首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Frederik A.J. Rotsaert 《BBA》2008,1777(3):239-249
We have examined the pre-steady-state kinetics and thermodynamic properties of the b hemes in variants of the yeast cytochrome bc1 complex that have mutations in the quinone reductase site (center N). Trp-30 is a highly conserved residue, forming a hydrogen bond with the propionate on the high potential b heme (bH heme). The substitution by a cysteine (W30C) lowers the redox potential of the heme and an apparent consequence is a lower rate of electron transfer between quinol and heme at center N. Leu-198 is also in close proximity to the bH heme and a L198F mutation alters the spectral properties of the heme but has only minor effects on its redox properties or the electron transfer kinetics at center N. Substitution of Met-221 by glutamine or glutamate results in the loss of a hydrophobic interaction that stabilizes the quinone ligands. Ser-20 and Gln-22 form a hydrogen-bonding network that includes His-202, one of the carbonyl groups of the ubiquinone ring, and an active-site water. A S20T mutation has long-range structural effects on center P and thermodynamic effects on both b hemes. The other mutations (M221E, M221Q, Q22E and Q22T) do not affect the ubiquinol oxidation kinetics at center P, but do modify the electron transfer reactions at center N to various extents. The pre-steady reduction kinetics suggest that these mutations alter the binding of quinone ligands at center N, possibly by widening the binding pocket and thus increasing the distance between the substrate and the bH heme. These results show that one can distinguish between the contribution of structural and thermodynamic factors to center N function.  相似文献   

2.
Ted Mar  Rafael Picorel  Gabriel Gingras 《BBA》1981,637(3):546-550
We investigated the rotational mobility of the photoreaction center in chromatophores of Rhodospirillum rubrum by studying the photoinduced linear dichroism of absorption changes at 865 nm. The study was carried out in suspensions of chromatophores treated with ferricyanide in order to bleach their antenna bacteriochlorophyll and thus minimize depolarization by energy transfer. Very little depolarization of the photoinduced absorbance change at 865 nm was observed at room temperature for chromatophores immersed in a highly viscous medium over the time range 0–10 ms following an exciting light flash. In the light of independent evidence for transmembrane arrangement of the photoreaction center, we conclude that the photoreaction center protein is immobilized in the chromatophore membrane for at least 10 ms.  相似文献   

3.
Mitochondrial respiratory chain complexes convert chemical energy into a membrane potential by connecting electron transport with charge separation. Electron transport relies on redox cofactors that occupy strategic positions in the complexes. How these redox cofactors are assembled into the complexes is not known. Cytochrome b, a central catalytic subunit of complex III, contains two heme bs. Here, we unravel the sequence of events in the mitochondrial inner membrane by which cytochrome b is hemylated. Heme incorporation occurs in a strict sequential process that involves interactions of the newly synthesized cytochrome b with assembly factors and structural complex III subunits. These interactions are functionally connected to cofactor acquisition that triggers the progression of cytochrome b through successive assembly intermediates. Failure to hemylate cytochrome b sequesters the Cbp3–Cbp6 complex in early assembly intermediates, thereby causing a reduction in cytochrome b synthesis via a feedback loop that senses hemylation of cytochrome b.  相似文献   

4.
Folding, assembly and stability of α-helical membrane proteins is still not very well understood. Several of these membrane proteins contain cofactors, which are essential for their function and which can be involved in protein assembly and/or stabilization. The effect of heme binding on the assembly and stability of the transmembrane b-type cytochrome b559 was studied by fluorescence resonance energy transfer. Cytochrome b559 consists of two monomers of a 44 amino acid long polypeptide, which contains one transmembrane domain. The synthesis of two variants of the b559 monomer, each carrying a specific fluorescent dye, allowed monitoring helix-helix interactions in micelles by resonance energy transfer. The measurements demonstrate that the transmembrane peptides dimerize in detergent in the absence and presence of the heme cofactor. Cofactor binding only marginally enhances dimerization and, apparently, the redox state of the heme group has no effect on dimerization.  相似文献   

