首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigated the effects of curcumin, the principal active compound of turmeric, on voltage-dependent K+ (Kv) channels in freshly isolated rabbit coronary arterial smooth muscle cells using the voltage-clamp technique. Curcumin reduced the Kv current in a dose-dependent manner with an apparent Kd value of 1.07 ± 0.03 μM. Although curcumin did not alter the kinetics of Kv current activation, it predominantly accelerated the decay rate of channel inactivation. The association and dissociation rate constants of curcumin were 1.35 ± 0.05 μM?1 s?1 and 1.47 ± 0.17 s?1, respectively. Curcumin did not alter the steady-state activation or inactivation curves. Application of train pulses (1 or 2 Hz) increased curcumin-induced blockade of the Kv current, and the recovery time constant also increased in the presence of curcumin suggesting, that the inhibitory action of Kv currents by curcumin was use-dependent. From these results, we concluded that curcumin inhibited vascular Kv current in a state-, time-, and use-dependent manner.  相似文献   

2.
A case study on Centaurea gymnocarpa Moris & De Not., a narrow endemic species, was carried out by analyzing its morphological, anatomical, and physiological traits in response to natural habitat stress factors under Mediterranean climate conditions. The results underline that the species is particularly adapted to the environment where it naturally grows. At the plant level, the above-ground/below-ground dry mass (1.73 ± 0.60) shows its investment predominately in the above-ground structure with a resulting total leaf area per plant of 1399 ± 94 cm2. The senescent attached leaves at the base of the plant contribute to limit leaf transpiration by shading soil around the plant. Moreover, the dense C. gymnocarpa leaf pubescence, leaf rolling, the relatively high leaf mass area (LMA = 12.3 ± 1.3 mg cm−2) and leaf tissue density (LTD = 427 ± 44 mg cm−3) contribute to limit leaf transpiration, also postponing leaf death under dry conditions. At the physiological level, a relatively low respiration/photosynthesis ratio (R/PN) in spring results from high R [2.26 ± 0.59 μmol (CO2) m−2 s−1] and PN [12.3 ± 1.5 μmol (CO2) m−2 s−1]. The high photosynthetic nitrogen use efficiency [PNUE = 15.5 ± 0.4 μmol (CO2) g−1 (N) s−1] shows the large amount of nitrogen (N) invested in the photosynthetic machinery of new leaves, associated to a high chlorophyll content (Chl = 35 ± 5 SPAD units). On the contrary, the highest R/PN ratio (1.75 ± 0.19) in summer is due to a significant PN decrease and increase of R in response to drought. The low PNUE [1.5 ± 0.2 μmol (CO2) g−1 (N) s−1] in this season is indicative of a greater N investment in leaf cell walls which may contribute to limit transpiration. On the contrary, the low R/PN ratio (0.05 ± 0.02) in winter is resulting from the limited enzyme activity of the respiratory apparatus [R = 0.23 ± 0.08 μmol (CO2) m−2 s−1] while the low PNUE [3.5 ± 0.2 μmol (CO2) g−1 (N) s−1] suggests that low temperatures additionally limit plant production. The experiment of the imposed water stress confirms that the C. gymnocarpa growth capability is in conformity with the severe conditions of its natural habitat, likewise as it may be the case with others narrow endemic species that have occupied niches with similar extreme conditions.  相似文献   

3.
The specific binding of auxiliary Kv channel-interacting proteins (KChIPs) to the N terminus of Kv4 pore-forming α-subunits results in modulation of gating properties, surface expression, and subunit assembly of Kv4 channels. However, the interactions between KChIPs and Kv4 remain elusive. Thus, affinity capillary electrophoresis (ACE) was employed to quantitatively evaluate the interactions between KChIPs and Kv4.3 N terminus (KvN) and between KChIP4a/related mutants and Ca2+ for the first time. The mobility ratio, derivatives calculated from the mobility shift method, was used to deduce the binding constants (Kb). As a result, the binding constants for KChIP4a/KvN and KChIP1/KvN complexes were (8.32 ± 1.66) × 106 L mol–1 and (5.26 ± 0.71) × 106 L mol–1, respectively. In addition, in the presence of calcium (10 μmol L–1), the binding constant of KChIP4a/KvN increased to (6.72 ± 1.66) × 107 L mol–1. In addition, the binding constant of KChIP4a with Ca2+ was (7.1 ± 1.5) × 107 L mol–1. Besides, studies on the effect of truncated mutants revealed that the third EF hand of KChIP4a was related to high-affinity binding with Ca2+, and the integrity of the molecular structure of KChIP4a was important for Ca2+ binding. This method profits from small samples, rapid analysis, and simple operation without being time-consuming.  相似文献   

