首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The bacterial cell-division protein FtsA anchors FtsZ to the cytoplasmic membrane. But how FtsA and FtsZ interact during membrane division remains obscure. We have solved 2.2 Å resolution crystal structure for FtsA from Staphylococcus aureus. In the crystals, SaFtsA molecules within the dimer units are twisted, in contrast to the straight filament of FtsA from Thermotoga maritima, and the half of S12–S13 hairpin regions are disordered. We confirmed that SaFtsZ and SaFtsA associate in vitro, and found that SaFtsZ GTPase activity is enhanced by interaction with SaFtsA.  相似文献   

2.
The Mur ligases (MurC, MurD, MurE and MurF) catalyze the stepwise synthesis of the UDP-N-acetylmuramoyl-pentapeptide precursor of peptidoglycan. The murC, murD, murE and murF genes from Staphylococcus aureus, a major pathogen, were cloned and the corresponding proteins were overproduced in Escherichia coli and purified as His6-tagged forms. Their biochemical properties were investigated and compared to those of the E. coli enzymes. Staphylococcal MurC accepted l-Ala, l-Ser and Gly as substrates, as the E. coli enzyme does, with a strong preference for l-Ala. S. aureus MurE was very specific for l-lysine and in particular did not accept meso-diaminopimelic acid as a substrate. This mirrors the E. coli MurE specificity, for which meso-diaminopimelic acid is the preferred substrate and l-lysine a very poor one. S. aureus MurF appeared less specific and accepted both forms (l-lysine and meso-diaminopimelic acid) of UDP-MurNAc-tripeptide, as the E. coli MurF does. The inverse and strict substrate specificities of the two MurE orthologues is thus responsible for the presence of exclusively meso-diaminopimelic acid and l-lysine at the third position of the peptide in the peptidoglycans of E. coli and S. aureus, respectively. The specific activities of the four Mur ligases were also determined in crude extracts of S. aureus and compared to cell requirements for peptidoglycan biosynthesis.  相似文献   

3.
We describe the development and application of a Pooled Suppression Subtractive Hybridization (PSSH) method to describe differences between the genomic content of a pool of clinical Staphylococcus aureus isolates and a sequenced reference strain. In comparative bacterial genomics, Suppression Subtractive Hybridization (SSH) is normally utilized to compare genomic features or expression profiles of one strain versus another, which limits its ability to analyze communities of isolates. However, a PSSH approach theoretically enables the user to characterize the entirety of gene content unique to a related group of isolates in a single reaction. These unique fragments may then be linked to individual isolates through standard PCR. This method was applied to examine the genomic diversity found in pools of S.aureus isolates associated with complicated bacteremia infections leading to endocarditis and osteomyelitis. Across four pools of 10 isolates each, four hundred and twenty seven fragments not found in or significantly divergent from the S. aureus NCTC 8325 reference genome were detected. These fragments could be linked to individual strains within its pool by PCR. This is the first use of PSSH to examine the S. aureus pangenome. We propose that PSSH is a powerful tool for researchers interested in rapidly comparing the genomic content of multiple unstudied isolates.  相似文献   

4.
Systems biology studies assume the acquisition of reliable and reproducible data sets. Metabolomics, in particular, requires comprehensive evaluated workflows to enable the analysis of hundreds of different compounds. Therefore, a protocol to elucidate the metabolome of the gram-positive pathogen, Staphylococcus aureus COL strain, grown in a chemically defined medium is introduced here. Different standard operating procedures in the field of metabolome experiments were tested for common pitfalls. These included suitable and fast sampling processes, efficient metabolite extraction, quenching effectiveness (energy charge), and estimation of leakage and recovery of metabolites. Moreover, a cell disruption protocol for S. aureus was developed and optimized for metabolome analyses, for the express purpose of obtaining reproducible data. We used complementary methods (e.g., gas chromatography and/or liquid chromatography coupled with mass spectrometry) to detect the highly chemically diverse groups of metabolites for a global insight into the intracellular metabolism of S. aureus.  相似文献   

5.
Here we present the use of three fluorescent proteins in Staphylococcus aureus, Cerulean, PA-GFP, and mRFPmars. All molecules have an improved codon adaptation for expression in the A + T rich organisms and extend the fluorescent protein portfolio in staphylococcal research.  相似文献   