5.
The c-type cytochromes are electron transfer proteins involved in energy transduction. They have heme-binding (CXXCH) sites that covalently ligate heme b via thioether bonds and are classified into different classes based on their protein folds and the locations and properties of their cofactors. Rhodobacter capsulatus produces various c-type cytochromes using the cytochrome c maturation (Ccm) System I, formed from the CcmABCDEFGHI proteins. CcmI, a component of the heme ligation complex CcmFHI, interacts with the heme-handling protein CcmE and chaperones apocytochrome c2 by binding its C-terminal helix. Whether CcmI also chaperones other c-type apocytochromes, and the effects of heme on these interactions were unknown previously. Here, we purified different classes of soluble and membrane-bound c-type apocytochromes (class I, c2 and c1, and class II c′) and investigated their interactions with CcmI and apoCcmE. We report that, in the absence of heme, CcmI and apoCcmE recognized different classes of c-type apocytochromes with different affinities (nm to μm KD values). When present, heme induced conformational changes in class I apocytochromes (e.g. c2) and decreased significantly their high affinity for CcmI. Knowing that CcmI does not interact with mature cytochrome c2 and that heme converts apocytochrome c2 into its b-type derivative, these findings indicate that CcmI holds the class I apocytochromes (e.g. c2) tightly until their noncovalent heme-containing b-type cytochrome-like intermediates are formed. We propose that these intermediates are subsequently converted into mature cytochromes following the covalent ligation of heme via the remaining components of the Ccm complex.  相似文献   

6.
Molecular dynamics (MD) calculations, a semi-continuum (SC) approach, and quantum chemistry (QC) calculations were employed together to investigate the molecular mechanics of ultrafast charge separation reactions in Photosystem I (PS I) of Thermosynechococcus elongatus. A molecular model of PS I was developed with the aim to relate the atomic structure with electron transfer events in the two branches of cofactors. A structural flexibility map of PS I was constructed based on MD simulations, which demonstrated its rigid hydrophobic core and more flexible peripheral regions. The MD model permitted the study of atomic movements (dielectric polarization) in response to primary and secondary charge separations, while QC calculations were used to estimate the direct chemical effect of the A0A/A0B ligands (Met or Asn in the 688/668 position) on the redox potential of chlorophylls A0A/A0B and phylloquinones A1A/A1B. A combination of MD and SC approaches was used to estimate reorganization energies λ of the primary (λ1) and secondary (λ2) charge separation reactions, which were found to be independent of the active branch of electron transfer; in PS I from the wild type, λ1 was estimated to be 390 ± 20 mV, while λ2 was estimated to be higher at 445 ± 15 mV. MD and QC approaches were used to describe the effect of substituting Met688PsaA/Met668PsaB by Asn688PsaA/Asn668PsaB on the energetics of electron transfer. Unlike Met, which has limited degrees of freedom in the site, Asn was found to switch between two relatively stable conformations depending on cofactor charge. The introduction of Asn and its conformation flexibility significantly affected the reorganization energy of charge separation and the redox potentials of chlorophylls A0A/A0B and phylloquinones A1A/A1B, which may explain the experimentally observed slowdown of secondary electron transfer in the M688NPsaA variant. This article is part of a Special Issue entitled: Photosynthesis research for sustainability: Keys to produce clean energy.  相似文献   

7.
In green sulfur photosynthetic bacteria, the cytochrome cz (cyt cz) subunit in the reaction center complex mediates electron transfer mainly from menaquinol/cytochrome c oxidoreductase to the special pair (P840) of the reaction center. The cyt cz subunit consists of an N-terminal transmembrane domain and a C-terminal soluble domain that binds a single heme group. The periplasmic soluble domain has been proposed to be highly mobile and to fluctuate between oxidoreductase and P840 during photosynthetic electron transfer. We have determined the crystal structure of the oxidized form of the C-terminal functional domain of the cyt cz subunit (C-cyt cz) from thermophilic green sulfur bacterium Chlorobium tepidum at 1.3-Å resolution. The overall fold of C-cyt cz consists of four α-helices and is similar to that of class I cytochrome c proteins despite the low similarity in their amino acid sequences. The N-terminal structure of C-cyt cz supports the swinging mechanism previously proposed in relation with electron transfer, and the surface properties provide useful information on possible interaction sites with its electron transfer partners. Several characteristic features are observed for the heme environment: These include orientation of the axial ligands with respect to the heme plane, surface-exposed area of the heme, positions of water molecules, and hydrogen-bond network involving heme propionate groups. These structural features are essential for elucidating the mechanism for regulating the redox state of cyt cz.  相似文献   