4.
Two 15N-labelled cis-Pt(II) diamine complexes with dimethylamine (15N-dma) and isopropylamine (15N-ipa) ligands have been prepared and characterised. [1H,15N] HSQC NMR spectroscopy is used to obtain the rate and equilibrium constants for the aquation of cis-[PtCl2(15N-dma)2] at 298 K in 0.1 M NaClO4 and to determine the pKa values of cis-[PtCl(H2O)(15N-dma)2]+ (6.37) and cis-[Pt(H2O)2(15N-dma)2]2+ (pKa1 = 5.17, pKa2 = 6.47). The rate constants for the first and second aquation steps (k1 = (2.12 ± 0.01) × 10−5 s−1, k2 = (8.7 ± 0.7) × 10−6 s−1) and anation steps (k−1 = (6.7 ± 0.8) × 10−3 M−1 s−1, k−2 = 0.043 ± 0.004 M−1 s−1) are very similar to those reported for cisplatin under similar conditions, and a minor difference is that slow formation of the hydroxo-bridged dimer is observed. Aquation studies of cis-[PtCl2(15N-ipa)2] were precluded by the close proximity of the NH proton signal to the 1H2O resonance.  相似文献   

5.
Short-and long-duration light curves were applied to four macroalgae (Ulva sp., Codium fragile, Ecklonia radiata and Lessonia variegata), and two microalgal species (Chlorella emersonii and Chaetoceros muellerii). With increasing light curve duration, the maximal relative electron transport rate increased by a factor of three in E. radiata, and by factors of 1.25 and 1.23 in C. emersonii and L. variegata, respectively, but did not change in C. fragile and Ch. muellerii. The light saturation point Ek increased by 26 μmol photons m−2 s−1 in C. emersonii and 20 μmol photons m−2 s−1 in Ch. muellerii and E. radiata with elevated light curve exposure times. Oscillatory patterns of the continuous fluorescence readings reflect accumulation of QA. Continuous fluorescence values increased, or decreased, by approximately 10% within light curve increments. However, oscillations of 25% were not uncommon, which shows that cells are changing their photo-physiological response state during steady light conditions. Increasing dark acclimation times prior to light curve application lowered maximal relative electron transport rates in the C. emersonii (from 28 ± 1.7 to 25 ± 1.2 for 15 and 95 min dark acclimation in short-duration light curves respectively). This effect was counterbalanced by longer light curve application. It can therefore be concluded that manipulation of light exposure and dark incubation prior to the experiment affects the photosynthetic response, presumably due to different activation states of photosynthetic and photoprotective mechanisms. The highly species-specific photo-response patterns imply that a common rapid light curve protocol will generate artefacts in some species.  相似文献   

6.
We examine hemolymph ion regulation and the kinetic properties of a gill microsomal (Na+, K+)-ATPase from the intertidal hermit crab, Clibanarius vittatus, acclimated to 45‰ salinity for 10 days. Hemolymph osmolality is hypo-regulated (1102.5 ± 22.1 mOsm kg−1 H2O) at 45‰ but elevated compared to fresh-caught crabs (801.0 ± 40.1 mOsm kg−1 H2O). Hemolymph [Na+] (323.0 ± 2.5 mmol L−1) and [Mg2+] (34.6 ± 1.0 mmol L−1) are hypo-regulated while [Ca2+] (22.5 ± 0.7 mmol L−1) is hyper-regulated; [K+] is hyper-regulated in fresh-caught crabs (17.4 ± 0.5 mmol L−1) but hypo-regulated (6.2 ± 0.7 mmol L−1) at 45‰. Protein expression patterns are altered in the 45‰-acclimated crabs, although Western blot analyses reveal just a single immunoreactive band, suggesting a single (Na+, K+)-ATPase α-subunit isoform, distributed in different density membrane fractions. A high-affinity (Vm = 46.5 ± 3.5 U mg−1; K0.5 = 7.07 ± 0.01 μmol L−1) and a low-affinity ATP binding site (Vm = 108.1 ± 2.5 U mg−1; K0.5 = 0.11 ± 0.3 mmol L−1), both obeying cooperative kinetics, were disclosed. Modulation of (Na+, K+)-ATPase activity by Mg2+, K+ and NH4+ also exhibits site-site interactions, but modulation by Na+ shows Michaelis-Menten kinetics. (Na+, K+)-ATPase activity is synergistically stimulated up to 45% by NH4+ plus K+. Enzyme catalytic efficiency for variable [K+] and fixed [NH4+] is 10-fold greater than for variable [NH4+] and fixed [K+]. Ouabain inhibited ≈80% of total ATPase activity (KI = 464.7 ± 23.2 μmol L−1), suggesting that ATPases other than (Na+, K+)-ATPase are present. While (Na+, K+)-ATPase activities are similar in fresh-caught (around 142 nmol Pi min−1 mg−1) and 45‰-acclimated crabs (around 154 nmol Pi min−1 mg−1), ATP affinity decreases 110-fold and Na+ and K+ affinities increase 2-3-fold in 45‰-acclimated crabs.  相似文献   