6.
A plethora of RNAs with regulatory functions has been discovered in many non-pathogenic and pathogenic bacteria. In Staphylococcus aureus, recent findings show that a large variety of RNAs control target gene expression by diverse mechanisms and many of them are expressed in response to specific internal or external signals. These RNAs comprise trans-acting RNAs, which regulate gene expression through binding with mRNAs, and cis-acting regulatory regions of mRNAs. Some of them possess multiple functions and encode small but functional peptides. In this review, we will present several examples of RNAs regulating pathogenesis, antibiotic resistance, and host-pathogen interactions and will illustrate how regulatory proteins and RNAs form complex regulatory circuits to express the virulence factors in a dynamic manner.  相似文献   

7.
The main purpose of this work is to obtain a cotton-based textile material functionalized with l-cysteine (l-cys) to achieve an antimicrobial effect with potential application in biomedical, geriatric or pediatric textiles. The binding capacity of l-cys to cotton fibres was assessed through different functionalization strategies—surface activation and exhaustion processes. A subsequent analysis of the possible antibacterial action against Staphylococcus aureus and Klebsiella pneumoniae was performed according with the Japanese International standard ( JISL, 2008). To determine the mechanism of action of l-cys on the selected strains, flow cytometry was used.  相似文献   

8.
We developed a homogenous microtiter based assay using the cationic dye 3, 3′-Diethyloxacarbocyanine iodide, DiOC2(3), to measure the effect of compounds on membrane potential in Staphylococcus aureus. In a screen of 372 compounds from a synthetic compound collection with anti-Escherichia coli activity due to unknown modes of action at least 17% demonstrated potent membrane activity, enabling rapid discrimination of nuisance compounds.  相似文献   

9.
Oligochitosan samples varying in molecular weight (Mw) and having narrow polydispersities were prepared by means of depolymerization of chitosan in hydrochloric acid, and their antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) was measured at pH values 5.5-8.0. The antibacterial testing of oligochitosans obtained showed that oligochitosans having Mw in the range of 0.73-20.0 kDa could be used both at slightly acidic and neutral pH values, and that the activity against MRSA remained moderate for oligochitosan samples having Mw about 3-5 kDa even at slightly basic pH values. The self-assembling behavior of oligochitosan macromolecules in the dilute solution at various pH values as a function of chain length was investigated. At first it was shown that oligochitosans formed supramolecular aggregates in dilute solutions below the critical pH value 6.5. Despite the aggregation phenomenon, the formation of nano-sized aggregates did not prevent oligochitosan from demonstrating the bactiostatic activity.  相似文献   

10.
Yu Liu  Jie Dong  Guang Yang 《FEBS letters》2010,584(20):4325-4329
SsrA RNA (small stable RNA A), also known as tmRNA and 10Sa RNA, functions both as tRNA and mRNA through its unique structure. The carotenoid pigment is the eponymous feature of human pathogen Staphylococcus aureus. Here, we found that the pigment of the mutant strain with ssrA deletion was increased. Furthermore, it was demonstrated that ssrA could act as an antisense RNA aside from its well-known biological function, and crtMN, encoding two essential enzymes for the pigment synthesis, was identified as target of ssrA. Further investigation showed ssrA could specifically base pair with the RBS (ribosomal binding site) region of the crtMN mRNA. Our results revealed a new mechanism by which ssrA regulated the biosynthesis of pigment in S. aureus.  相似文献   

11.
Iron is an absolute requirement for nearly all organisms, but most bacterial pathogens are faced with extreme iron-restriction within their host environments. To overcome iron limitation pathogens have evolved precise mechanisms to steal iron from host supplies. Staphylococcus aureus employs the iron-responsive surface determinant (Isd) system as its primary heme-iron uptake pathway. Hemoglobin or hemoglobin-haptoglobin complexes are bound by Near iron-Transport (NEAT) domains within cell surface anchored proteins IsdB or IsdH. Heme is stripped from the host proteins and transferred between NEAT domains through IsdA and IsdC to the membrane transporter IsdEF for internalization. Once internalized, heme can be degraded by IsdG or IsdI, thereby liberating iron for the organism. Most components of the Isd system have been structurally characterized to provide insight into the mechanisms of heme binding and transport. This review summarizes recent research on the Isd system with a focus on the structural biology of heme recognition.  相似文献   

