首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A proteome analysis of Arabidopsis thaliana thylakoid-associated polysome nascent chain complexes was performed to find novel proteins involved in the biogenesis, maintenance and turnover of thylakoid protein complexes, in particular the PSII (photosystem II) complex, which exhibits a high turnover rate. Four unknown proteins were identified, of which TLP18.3 (thylakoid lumen protein of 18.3 kDa) was selected for further analysis. The Arabidopsis mutants (SALK_109618 and GABI-Kat 459D12) lacking the TLP18.3 protein showed higher susceptibility of PSII to photoinhibition. The increased susceptibility of DeltaTLP18.3 plants to high light probably originates from an inefficient reassembly of PSII monomers into dimers in the grana stacks, as well as from an impaired turnover of the D1 protein in stroma exposed thylakoids. Such dual function of the TLP18.3 protein is in accordance with its even distribution between the grana and stroma thylakoids. Notably, the lack of the TLP18.3 protein does not lead to a severe collapse of the PSII complexes, suggesting a redundancy of proteins assisting these particular repair steps to assure functional PSII. The DeltaTLP18.3 plants showed no clear visual phenotype under standard growth conditions, but when challenged by fluctuating light during growth, the retarded growth of DeltaTLP18.3 plants was evident.  相似文献   

2.
Oxygenic photosynthesis produces various radicals and activeoxygen species with harmful effects on photosystem II (PSII).Such photodamage occurs at all light intensities. Damaged PSIIcentres, however, do not usually accumulate in the thylakoidmembrane due to a rapid and efficient repair mechanism. Theexcellent design of PSII gives protection to most of the proteincomponents and the damage is most often targeted only to thereaction centre D1 protein. Repair of PSII via turnover of thedamaged protein subunits is a complex process involving (i)highly regulated reversible phosphorylation of several PSIIcore subunits, (ii) monomerization and migration of the PSIIcore from the grana to the stroma lamellae, (iii) partial disassemblyof the PSII core monomer, (iv) highly specific proteolysis ofthe damaged proteins, and finally (v) a multi-step replacementof the damaged proteins with de novo synthesized copies followedby (vi) the reassembly, dimerization, and photoactivation ofthe PSII complexes. These processes will shortly be reviewedpaying particular attention to the damage, turnover, and assemblyof the PSII complex in grana and stroma thylakoids during thephotoinhibition–repair cycle of PSII. Moreover, a two-dimensionalBlue-native gel map of thylakoid membrane protein complexes,and their modification in the grana and stroma lamellae duringa high-light treatment, is presented. Key words: Arabidopsis thylakoid membrane proteome, assembly of photosystem II, D1 protein, light stress, photosystem II photoinhibition, repair of photosystem II  相似文献   

3.
The role of PSII protein phosphorylation in the oligomeric structure of the complex and in the repair of photodamaged PSII centers was studied with intact thylakoids and thylakoid membrane subfractions isolated from differentially light-treated pumpkin (Cucurbita pepo L.) leaves. A combination of sucrose gradient fractionation of thylakoid protein complexes and immunodetection with phosphothreonine and protein-specific antibodies was used. We report in this study that the extent of phosphorylation of PSII core proteins is equivalent in dimers and monomers, and directly depends on light intensity. Phosphorylated PSII monomers migrate to the stroma-exposed thylakoids, probably following damage of the D1 protein and the dissociation of the light-harvesting complex of PSII. Once in the stroma lamellae, monomers are gradually dephosphorylated to allow the reparation of the complex. First, CP43 is dephosphorylated and as a consequence of this modification it detaches from the PSII core. In addition to D1, D2 is also thereafter dephosphorylated. Phosphorylation of PSII core polypeptides probably ensures the integrity of the monomers until repair can proceed. Dephosphorylation, on the other hand, might serve the need for opening the complex and coordinating D1 proteolysis and the attachment of ribosomes.  相似文献   