7.
8.
KB-R7943 (2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea) was developed as a specific inhibitor of the sarcolemmal sodium–calcium exchanger (NCX) with potential experimental and therapeutic use. However, KB-R7943 is shown to be a potent blocker of several ion currents including inward and delayed rectifier K+ currents of cardiomyocytes. To further characterize KB-R7943 as a blocker of the cardiac inward rectifiers we compared KB-R7943 sensitivity of the background inward rectifier (IK1) and the carbacholine-induced inward rectifier (IKACh) currents in mammalian (Rattus norvegicus; rat) and fish (Carassius carassius; crucian carp) cardiac myocytes. The basal IK1 of ventricular myocytes was blocked with apparent IC50-values of 4.6 × 10− 6 M and 3.5 × 10− 6 M for rat and fish, respectively. IKACh was almost an order of magnitude more sensitive to KB-R7943 than IK1 with IC50-values of 6.2 × 10− 7 M for rat and 2.5 × 10− 7 M for fish. The fish cardiac NCX current was half-maximally blocked at the concentration of 1.9–3 × 10− 6 M in both forward and reversed mode of operation. Thus, the sensitivity of three cardiac currents to KB-R7943 block increases in the order IK1 ~ INCX < IKACh. Therefore, the ability of KB-R7943 to block inward rectifier potassium currents, in particular IKACh, should be taken into account when interpreting the data with this inhibitor from in vivo and in vitro experiments in both mammalian and fish models.  相似文献   

9.
The luminostat regime has been proposed as a way to maximize light absorption and thus to increase the microalgae photosynthetic efficiency within photobioreactors. In this study, simulated outdoor light conditions were applied to a lab-scale photobioreactor in order to evaluate the luminostat control under varying light conditions. The photon flux density leaving the reactor (PFDout) was varied from 4 to 20 μmol photons m−2 s−1and the productivity and photosynthetic efficiency of Chlorella sorokiniana were assessed.Maximal volumetric productivity (1.22 g kg−1 d−1) and biomass yield on PAR photons (400-700 nm) absorbed (1.27 g mol−1) were found when PFDout was maintained between 4 and 6 μmol photons m−2 s−1. The resultant photosynthetic efficiency was comparable to that already reported in a chemostat-controlled reactor. A strict luminostat regime could not be maintained under varying light conditions. Further modifications to the luminostat control are required before application under outdoor conditions.  相似文献   

10.
In the present work, we demonstrate that adenine reduced Na+-ATPase activity in isolated basolateral membrane (BLM) of proximal tubule in a dose-dependent manner. Adenine metabolism was ruled out by TLC analysis of the potential [3H]adenine derived-metabolites. Specific binding of [3H]adenine to isolated BLM was observed in a dose-dependent manner with Kd and Bmax of 242.6 ± 27.6 nM and 2749.9 ± 104.9 fmol mg−1, respectively. Adenine increased the [35S]GTPγS specific binding and it was completely abolished by 10−6 M GDPβS (G protein inhibitor) but it was not modified by DPCPX, DMPX and MRS1523, selective antagonists for A1, A2 and A3 receptors, respectively. Furthermore, the inhibitory effect of adenine on the Na+-ATPase activity was blocked by 10−6 M GDPβS, 1 μg/ml pertussis toxin (Gi protein inhibitor), 10−6 M foskolin (adenylyl cyclase activator) and 10−8 M cAMP. These data demonstrate that adenine inhibits the proximal tubule Na+-ATPase activity through the Gi protein-coupled receptor.  相似文献   