8.
《Biophysical journal》2021,120(17):3807-3819
Hemoglobin-mediated transport of dioxygen (O2) critically depends on the stability of the reduced (Fe2+) form of the heme cofactors. Some protein mutations stabilize the oxidized (Fe3+) state (methemoglobin, Hb M), causing methemoglobinemia, and can be lethal above 30%. The majority of the analyses of factors influencing Hb oxidation are retrospective and give insights only for inner-sphere mutations of heme (His58, His87). Herein, we report the first all-atom molecular dynamics simulations on both redox states and calculations of the Marcus electron transfer (ET) parameters for the α chain Hb oxidation and reduction rates for Hb M. The Hb wild-type (WT) and most of the studied α chain variants maintain globin structure except the Hb M Iwate (H87Y). The mutants forming Hb M tend to have lower redox potentials and thus stabilize the oxidized (Fe3+) state (in particular, the Hb Miyagi variant with K61E mutation). Solvent reorganization (λsolv 73–96%) makes major contributions to reorganization free energy, whereas protein reorganization (λprot) accounts for 27–30% except for the Miyagi and J-Buda variants (λprot ∼4%). Analysis of heme-solvent H-bonding interactions among variants provide insights into the role of Lys61 residue in stabilizing the Fe2+ state. Semiclassical Marcus ET theory-based calculations predict experimental kET for the Cyt b5-Hb complex and provide insights into relative reduction rates for Hb M in Hb variants. Thus, our methodology provides a rationale for the effect of mutations on the structure, stability, and Hb oxidation reduction rates and has potential for identification of mutations that result in methemoglobinemia.  相似文献   

9.
Many enzymes involved in bioenergetic processes contain chains of redox centers that link the protein surface, where interaction with electron donors or acceptors occurs, to a secluded catalytic site. In numerous cases these redox centers can transfer only single electrons even when they are associated to catalytic sites that perform two-electron chemistry. These chains provide no obvious contribution to enhance chemiosmotic energy conservation, and often have more redox centers than those necessary to hold sufficient electrons to sustain one catalytic turnover of the enzyme. To investigate the role of such a redox chain we analyzed the transient kinetics of fumarate reduction by two flavocytochromes c3 of Shewanella species while these enzymes were being reduced by sodium dithionite. These soluble monomeric proteins contain a chain of four hemes that interact with a flavin adenine dinucleotide (FAD) catalytic center that performs the obligatory two electron–two proton reduction of fumarate to succinate. Our results enabled us to parse the kinetic contribution of each heme towards electron uptake and conduction to the catalytic center, and to determine that the rate of fumarate reduction is modulated by the redox stage of the enzyme, which is defined by the number of reduced centers. In both enzymes the catalytically most competent redox stages are those least prevalent in a quasi-stationary condition of turnover. Furthermore, the electron distribution among the redox centers during turnover suggested how these enzymes can play a role in the switch between respiration of solid and soluble terminal electron acceptors in the anaerobic bioenergetic metabolism of Shewanella.  相似文献   

10.
Hemoglobin-mediated transport of dioxygen (O2) critically depends on the stability of the reduced (Fe2+) form of the heme cofactors. Some protein mutations stabilize the oxidized (Fe3+) state (methemoglobin, Hb M), causing methemoglobinemia, and can be lethal above 30%. The majority of the analyses of factors influencing Hb oxidation are retrospective and give insights only for inner-sphere mutations of heme (His58, His87). Herein, we report the first all-atom molecular dynamics simulations on both redox states and calculations of the Marcus electron transfer (ET) parameters for the α chain Hb oxidation and reduction rates for Hb M. The Hb wild-type (WT) and most of the studied α chain variants maintain globin structure except the Hb M Iwate (H87Y). The mutants forming Hb M tend to have lower redox potentials and thus stabilize the oxidized (Fe3+) state (in particular, the Hb Miyagi variant with K61E mutation). Solvent reorganization (λsolv 73–96%) makes major contributions to reorganization free energy, whereas protein reorganization (λprot) accounts for 27–30% except for the Miyagi and J-Buda variants (λprot ∼4%). Analysis of heme-solvent H-bonding interactions among variants provide insights into the role of Lys61 residue in stabilizing the Fe2+ state. Semiclassical Marcus ET theory-based calculations predict experimental kET for the Cyt b5-Hb complex and provide insights into relative reduction rates for Hb M in Hb variants. Thus, our methodology provides a rationale for the effect of mutations on the structure, stability, and Hb oxidation reduction rates and has potential for identification of mutations that result in methemoglobinemia.  相似文献   

