首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
BackgroundGegen Qinlian decoction (GQ) is a well-known traditional Chinese medicine that has been clinically proven to be effective in treating ulcerative colitis (UC). However, its therapeutic mechanism has not been fully elucidated. Notch signaling plays an essential role in the regeneration of the intestinal epithelium.PurposeThis study was designed to ascertain the mechanism by which GQ participates in the recovery of the colonic mucosa by regulating Notch signaling in acute and chronic UC models.MethodsAcute and chronic UC mice (C57BL/6) were established with 3 and 2% dextran sulfate sodium (DSS), respectively, and treated with oral administration of GQ. The expression of the Notch target gene Hes1 and the Notch-related proteins RBP-J, MAML and Math1 was analyzed by western blotting. PTEN mRNA levels were detected by qRT-PCR. Mucin production that is characteristic of goblet cells was determined by Alcian blue/periodic acid-Schiff staining and verified by examining MUC2 mRNA levels by qRT-PCR. Cell proliferation was assayed by immunohistochemistry analysis of Ki67. HT-29 and FHC cells and Toll-like receptor 4 knockout (TLR4−/−) acute UC mice were also used in this study.ResultsGQ restored the injured colonic mucosa in both acute and chronic UC models. We found that Notch signaling was hyperactive in acute UC mice and hypoactive in chronic UC mice. GQ downregulated Hes1, RBP-J and MAML proteins and augmented goblet cells in the acute UC models, whereas GQ upregulated Hes1, RBP-J and MAML proteins in chronic UC mice, reducing goblet cell differentiation and promoting crypt base columnar (CBC) stem cell proliferation. Hes1 mRNA was suppressed in TLR4−/− UC mice, and GQ treatment reversed this effect. In vitro, GQ reduced Hes1 protein in Notch-activated HT29 and FHC cells but increased Hes1 protein in Notch-inhibited cells.ConclusionsGQ restored the colonic epithelium by maintaining mucosal homeostasis via bidirectional regulation of Notch signaling in acute/chronic UC models.  相似文献   

4.
5.
6.
7.
8.
9.
IL-27 is a novel IL-6/IL-12 family cytokine that not only plays a role in the early regulation of Th1 differentiation, but also exerts an inhibitory effect on immune responses, including the suppression of proinflammatory cytokine production. However, the molecular mechanism by which IL-27 exerts the inhibitory effect remains unclear. In this study we demonstrate that IL-27 inhibits CD28-mediated IL-2 production and that suppressor of cytokine signaling 3 (SOCS3) plays a critical role in the inhibitory effect. Although IL-27 enhanced IFN-gamma production from naive CD4+ T cells stimulated with plate-coated anti-CD3 and anti-CD28 in the presence of IL-12, IL-27 simultaneously inhibited CD28-mediated IL-2 production. Correlated with the inhibition, IL-27 was shown to augment SOCS3 expression. Analyses using various mice lacking a signaling molecule revealed that the inhibition of IL-2 production was dependent on STAT1, but not on STAT3, STAT4, and T-bet, and was highly correlated with the induction of SOCS3 expression. Similar inhibition of CD28-mediated IL-2 production and augmentation of SOCS3 expression by IL-27 were observed in a T cell hybridoma cell line, 2B4. Forced expression of antisense SOCS3 or dominant negative SOCS3 in the T cell line blocked the IL-27-inudced inhibition of CD28-mediated IL-2 production. Furthermore, pretreatment with IL-27 inhibited IL-2-mediated cell proliferation and STAT5 activation, although IL-27 hardly affected the induction level of CD25 expression. These results suggest that IL-27 inhibits CD28-mediated IL-2 production and also IL-2 responses, and that SOCS3, whose expression is induced by IL-27, plays a critical role in the inhibitory effect in a negative feedback mechanism.  相似文献   

10.
Although the Notch and JAK-STAT signalling pathways fulfill overlapping roles in growth and differentiation regulation, no coordination mechanism has been proposed to explain their relationship. Here we show that STAT3 is activated in the presence of active Notch, as well as the Notch effectors Hes1 and Hes5. Hes proteins associate with JAK2 and STAT3, and facilitate complex formation between JAK2 and STAT3, thus promoting STAT3 phosphorylation and activation. Furthermore, suppression of endogenous Hes1 expression reduces growth factor induction of STAT3 phosphorylation. STAT3 seems to be essential for maintenance of radial glial cells and differentiation of astrocytes by Notch in the developing central nervous system. These results suggest that direct protein-protein interactions coordinate cross-talk between the Notch-Hes and JAK-STAT pathways.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
Recent studies have shown that Notch signaling plays an important role in epidermal development, but the underlying molecular mechanisms remain unclear. Here, by integrating loss- and gain-of-function studies of Notch receptors and Hes1, we describe molecular information about the role of Notch signaling in epidermal development. We show that Notch signaling determines spinous cell fate and induces terminal differentiation by a mechanism independent of Hes1, but Hes1 is required for maintenance of the immature state of spinous cells. Notch signaling induces Ascl2 expression to promote terminal differentiation, while simultaneously repressing Ascl2 through Hes1 to inhibit premature terminal differentiation. Despite the critical role of Hes1 in epidermal development, Hes1 null epidermis transplanted to adult mice showed no obvious defects, suggesting that this role of Hes1 may be restricted to developmental stages. Overall, we conclude that Notch signaling orchestrates the balance between differentiation and immature programs in suprabasal cells during epidermal development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号