4.
Progressive solubilization of spinach chloroplast thylakoids by Triton X-100 was employed to investigate the domain organization of the electron transport complexes in the thylakoid membrane. Triton/chlorophyll ratios of 1:1 were sufficient to disrupt fully the continuity of the thylakoid membrane network, but not sufficient to solubilize either photosystem I (PSI), photosystem II (PSII) or the cytochrome b6-f(Cyt b6-f) complex. Progressive with the Triton concentration increase (Triton/Chl greater than 1:1), a differential solubilization of the three electron transport complexes was observed. Solubilization of the Cyt b6-f complex from the thylakoid membrane preceded that of PSI and apparently occurred early in the solubilization of stroma-exposed segments of the chloroplast lamellae. The initial removal of chlorophyll (up to 40% of the total) occurred upon solubilization of PSI from the stroma-exposed lamella regions in which PSI is localized. The tightly appressed membrane of the grana partition regions was markedly resistant to solubilization by Triton X-100. Thus, solubilization of PSII from this membrane region was initiated only after all Cyt b6-f and PSI complexes were removed from the chloroplast lamellae. The results support the notion of extreme lateral heterogeneity in the organization of the electron transport complexes in higher plant chloroplasts and suggest a Cyt b6-f localization in the membrane of the narrow fret regions which serve as a continuum between the grana and stroma lamellae.  相似文献   

5.
The distribution of the early light-inducible protein (ELIP) of pea (Pisum sativum) between grana and stroma thylakoids was studied. An antibody raised against a bacterial-expressed fusion protein containing ELIP sequences was used. Illumination of dark-grown pea seedlings causes an accumulation of the ELIP in the thylakoid membranes with a maximum level at 16 h. During continuous illumination exceeding 16 h the level decreases again. The fractionation of thylakoid membranes of 48-h-illuminated pea seedlings in grana and stroma thylakoids reveals that there is no uniform distribution of ELIP in the thylakoids. Rather 60-70% of ELIP was found in the stroma thylakoids and 30-40% in the grana thylakoids. This distribution is in accordance with that of photosystem I but not with that of photosystem II. After Triton-X-100 solubilization almost all ELIP is found in the photosystem-I-containing fraction. This also supports an association of ELIP with photosystem I.  相似文献   

6.
Mikko Tikkanen 《BBA》2008,1777(11):1432-1437
Phosphorylation of photosystem II (PSII) reaction center protein D1 has been hypothesised to function as a signal for the migration of photodamaged PSII core complex from grana membranes to stroma lamellae for concerted degradation and replacement of the photodamaged D1 protein. Here, by using the mutants with impaired capacity (stn8) or complete lack (stn7 stn8) in phosphorylation of PSII core proteins, the role of phosphorylation in PSII photodamage and repair was investigated. We show that the lack of PSII core protein phosphorylation disturbs the disassembly of PSII supercomplexes at high light, which is a prerequisite for efficient migration of damaged PSII complexes from grana to stroma lamellae for repair. This results in accumulation of photodamaged PSII complexes, which in turn results, upon prolonged exposure to high light (HL), in general oxidative damage of photosynthetic proteins in the thylakoid membrane.  相似文献   

7.
The effect of a 30 h high light treatment on the amount and the localization of thylakoid proteins was analysed in low light grown photoautotrophic cells of Marchantia polymorpha and Chenopodium rubrum. High light treatment resulted in a net loss of D1 protein which was accompanied by comparable losses of other proteins of the PS II core (reaction center with inner antenna). LHC II proteins were not reduced correspondingly, indicating that these complexes are less affected by prolonged high light. High light influenced the distribution of PS II components between the grana and the stroma region of the thylakoid membrane, probably by translocation of the respective PS II proteins. Additionally, modifications of several thylakoid proteins were detected in high light treated cells of C. rubrum. These effects are discussed in relation to photoinhibitory damage and repair processes.Abbreviations BCA bioinchonic acid - chl chlorophyll - CF1 coupling factor - CYC cycloheximide - GT grana thylakoids - HL high light - LL low light - PAGE polyacrylamide gel electrophoresis - PFD photon flux density - PS I Photosystem I - PS II Photosystem II - RC reaction center - SDS sodium dodecylsulfate - ST stroma thylakoids - Thyl unfractionated thylakoids  相似文献   