11.
Our study aimed to test the ability of aquatic plants to use bicarbonate when acclimated to three different bicarbonate concentrations. To this end, we performed experiments with the three species Ceratophyllum demersum, Egeria densa, Lagarosiphon major to determine photosynthetic rates under varying bicarbonate concentrations. We measured bicarbonate use efficiency, photosynthetic performance and respiration. For all species, our results revealed that photosynthetic rates were highest in replicates grown at low alkalinity. Thus, E. densa had approx. five times higher rates at low (264 ± 15 μmol O2 g−1 DW h−1) than at high alkalinity (50 ± 27 μmol O2 g−1 DW h−1), C. demersum had three times higher rates (336 ± 95 and 120 ± 31 μmol O2 g−1 DW h−1), and L. major doubled its rates at low alkalinity (634 ± 114 and 322 ± 119 μmol O2 g−1 DW h−1). Similar results were obtained for bicarbonate use efficiency by E. densa (136 ± 44 and 43 ± 10 μmol O2 mequiv. L−1 g−1 DW h−1) and L. major (244 ± 29 and 82 ± 24 μmol O2 mequiv. L−1 g−1 DW h−1). As to C. demersum, efficiency was high but unaffected by alkalinity, indicating high adaptation ability to varied alkalinities. A pH drift experiment supported these results. Overall, our results suggest that the three globally widespread worldwide species of our study adapt to low inorganic carbon availability by increasing their efficiency of bicarbonate use.  相似文献   

12.
In general, copper is primarily an osmoregulatory toxicant to fish and Cu toxicity is thought to be related to the rate of sodium loss. Looking at a previous research it is striking that gibel carp, Carassius auratus gibelio, do not seem so susceptible to the first ionoregulatory shock phase of Cu exposure, but rather build up physiological disturbances slowly until mortality occurs. Since it was noted that gibel carp experience severe hypoxia under Cu exposure, we hypothesised that, besides the Na loss, the slow depletion of liver glycogen stores contributed equally to the collapse of physiological integrity. It is clear from our results that glycogen stores are being depleted in Cu exposed fish and that dead fish suffered more extensive glycogen losses compared to surviving fish, with liver glycogen levels of 125 ± 8 mg g1 in dead fish compared to 230 ± 13 mg g1 in surviving fish. However, changes in liver glycogen did not contribute significantly to mortality, while changes in whole body sodium and the rate of sodium loss did. Whole body Na levels dropped from 1111 ± 48 μg g1 dry weight in control fish to 850 ± 54 μg g1 in surviving fish and to 607 ± 24 μg g− 1 in fish that had died resulting in Na loss rates of 1.25 ± 0.22 μg g− 1 h− 1 and 3.39 ± 0.19 μg g− 1 h− 1 in surviving and dead fish respectively. Our results support the finding that the rate of Na loss largely determines Cu toxicity in fish, even in resistant species.  相似文献   

13.
The productivity of a vertical outdoor photobioreactor was quantitatively assessed and compared to a horizontal reactor. Daily light cycles in southern Spain were simulated and applied to grow the microalgae Chlorella sorokiniana in a flat panel photobioreactor.The maximal irradiance around noon differs from 400 μmol photons m−2 s−1 in the vertical position to 1800 μmol photons m−2 s−1 in the horizontal position. The highest volumetric productivity was achieved in the simulated horizontal position, 4 g kg culture−1 d−1. The highest photosynthetic efficiency was found for the vertical simulation, 1.3 g of biomass produced per mol of PAR photons supplied, which compares favorably to the horizontal position (0.85 g mol−1) and to the theoretical maximal yield (1.8 g mol−1). These results prove that productivity per unit of ground area could be greatly enhanced by placing the photobioreactors vertically.  相似文献   

14.
This study was undertaken to elucidate the effect of the essential oil from Alpinia speciosa (EOAs) on cardiac contractility and the underlying mechanisms. The essential oil was obtained from Alpinia speciosa leaves and flowers and the oil was analyzed by GC-MS method. Chemical analysis revealed the presence of at least 18 components. Terpinen-4-ol and 1,8-cineole corresponded to 38% and 18% of the crude oil, respectively. The experiments were conducted on spontaneously-beating right atria and on electrically stimulated left atria isolated from adult rats. The effect of EOAs on the isometric contractions and cardiac frequency in vitro was examined. EOAs decreased rat left atrial force of contraction with an EC50 of 292.2 ± 75.7 μg/ml. Nifedipine, a well known L-type Ca2+ blocker, inhibited in a concentration-dependent manner left atrial force of contraction with an EC50 of 12.1 ± 3.5 μg/ml. Sinus rhythm was diminished by EOAs with an EC50 of 595.4 ± 56.2 μg/ml. Whole-cell L-type Ca2+ currents were recorded by using the patch-clamp technique. EOAs at 25 μg/ml decreased ICa,L by 32.6 ± 9.2% and at 250 μg/ml it decreased by 89.3 ± 7.4%. Thus, inhibition of L-type Ca2+ channels is involved in the cardiodepressive effect elicited by the essential oil of Alpinia speciosa in rat heart.  相似文献   

