ca(V)2.1 alpha(1) subunit of P/Q-type Ca(2+) channels produces a severe clinical phenotype in which typical attacks of familial hemiplegic migraine (FHM) triggered by minor head trauma are followed, after a lucid interval, by deep (even fatal) coma and long lasting severe cerebral edema. We investigated the functional consequences of this mutation on human Ca(V)2.1 channels expressed in human embryonic kidney 293 cells and in neurons from Ca(V)2.1 alpha(1)(-/-) mice by combining single channel and whole cell patch clamp recordings. Mutation S218L produced a shift to lower voltages of the single channel activation curve and a consequent increase of both single channel and whole cell Ba(2+) influx in both neurons and human embryonic kidney 293 cells. Compared with the other FHM-1 mutants, the S218L shows one of the largest gains of function, especially for small depolarizations, which are insufficient to open the wild-type channel. S218L channels open at voltages close to the resting potential of many neurons. Moreover, the S218L mutation has unique effects on the kinetics of inactivation of the channel because it introduces a large component of current that inactivates very slowly, and it increases the rate of recovery from inactivation. During long depolarizations at voltages that are attained during cortical spreading depression, the extent of inactivation of the S218L channel is considerably smaller than that of the wild-type channel. We discuss how the unique combination of a particularly slow inactivation during cortical spreading depression and a particularly low threshold of channel activation might lead to delayed severe cerebral edema and coma after minor head trauma.  相似文献   

20.
Voltage gated potassium channels are tetrameric membrane proteins, which have a central role in cellular excitability. Human Kv1.4 channels open on membrane depolarization and inactivate rapidly by a ‘ball and chain’ mechanism whose molecular determinants have been mapped to the cytoplasmic N terminus of the channel. Here we show that the other terminal end of the channel also plays a role in channel inactivation. Swapping the C-terminal residues of hKv1.4 with those from two non-inactivating channels (hKv1.1 and hKv1.2) affects the rates of inactivation, as well as the recovery of the channel from the inactivated state. Secondary structure predictions of the hKv1.4 sequence reveal a helical structure at its distal C-terminal. Complete removal or partial disruption of this helical region results in channels with remarkably slowed inactivation kinetics. The ionic selectivity and voltage-dependence of channel opening were similar to hKv1.4, indicative of an unperturbed channel pore. These results demonstrate that fast inactivation is modulated by structural elements in the C-terminus, suggesting that the process involves the concerted action of the N- and C-termini.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号