8.
The distribution of photosystem (PS) II complexes in stacked grana thylakoids derived from electron microscopic images of freeze-fractured chloroplasts are examined for the first time using mathematical methods. These characterize the particle distribution in terms of a nearest neighbor distribution function and a pair correlation function. The data were compared with purely random distributions calculated by a Monte Carlo simulation. The analysis reveals that the PSII distribution in grana thylakoids does not correspond to a random protein mixture but that ordering forces lead to a structured arrangement on a supramolecular level. Neighboring photosystems are significantly more separated than would be the case in a purely random distribution. These results are explained by structural models, in which boundary lipids and light-harvesting complex (LHC) II trimers are arranged between neighboring PSII. Furthermore, the diffusion of PSII was analyzed by a Monte Carlo simulation with a protein density of 80% area occupation (determined for grana membranes). The mobility of the photosystems is severely reduced by the high protein density. From an estimate of the mean migration time of PSII from grana thylakoids to stroma lamellae, it becomes evident that this diffusion contributes significantly to the velocity of the repair cycle of photoinhibited PSII.  相似文献   

9.
Electron paramagnetic resonance (EPR) was used to quantify Photosystem I (PSI) and PSII in vesicles originating from a series of well-defined but different domains of the thylakoid membrane in spinach prepared by non-detergent techniques. Thylakoids from spinach were fragmented by sonication and separated by aqueous polymer two-phase partitioning into vesicles originating from grana and stroma lamellae. The grana vesicles were further sonicated and separated into two vesicle preparations originating from the grana margins and the appressed domains of grana (the grana core), respectively. PSI and PSII were determined in the same samples from the maximal size of the EPR signal from P700(+) and Y(D)( .-), respectively. The following PSI/PSII ratios were found: thylakoids, 1.13; grana vesicles, 0.43; grana core, 0.25; grana margins, 1.28; stroma lamellae 3.10. In a sub-fraction of the stroma lamellae, denoted Y-100, PSI was highly enriched and the PSI/PSII ratio was 13. The antenna size of the respective photosystems was calculated from the experimental data and the assumption that a PSII center in the stroma lamellae (PSIIbeta) has an antenna size of 100 Chl. This gave the following results: PSI in grana margins (PSIalpha) 300, PSI (PSIbeta) in stroma lamellae 214, PSII in grana core (PSIIalpha) 280. The results suggest that PSI in grana margins have two additional light-harvesting complex II (LHCII) trimers per reaction center compared to PSI in stroma lamellae, and that PSII in grana has four LHCII trimers per monomer compared to PSII in stroma lamellae. Calculation of the total chlorophyll associated with PSI and PSII, respectively, suggests that more chlorophyll (about 10%) is associated with PSI than with PSII.  相似文献   

10.
Thylakoids from enzymatically separated bundle sheath and mesophyll tissue chloroplasts were examined for their chlorophyll-proteins by tube sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE). Differences were found in distribution of chlorophyll among peaks. The chlorophyll-protein a peak (CPa), considered to be the photosystem II (PSII) reaction centre by many authors, was seen to be absent in bundle sheath thylakoid samples. The slab SDS-PAGE revealed the absence of the polypeptides present in PSII preparations of chloroplast subfractions having only PSII activity. This finding confirms Anderson's hypothesis of the structure of grana and stroma thylakoids.  相似文献   