12.
As one of its primary physiological functions, sPLA2-IIA appears to act as an antibacterial agent. In particular, sPLA2-IIA shows high activity towards Gram-positive bacteria such as Staphylococcus aureus (S. aureus). This antibacterial activity results from the preference of the enzyme towards membranes enriched in anionic lipids, which is a common feature of bacterial membranes. An intriguing aspect observed in a variety of bacterial membranes is the presence of a broad but cooperative lipid chain melting event where the lipids in the membrane transition from a solid-ordered (so) into a liquid-disordered (ld) state close to physiological temperatures. It is known that the enzyme is sensitive to the level of lipid packing, which changes sharply between the so and the ld states. Therefore, it would be expected that the enzyme activity is regulated by the bacterial membrane thermotropic behavior. We determine by FTIR the thermotropic lipid chain melting behavior of S. aureus and find that the activity of sPLA2-IIA drops sharply in the so state. The activity of the enzyme is also evaluated in terms of its effects on cell viability, showing that cell survival increases when the bacterial membrane is in the so state during enzyme exposure. These results point to a mechanism by which bacteria can develop increased resistance towards antibacterial agents that act on the membrane through a cooperative increase in the order of the lipid chains. These results show that the physical behavior of the bacterial membrane can play an important role in regulating physiological function in an in vivo system.  相似文献   

13.
It is widely accepted that β-lactam antimicrobials cause cell death through a mechanism that interferes with cell wall synthesis. Later studies have also revealed that β-lactams modify the autolysis function (the natural process of self-exfoliation of the cell wall) of cells. The dynamic equilibrium between growth and autolysis is perturbed by the presence of the antimicrobial. Studies with Staphylococcus aureus to determine the minimum inhibitory concentration (MIC) have revealed complex responses to methicillin exposure. The organism exhibits four qualitatively different responses: homogeneous sensitivity, homogeneous resistance, heterogeneous resistance and the so-called ‘Eagle-effect’. A mathematical model is presented that links antimicrobial action on the molecular level with the overall response of the cell population to antimicrobial exposure. The cell population is modeled as a probability density function F(x,t) that depends on cell wall thickness x and time t. The function F(x,t) is the solution to a Fokker-Planck equation. The fixed point solutions are perturbed by the antimicrobial load and the advection of F(x,t) depends on the rates of cell wall synthesis, autolysis and the antimicrobial concentration. Solutions of the Fokker-Planck model are presented for all four qualitative responses of S. aureus to methicillin exposure.  相似文献   

14.
The ubiquitous bacterial pathogen, Staphylococcus aureus, expresses a large arsenal of virulence factors essential for pathogenesis. The phenol-soluble modulins (PSMs) are a family of cytolytic peptide toxins which have multiple roles in staphylococcal virulence. To gain an insight into which specific factors are important in PSM-mediated cell membrane disruption, the lytic activity of individual PSM peptides against phospholipid vesicles and T cells was investigated. Vesicles were most susceptible to lysis by the PSMα subclass of peptides (α1–3 in particular), when containing between 10 and 30 mol% cholesterol, which for these vesicles is the mixed solid ordered (so)–liquid ordered (lo) phase. Our results show that the PSMβ class of peptides has little effect on vesicles at concentrations comparable to that of the PSMα class and exhibited no cytotoxicity. Furthermore, within the PSMα class, differences emerged with PSMα4 showing decreased vesicle and cytotoxic activity in comparison to its counterparts, in contrast to previous studies. In order to understand this, peptides were studied using helical wheel projections and circular dichroism measurements. The degree of amphipathicity, alpha-helicity and properties such as charge and hydrophobicity were calculated, allowing a structure–function relationship to be inferred. The degree of alpha-helicity of the peptides was the single most important property of the seven peptides studied in predicting their lytic activity. These results help to redefine this class of peptide toxins and also highlight certain membrane parameters required for efficient lysis.  相似文献   

15.
The Staphylococcus aureus Vancomycin-resistance-associated response regulator VraR is known as an important response regulator, member of the VraTSR three-component signal transduction system that modulates the expression of the cell wall stress stimulon in response to a number of different cell wall active antibiotics. Given its crucial role in regulating gene expression in response to antibiotic challenges, VraR must be tightly regulated. We report here for the first time in S. aureus convergence of two major signal transduction systems, serine/threonine protein kinase and two (three)-component systems. We demonstrate that VraR can be phosphorylated by the staphylococcal Ser/Thr protein kinase Stk1 and that phosphorylation negatively affects its DNA-binding properties. Mass spectrometric analyses and site-directed mutagenesis identified Thr106, Thr119, Thr175 and Thr178 as phosphoacceptors. A S. aureus ΔvraR mutant expressing a VraR derivative that mimics constitutive phosphorylation, VraR_Asp, still exhibited markedly decreased antibiotic resistance against different cell wall active antibiotics, when compared to the wild-type, suggesting that VraR phosphorylation may represent a novel and presumably more general mechanism of regulation of the two (three)-component systems in staphylococci.  相似文献   