11.
Elisa Fadda 《BBA》2008,1777(3):277-284
As part of the mitochondrial respiratory chain, cytochrome c oxidase utilizes the energy produced by the reduction of O2 to water to fuel vectorial proton transport. The mechanism coupling proton pumping to redox chemistry is unknown. Recent advances have provided evidence that each of the four observable transitions in the complex catalytic cycle consists of a similar sequence of events. However, the physico-chemical basis underlying this recurring sequence has not been identified. We identify this recurring pattern based on a comprehensive model of the catalytic cycle derived from the analysis of oxygen chemistry and available experimental evidence. The catalytic cycle involves the periodic repetition of a sequence of three states differing in the spatial distribution of charge in the active site: [0|1], [1|0], and [1|1], where the total charge of heme a and the binuclear center appears on the left and on the right, respectively. This sequence recurs four times per turnover despite differences in the redox chemistry. This model leads to a simple, robust, and reproducible sequence of electron and proton transfer steps and rationalizes the pumping mechanism in terms of electrostatic coupling of proton translocation to redox chemistry. Continuum electrostatic calculations support the proposed mechanism and suggest an electrostatic origin for the decoupled and inactive phenotypes of ionic mutants in the principal proton-uptake pathway.  相似文献   

12.
Phanerochaete chrysosporium cellobiose oxidoreductase (CBOR) comprises two redox domains, one containing flavin adenine dinucleotide (FAD) and the other protoheme. It reduces both two-electron acceptors, including molecular oxygen, and one-electron acceptors, including transition metal complexes and cytochrome c. If the latter reacts with the flavin, the reduced heme b acts merely as a redox buffer, but if with the b heme, enzyme action involves a true electron transfer chain. Intact CBOR fully reduced with cellobiose, CBOR partially reduced by ascorbate, and isolated ascorbate-reduced heme domain, all transfer electrons at similar rates to cytochrome c. Reduction of cationic one-electron acceptors via the heme group supports an electron transfer chain model. Analogous reactions with natural one-electron acceptors can promote Fenton chemistry, which may explain evolutionary retention of the heme domain and the enzyme's unique character among secreted sugar dehydrogenases.  相似文献   

13.
Yeast flavocytochrome b2 (Fcb2) is an l-lactate:cytochrome c oxidoreductase in the mitochondrial intermembrane space participating in cellular respiration. Each enzyme subunit consists of a cytochrome b5-like heme domain and a flavodehydrogenase (FDH) domain. In the Fcb2 crystal structure, the heme domain is mobile relative to the tetrameric FDH core in one out of two subunits. The monoclonal antibody B2B4, elicited against the holoenzyme, recognizes only the native heme domain in the holoenzyme. When bound, it suppresses the intramolecular electron transfer from flavin to heme b2, hence cytochrome c reduction. We report here the crystal structure of the heme domain in complex with the Fab at 2.7 Å resolution. The Fab epitope on the heme domain includes the two exposed propionate groups of the heme, which are hidden in the interface between the domains in the complete subunit. The structure discloses an unexpected plasticity of Fcb2 in the neighborhood of the heme cavity, in which the heme has rotated. The epitope overlaps with the docking area of the FDH domain onto the heme domain, indicating that the antibody displaces the heme domain in a movement of large amplitude. We suggest that the binding sites on the heme domain of cytochrome c and of the FDH domain also overlap and therefore that cytochrome c binding also requires the heme domain to move away from the FDH domain, so as to allow electron transfer between the two hemes. Based on this hypothesis, we propose a possible model of the Fcb2·cytochrome c complex. Interestingly, this model shares similarity with that of the cytochrome b5·cytochrome c complex, in which cytochrome c binds to the surface around the exposed heme edge of cytochrome b5. The present results therefore support the idea that the heme domain mobility is an inherent component of the Fcb2 functioning.  相似文献   