11.
In plants, the stacking of part of the photosynthetic thylakoid membrane generates two main subcompartments: the stacked grana core and unstacked stroma lamellae. However, a third distinct domain, the grana margin, has been postulated but its structural and functional identity remains elusive. Here, an optimized thylakoid fragmentation procedure combined with detailed ultrastructural, biochemical, and functional analyses reveals the distinct composition of grana margins. It is enriched with lipids, cytochrome b6f complex, and ATPase while depleted in photosystems and light‐harvesting complexes. A quantitative method is introduced that is based on Blue Native Polyacrylamide Gel Electrophoresis (BN‐PAGE) and dot immunoblotting for quantifying various photosystem II (PSII) assembly forms in different thylakoid subcompartments. The results indicate that the grana margin functions as a degradation and disassembly zone for photodamaged PSII. In contrast, the stacked grana core region contains fully assembled and functional PSII holocomplexes. The stroma lamellae, finally, contain monomeric PSII as well as a significant fraction of dimeric holocomplexes that identify this membrane area as the PSII repair zone. This structural organization and the heterogeneous PSII distribution support the idea that the stacking of thylakoid membranes leads to a division of labor that establishes distinct membrane areas with specific functions.  相似文献   

12.
High sensitivity differential scanning calorimetry (DSC) was employed to study the thermal denaturation of components of pea chloroplast thylakoid membranes. In contrast to previous reports utilizing spinach thylakoids, several transitions are reversible, and deconvolution of the calorimetric curves indicates nine transitions in both first and second heating scans, but overlapping transitions obscure at least three transitions in the first heating scans of control thylakoids. Glutaraldehyde fixation increases the denaturation temperature of several transitions which is consistent with a reported increase in thermal stability of thylakoid function due to fixation. Acidic pH treatment has little effect on the DSC curves, although it has been reported to have a significant effect on membrane structure. Separation of grana from stroma thylakoids indicates that components responsible for transitions centered at approximately 56, 73, 77, and 91 degrees C are predominantly or exclusively associated with grana thylakoids, whereas components responsible for transitions centered at approximately 63 and 81 degrees C are predominantly associated with stroma thylakoids. A broad transition centered at 66 degrees C is associated with grana thylakoids, whereas a sharp transition at the same temperature is due to a component associated with stroma thylakoids. Evidence obtained by washing treatments suggests the latter transition originates from the denaturation of the thylakoid ATPase (CF1). Analysis of the calorimetric enthalpy values indicates most components of the grana thylakoids denature irreversibly at high temperature, whereas components associated with the stroma thylakoids have a considerable degree of thermal reversibility.  相似文献   

13.
A mild sonication and phase fractionation method has been used to isolate five regions of the thylakoid membrane in order to characterize the functional lateral heterogeneity of photosynthetic reaction centers and light harvesting complexes. Low-temperature fluorescence and absorbance spectra, absorbance cross-section measurements, and picosecond time-resolved fluorescence decay kinetics were used to determine the relative amounts of photosystem II (PSII) and photosystem I (PSI), to determine the relative PSII antenna size, and to characterize the excited-state dynamics of PSI and PSII in each fraction. Marked progressive increases in the proportion of PSI complexes were observed in the following sequence: grana core (BS), whole grana (B3), margins (MA), stroma lamellae (T3), and purified stromal fraction (Y100). PSII antenna size was drastically reduced in the margins of the grana stack and stroma lamellae fractions as compared to the grana. Picosecond time-resolved fluorescence decay kinetics of PSII were characterized by three exponential decay components in the grana fractions, and were found to have only two decay components with slower lifetimes in the stroma. Results are discussed in the framework of existing models of chloroplast thylakoid membrane lateral heterogeneity and the PSII repair cycle. Kinetic modeling of the PSII fluorescence decay kinetics revealed that PSII populations in the stroma and grana margin fractions possess much slower primary charge separation rates and decreased photosynthetic efficiency when compared to PSII populations in the grana stack.  相似文献   