16.
17.
Hominicin, antimicrobial peptide displaying potent activity against Staphylococcus aureus ATCC 25923, methicillin-resistant S. aureus (MRSA) ATCC 11435 and vancomycin-intermediate S. aureus (VISA) CCARM 3501, was purified by chloroform extraction, ion-exchange column chromatography and reverse-phase HPLC from culture supernatant of Staphylococcushominis MBBL 2-9. Hominicin exhibited heat stability up to 121 °C for 15 min and activity under both acidic and basic conditions (from pH 2.0 to 10.0). Hominicin was cleaved into two fragments after treatment with proteinase K, resulting in the loss of its antibacterial activity, while it was resistant to trypsin, α-chymotrypsin, pepsin and lipase. The molecular mass of hominicin determined by mass spectrometry was 2038.4 Da. LC-mass spectrometry and NMR spectroscopy analyses of the two fragments revealed the sequence of hominicin as DmIle-Dhb-Pro-Ala-Dhb-Pro-Phe-Dhb-Pro-Ala-Ile-Thr-Glu-Ile-Dhb-Ala-Ala-Val-Ile-Ala-Dmp, which had no similarity with other antimicrobial peptides previously reported. The present study is the first report of this novel antimicrobial peptide, which has uncommon amino acid residues like the ones in Class I group and shows potent activity against clinically relevant S. aureus, MRSA and VISA.  相似文献   

18.
The emergence of methicillin-resistant Staphylococcus aureus (MRSA) has created an urgent need for new therapeutic agents capable of combating this threat. We have previously reported on the discovery of novel inhibitors targeting enzymes involved in the biosynthesis of wall teichoic acid (WTA) and demonstrated that these agents can restore β-lactam efficacy against MRSA. In those previous reports pathway engagement of inhibitors was demonstrated by reduction in WTA levels measured by polyacrylamide gel electrophoresis. To enable a more rigorous analysis of these inhibitors we sought to develop a quantitative method for measuring whole-cell reductions in WTA. Herein we describe a robust methodology for hydrolyzing polymeric WTA to the monomeric component ribitol-N-acetylglucosamine coupled with measurement by LC-MS/MS. Critical elements of the protocol were found to include the time and temperature of hydrofluoric acid-mediated hydrolysis of polymeric WTA and optimization of these parameters is fully described. Most significantly, the assay enabled accurate and reproducible measurement of depletion EC50s for tunicamycin and representatives from the novel class of TarO inhibitors, the tarocins. The method described can readily be adapted to quantifying levels of WTA in tissue homogenates from a murine model of infection, highlighting the applicability for both in vitro and in vivo characterizations.  相似文献   

19.
CapE is an essential enzyme for the synthesis of capsular polysaccharide (CP) of pathogenic strains of Staphylococcus aureus. Herein we demonstrate that CapE is a 5-inverting 4,6-dehydratase enzyme. However, in the absence of downstream enzymes, CapE catalyzes an additional reaction (5-back-epimerization) affording a by-product under thermodynamic control. Single-crystal X-ray crystallography was employed to identify the structure of the by-product. The structural analysis reveals a network of coordinated motions away from the active site governing the enzymatic activity of CapE. A second dynamic element (the latch) regulates the enzymatic chemoselectivity. The validity of these mechanisms was evaluated by site-directed mutagenesis.  相似文献   

20.
The mitochondrial electron transport system is necessary for growth and survival of malarial parasites in mammalian host cells. NADH dehydrogenase of respiratory complex I was demonstrated in isolated mitochondrial organelles of the human parasite Plasmodium falciparum and the mouse parasite Plasmodium berghei by using the specific inhibitor rotenone on oxygen consumption and enzyme activity. It was partially purified by two sequential steps of fast protein liquid chromatographic techniques from n-octyl glucoside solubilization of the isolated mitochondria of both parasites. In addition, physical and kinetic properties of the malarial enzymes were compared to the host mouse liver mitochondrial respiratory complex I either as intact or as partially purified forms. The malarial enzyme required both NADH and ubiquinone for maximal catalysis. Furthermore, rotenone and plumbagin (ubiquinone analog) showed strong inhibitory effect against the purified malarial enzymes and had antimalarial activity against in vitro growth of P. falciparum. Some unique properties suggest that the enzyme could be exploited as chemotherapeutic target for drug development, and it may have physiological significance in the mitochondrial metabolism of the parasite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号