14.
Cyanobacteria have multiple psbA genes encoding PsbA, the D1 reaction center protein of the Photosystem II complex which bears together with PsbD, the D2 protein, most of the cofactors involved in electron transfer reactions. The thermophilic cyanobacterium Thermosynechococcus elongatus has three psbA genes differently expressed depending on the environmental conditions. Among the 344 residues constituting each of the 3 possible PsbA variants there are 21 substitutions between PsbA1 and PsbA3, 31 between PsbA1 and PsbA2 and 27 between PsbA2 and PsbA3. In this review, we summarize the changes already identified in the properties of the redox cofactors depending on the D1 variant constituting Photosystem II in T. elongatus. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

15.
The bacteriochlorophyll (P-800 and P-870) of the carotenoidless photoreaction center isolated from Rhodospirillum rubrum (strain G9) is bleached irreversibly when the preparations are exposed to intense near infrared light in the presence of oxygen. This effect is much smaller in preparations, extracted from the wild type, which contain, as shown earlier, 1 mol of spirilloxanthin per mol of P-870. This photodynamic effec is shown to be due to singlet O2. The oxidation of adrenaline in the presence of superoxide dismutase and the oxidation of 1,3-diphenylisobenzofuran are used as reporter reactions. Singlet oxygen is presumably generated by the triplet-triplet energy transfer 3bacteriochlorophyll → O2 (3Σ).Four purified bacterial carotenoids, spirilloxanthin, sphaeroidene, sphaeroidenone and chloroxanthin were attached onto the carotenoidless photoreaction center from strain G9 in nearly 1 : 1 mol ratios with respect to P-870. Once fixed, these carotenoids confer protection against the photodynamic bleaching of bacteriochlorophyll. The relative photoprotection efficiency was 1.0 for spirilloxanthin and sphaeroidene, 0.4 for chloroxanthin and 0.2 for sphaeroidenone. The fixed carotenoids display optical activity and their molar ellipticity appears to be correlated with their relative photoprotection efficiency. The efficiency of energy transfer to P-870 is 0.90 for sphaeroidene, 0.35 for sphaeroidenone, 0.30 for chloroxanthin and 0.20 for spirilloxanthin. The energy transfer efficiency from the carotenoids to bacteriochlorophyll is suggested to be governed by the rate of the internal conversion processes of the excited singlet state of the carotenoids.A study of the difference absorption and CD spectra of the reconstituted minus carotenoidless preparations leads to the interpretation that the fixed carotenoids are in a central monocis conformation.  相似文献   

16.
Aerobic phototrophic bacterium Roseobacter denitrificans has a nitric oxide reductase (NOR) homologue with cytochrome c oxidase (CcO) activity. It is composed of two subunits that are homologous with NorC and NorB, and contains heme c, heme b, and copper in a 1:2:1 stoichiometry. This enzyme has virtually no NOR activity. Electron paramagnetic resonance (EPR) spectra of the air-oxidized enzyme showed signals of two low-spin hemes at 15 K. The high-spin heme species having relatively low signal intensity indicated that major part of heme b3 is EPR-silent due to an antiferromagnetic coupling to an adjacent CuB forming a Fe-Cu binuclear center. Resonance Raman (RR) spectrum of the oxidized enzyme suggested that heme b3 is six-coordinate high-spin species and the other hemes are six-coordinate low-spin species. The RR spectrum of the reduced enzyme showed that all the ferrous hemes are six-coordinate low-spin species. ν(Fe-CO) and ν(C-O) stretching modes were observed at 523 and 1969 cm−1, respectively, for CO-bound enzyme. In spite of the similarity to NOR in the primary structure, the frequency of ν(Fe-CO) mode is close to those of aa3- and bo3-type oxidases rather than that of NOR.  相似文献   