14.
Localization of membrane proteins in the cyanobacterium Synechococcus sp. PCC7942 was determined by transmission electron microscopy utilizing immunocytochemistry with cells prepared by freeze-substitution. This preparation procedure maintained cellular morphology and permitted detection of cellular antigens with high sensitivity and low background. Synechococcus sp. PCC7942 is a unicellular cyanobacterium with thylakoids organized in concentric layers toward the periphery of the cell. Cytochrome oxidase was localized almost entirely in the cytoplasmic membrane, whereas a carotenoprotein (P35) was shown to be a cell wall component. The major photosystem II (PSII) proteins (D1, D2 CP43, and CP47) were localized throughout the thylakoids. Proteins of the Cyt b6/f complex were found to have a similar distribution. Thylakoid luminal proteins, such as the Mn-stabilizing protein, were located primarily in the thylakoid, but a small, reproducible fraction was found in the outer compartment. The photosystem I (PSI) reaction center proteins and the ATP synthase proteins were found associated mostly with the outermost thylakoid and with the cytoplasmic membrane. These results indicated that the photosynthetic apparatus is not evenly distributed throughout the thylakoids. Rather, there is a radial asymmetry such that much of the PSI and the ATPase synthase is located in the outermost thylakoid. The relationship of this structure to the photosynthetic mechanism is discussed. It is suggested that the photosystems are separated because of kinetic differences between PSII and PSI, as hypothesized by H.-W. Trissl and C. Wilhelm (Trends Biochem Sci [1993] 18:415-419).  相似文献   

15.
The light environment during plant growth determines the structural and functional properties of higher plant chloroplasts, thus revealing a dynamically regulated developmental system. Pisum sativum plants growing under intermittent illumination showed chloroplasts with fully functional photosystem (PS) II and PSI reaction centers that lacked the peripheral chlorophyll (Chi) a/b and Chl a light-harvesting complexes (LHC), respectively. The results suggest a light flux differential threshold regulation in the biosynthesis of the photosystem core and peripheral antenna complexes. Sun-adapted species and plants growing under far-red-depleted illumination showed grana stacks composed of few (3–5) thylakoids connected with long intergrana (stroma) thylakoids. They had a PSII/PSI reaction center ratio in the range 1.3–1.9. Shade-adapted species and plants growing under far-red-enrichcd illumination showed large grana stacks composed of several thylakoids, often extending across the entire chloroplast body, and short intergrana stroma thylakoids. They had a higher PSII/PSI reaction center ratio, in the range of 2.2–4.0. Thus, the relative extent of grana and stroma thylakoid formation corresponds with the relative amounts of PSII and PSI in the chloroplast, respectively. The structural and functional adaptation of the photosynthetic membrane system in response to the quality of illumination involves mainly a control on the rate of PSII and PSI complex biosynthesis.  相似文献   

16.
Grana are not essential for photosynthesis, yet they are ubiquitous in higher plants and in the recently evolved Charaphyta algae; hence grana role and its need is still an intriguing enigma. This article discusses how the grana provide integrated and multifaceted functional advantages, by facilitating mechanisms that fine-tune the dynamics of the photosynthetic apparatus, with particular implications for photosystem II (PSII). This dynamic flexibility of photosynthetic membranes is advantageous in plants responding to ever-changing environmental conditions, from darkness or limiting light to saturating light and sustained or intermittent high light. The thylakoid dynamics are brought about by structural and organizational changes at the level of the overall height and number of granal stacks per chloroplast, molecular dynamics within the membrane itself, the partition gap between appressed membranes within stacks, the aqueous lumen encased by the continuous thylakoid membrane network, and even the stroma bathing the thylakoids. The structural and organizational changes of grana stacks in turn are driven by physicochemical forces, including entropy, at work in the chloroplast. In response to light, attractive van der Waals interactions and screening of electrostatic repulsion between appressed grana thylakoids across the partition gap and most probably direct protein interactions across the granal lumen (PSII extrinsic proteins OEEp-OEEp, particularly PsbQ-PsbQ) contribute to the integrity of grana stacks. We propose that both the light-induced contraction of the partition gap and the granal lumen elicit maximisation of entropy in the chloroplast stroma, thereby enhancing carbon fixation and chloroplast protein synthesizing capacity. This spatiotemporal dynamic flexibility in the structure and function of active and inactive PSIIs within grana stacks in higher plant chloroplasts is vital for the optimization of photosynthesis under a wide range of environmental and developmental conditions.  相似文献   