15.
AimsWe examined the effect of LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, on voltage-dependent K+ (Kv) channels.Main methodsElectrophysiological recordings were performed in freshly isolated rabbit coronary arterial smooth muscle cells.Key findingsThe Kv current amplitude was inhibited by LY294002 in a dose-dependent manner, with a Kd value of 1.48 μM. Without alteration of the kinetics of activation, LY294002 accelerated the decay rate of Kv channel inactivation. The rate constants of association and dissociation for LY294002 were 1.83 ± 0.01 μM? 1 s? 1 and 2.59 ± 0.14 s? 1, respectively. Application of LY294002 had no significant impact on the steady-state activation or inactivation curves. In the presence of LY294002, the recovery time constant from inactivation was increased, and Kv channel inhibition increased under train pulses (1 or 2 Hz). This indicates that LY294002-induced Kv channel inhibition is use-dependent. Furthermore, pretreatment with another PI3K inhibitor, wortmannin (10 μM), did not affect the Kv current, and did not change the inhibitory effect of LY294002.SignificanceBased on these results, we suggest that LY294002 directly blocks Kv current irrespective of PI3K inhibition.  相似文献   

16.
Nitric oxide (NO) has a critical role in several physiological and pathophysiological processes. In this paper, the reactions of the nitrosyl complexes of [Ru(bpy)2L(NO)]n+ type, where L = SO32− and imidazole and bpy = 2,2′-bipiridine, with cysteine and glutathione were studied. The reactions with cysteine and glutathione occurred through the formation of two sequential intermediates, previously described elsewhere, [Ru(bpy)2L(NOSR)]n+ and [Ru(bpy)2L(NOSR)2] (SR = thiol) leading to the final products [Ru(bpy)2L(H2O)]n+ and free NO. The second order rate constant for the second step of this reaction was calculated for cysteine k2(SR) = (2.20 ± 0.12) × 109 M− 1 s− 1 and k2(RSH) = (154 ± 2) M− 1 s− 1 for L = SO32− and k2(SR) = (1.30 ± 0.23) × 109 M− 1 s− 1 and k2(RSH) = (0.84 ± 0.02) M− 1 s− 1 for L = imidazole; while for glutathione they were k2(SR) = (6.70 ± 0.32) × 108 M− 1 s− 1 and k2(RSH) = 11.8 ± 0.3 M− 1 s− 1 for L = SO32− and k2(SR) = (2.50 ± 0.36) × 108 M− 1 s− 1 and k2(RSH) = 0.32 ± 0.01 M− 1 s− 1 for L = imidazole. In all reactions it was possible to detect the release of NO from the complexes, which it is remarkably distinct from other ruthenium metallocompounds described elsewhere with just N2O production. These results shine light on the possible key role of NO release mediated by physiological thiols in reaction with these metallonitrosyl ruthenium complexes.  相似文献   

17.
Biochemical studies to elucidate the structural basis for xyloglucan specificity among GH12 xyloglucanases are lacking. Accordingly, the substrate specificity of a GH12 xyloglucanase from Aspergillus niger (AnXEG12A) was investigated using pea xyloglucan and 12 xylogluco-oligosaccharides, and data were compared to a structural model of the enzyme. The specific activity of AnXEG12A with pea xyloglucan was 113 μmol min−1 mg−1, and apparent kcat and Km values were 49 s−1 and 0.54 mg mL−1, respectively. These values are similar to previously published results using xyloglucan from tamarind seed, and suggest that substrate fucosylation does not affect the specific activity of this enzyme. AnXEG12A preferred xylogluco-oligosaccharides containing more than six glucose units, and with xylose substitution at the −3 and +1 subsites. The specific activities of AnXEG12A on 100 μM XXXGXXXG and 100 μM XLLGXLLG were 60 ± 4 and 72 ± 9 μmol min−1 mg−1, respectively. AnXEG12A did not hydrolyze XXXXXXXG, consistent with other data that demonstrate the requirement for an unbranched glucose residue for hydrolysis by this enzyme.  相似文献   