17.
We have developed theory and the computational scheme for the analysis of the kinetics of the membrane potential generated by cytochrome c oxidase upon single electron injection into the enzyme. The theory allows one to connect the charge motions inside the enzyme to the membrane potential observed in the experiments by using data from the “dielectric topography” map of the enzyme that we have created. The developed theory is applied for the analysis of the potentiometric data recently reported by the Wikström group [I. Belevich, D.A. Bloch, N. Belevich, M. Wikström and M.I. Verkhovsky, Exploring the proton pump mechanism of cytochrome c oxidase in real time, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 2685-2690] on the O to E transition in Paracoccus denitrificans oxidase. Our analysis suggests, that the electron transfer to the binuclear center is coupled to a proton transfer (proton loading) to a group just “above” the binuclear center of the enzyme, from which the pumped proton is subsequently expelled by the chemical proton arriving to the binuclear center. The identity of the pump site could not be determined with certainty, but could be localized to the group of residues His326 (His291 in bovine), propionates of heme a3, Arg 473/474, and Trp164. The analysis also suggests that the dielectric distance from the P-side to Fe a is 0.4 or larger. The difficulties and pitfalls of quantitative interpretation of potentiometric data are discussed.  相似文献   

18.
Jiancong Xu 《BBA》2008,1777(2):196-201
The membrane-bound enzyme cytochrome c oxidase, the terminal member in the respiratory chain, converts oxygen into water and generates an electrochemical gradient by coupling the electron transfer to proton pumping across the membrane. Here we have investigated the dynamics of an excess proton and the surrounding protein environment near the active sites. The multi-state empirical valence bond (MS-EVB) molecular dynamics method was used to simulate the explicit dynamics of proton transfer through the critically important hydrophobic channel between Glu242 (bovine notation) and the D-propionate of heme a3 (PRDa3) for the first time. The results from these molecular dynamics simulations indicate that the PRDa3 can indeed re-orientate and dissociate from Arg438, despite the high stability of such an ion pair, and has the ability to accept protons via bound water molecules. Any large conformational change of the adjacent heme a D-propionate group is, however, sterically blocked directly by the protein. Free energy calculations of the PRDa3 side chain isomerization and the proton translocation between Glu242 and the PRDa3 site have also been performed. The results exhibit a redox state-dependent dynamical behavior and indicate that reduction of the low-spin heme a may initiate internal transfer of the pumped proton from Glu242 to the PRDa3 site.  相似文献   

19.
The mechanisms of the ultrafast charge separation in reaction centers of photosystem I (PS I) complexes are discussed. A kinetic model of the primary reactions in PS I complexes is presented. The model takes into account previously calculated values of redox potentials of cofactors, reorganization energies of the primary P700+A 0 - and secondary P700+A 1 - ion-radical pairs formation, and the possibility of electron transfer via both symmetric branches A and B of redox-cofactors. The model assumes that the primary electron acceptor A0 in PS I is represented by a dimer of chlorophyll molecules Chl2A/Chl3A and Chl2B/Chl3B in branches A and B of the cofactors. The characteristic times of formation of P700+A 0 - and P700+A 1 - calculated on the basis of the model are close to the experimental values obtained by pump-probe femtosecond absorption spectroscopy. It is demonstrated that a small difference in the values of redox potentials between the primary electron acceptors A0A and A0B in branches A and B leads to asymmetry of the electron transfer in a ratio of 70: 30 in favor of branch A. The secondary charge separation is thermodynamically irreversible in the submicrosecond range and is accompanied by additional increase in asymmetry between the branches of cofactors of PS I.  相似文献   

20.
The cyanobacterium Acaryochloris marina is unique because it mainly contains Chlorophyll d (Chl d) in the core complexes of PS I and PS II instead of the usually dominant Chl a. Furthermore, its light harvesting system has a structure also different from other cyanobacteria. It has both, a membrane-internal chlorophyll containing antenna and a membrane-external phycobiliprotein (PBP) complex. The first one binds Chl d and is structurally analogous to CP43. The latter one has a rod-like structure consisting of three phycocyanin (PC) homohexamers and one heterohexamer containing PC and allophycocyanin (APC). In this paper, we give an overview on the investigations of excitation energy transfer (EET) in this PBP-light-harvesting system and of charge separation in the photosystem II (PS II) reaction center of A. marina performed at the Technische Universität Berlin. Due to the unique structure of the PBP antenna in A. marina, this EET occurs on a much shorter overall time scale than in other cyanobacteria. We also briefly discuss the question of the pigment composition in the reaction center (RC) of PS II and the nature of the primary donor of the PS II RC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号