18.
In order for cryopreservation to become a practical tool for aquaculture, optimized protocols must be developed for each species and cell type. Knowledge of a cell’s osmotic tolerance and membrane permeability characteristics can assist in optimized protocol development. In this study, these characteristics were determined for Pacific oyster oocytes and modified methods for loading and unloading ethylene glycol (EG) were tested. Oocytes were found to behave as ideal osmometers and their osmotically inactive fraction (Vb) was calculated to be 0.48. Oocytes exposed to NaCl solutions of 0.6 to 2.3 Osm fertilized at rates equivalent to oocytes left in seawater. This corresponds to volume changes of +27.3 and −38.1 ± 1.2%. The permeability of the oocytes to water (Lp) was determined to be 3.8 ± 0.4 × 10−2, 5.7 ± 0.8 × 10−2, and 13.2 ± 1.3 × 10−2 μm min−1 atm−1, when measured at temperatures of 5, 10 and 20 °C. The respective EG permeability values (Ps) were 9.5 ± 0.1 × 10−5, 14.6 ± 1.2 × 10−5, and 41.7 ± 2.4 × 10−5 cm min−1. The activation energies for Lp and Ps were determined to be 14.5 and 17.5 kcal mol−1, respectively. Different models for EG loading and unloading from oocytes were developed and tested. Post-thaw fertilization did not differ significantly between a published step addition method and single step addition at 20 °C. This represents a considerable reduction in handling. The results of this study demonstrate that the cryobiological characteristics of a given cell type should be taken into account when developing cryopreservation methods.  相似文献   

19.
Current knowledge suggests that cell movement in the eukaryotic slime mold Dictyostelium discoideum is mediated by different signaling pathways involving a number of redundant components. Our previous research has identified a specific motility-enhancing function for epidermal growth factor-like (EGFL) repeats in Dictyostelium, specifically for the EGFL repeats of cyrA, a matricellular, calmodulin (CaM)-binding protein in Dictyostelium. Using mutants of cAMP signaling (carA, carC, gpaB, gpbA), the endogenous calcium (Ca2+) release inhibitor TMB-8, the CaM antagonist W-7, and a radial motility bioassay, we show that DdEGFL1, a synthetic peptide whose sequence is obtained from the first EGFL repeat of cyrA, functions independently of the cAMP-mediated signaling pathways to enhance cell motility through a mechanism involving Ca2+ signaling, CaM, and RasG. We show that DdEGFL1 increases the amounts of polymeric myosin II heavy chain and actin in the cytoskeleton by 24.1 ± 10.7% and 25.9 ± 2.1% respectively and demonstrate a link between Ca2+/CaM signaling and cytoskeletal dynamics. Finally, our findings suggest that carA and carC mediate a brake mechanism during chemotaxis since DdEGFL1 enhanced the movement of carA/carC cells by 844 ± 136% compared to only 106 ± 6% for parental DH1 cells. Based on our data, this signaling pathway also appears to involve the G-protein β subunit, RasC, RasGEFA, and protein kinase B. Together, our research provides insight into the functionality of EGFL repeats in Dictyostelium and the signaling pathways regulating cell movement in this model organism. It also identifies several mechanistic components of DdEGFL1-enhanced cell movement, which may ultimately provide a model system for understanding EGFL repeat function in higher organisms.  相似文献   

20.
Kinetics of the reaction of octacarbonyl dicobalt with ethyl diazoacetate leading to [μ2-{ethoxycarbonyl(methylene)}-μ2-(carbonyl)-bis(tricarbonyl-cobalt)] (Co-Co) (1), dinitrogen, and carbon monoxide were investigated at 10 °C in heptane solution. The initial rate of the reaction was measured by following both the gas evolution and the decrease of the octacarbonyl dicobalt concentration. The rate is first order with respect to octacarbonyl dicobalt and a complex order with respect to ethyl diazoacetate and carbon monoxide depending on the ratio of their concentrations. This is in accord with the formation of a heptacarbonyl dicobalt reactive intermediate (k1 (10 °C) = (1.22 ± 0.06) × 10−3 s−1) for which carbon monoxide and ethyl diazoacetate compete (k−1/k2 (10 °C) = 1.34 ± 0.07).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号