17.
The concept that the two photosystems of photosynthesis cooperate in series, immortalized in Hill and Bendall''s Z scheme, was still a black box that defined neither the structural nor the molecular organization of the thylakoid membrane network into grana and stroma thylakoids. The differentiation of the continuous thylakoid membrane into stacked grana thylakoids interconnected by single stroma thylakoids is a morphological reflection of the non-random distribution of photosystem II/light-harvesting complex of photosystem II, photosystem I and ATP synthase, which became known as lateral heterogeneity.  相似文献   

18.
Ravi Danielsson 《BBA》2004,1608(1):53-61
Electron paramagnetic resonance (EPR) was used to quantify Photosystem I (PSI) and PSII in vesicles originating from a series of well-defined but different domains of the thylakoid membrane in spinach prepared by non-detergent techniques. Thylakoids from spinach were fragmented by sonication and separated by aqueous polymer two-phase partitioning into vesicles originating from grana and stroma lamellae. The grana vesicles were further sonicated and separated into two vesicle preparations originating from the grana margins and the appressed domains of grana (the grana core), respectively. PSI and PSII were determined in the same samples from the maximal size of the EPR signal from P700+ and YD, respectively. The following PSI/PSII ratios were found: thylakoids, 1.13; grana vesicles, 0.43; grana core, 0.25; grana margins, 1.28; stroma lamellae 3.10. In a sub-fraction of the stroma lamellae, denoted Y-100, PSI was highly enriched and the PSI/PSII ratio was 13. The antenna size of the respective photosystems was calculated from the experimental data and the assumption that a PSII center in the stroma lamellae (PSIIβ) has an antenna size of 100 Chl. This gave the following results: PSI in grana margins (PSIα) 300, PSI (PSIβ) in stroma lamellae 214, PSII in grana core (PSIIα) 280. The results suggest that PSI in grana margins have two additional light-harvesting complex II (LHCII) trimers per reaction center compared to PSI in stroma lamellae, and that PSII in grana has four LHCII trimers per monomer compared to PSII in stroma lamellae. Calculation of the total chlorophyll associated with PSI and PSII, respectively, suggests that more chlorophyll (about 10%) is associated with PSI than with PSII.  相似文献   

19.
Land plants live in a challenging environment dominated by unpredictable changes. A particular problem is fluctuation in sunlight intensity that can cause irreversible damage of components of the photosynthetic apparatus in thylakoid membranes under high light conditions. Although a battery of photoprotective mechanisms minimize damage, photoinhibition of the photosystem II (PSII) complex occurs. Plants have evolved a multi-step PSII repair cycle that allows efficient recovery from photooxidative PSII damage. An important feature of the repair cycle is its subcompartmentalization to stacked grana thylakoids and unstacked thylakoid regions. Thus, understanding the crosstalk between stacked and unstacked thylakoid membranes is essential to understand the PSII repair cycle. This review summarizes recent progress in our understanding of high-light-induced structural changes of the thylakoid membrane system and correlates these changes to the efficiency of the PSII repair cycle. The role of reversible protein phosphorylation for structural alterations is discussed. It turns out that dynamic changes in thylakoid membrane architecture triggered by high light exposure are central for efficient repair of PSII.  相似文献   

20.
The polypeptide composition of whole thylakoids and membrane subfragments was studied by using a modified two-dimensional gel electrophoresis technique of O'Farrell [J. Biol. Chem. 250, 4007-4021 (1975)]. The modifications were lithium dodecyl sulphate solubilization instead instead of SDS, reverse isofocusing and sensitive silver staining procedure. This high-resolution technique allowed us to separate and identify about 170 polypeptides of thylakoid membranes. After separating grana and stroma thylakoids it was found that both types of lamellae contained nearly equal amounts of polypeptides, but about 70 polypeptides were different in the two preparations. In grana thylakoids, 54 polypeptides out of 95 were found to be mainly present in grana and 31 of them were only present in grana preparations. In stroma membranes, 43 polypeptides out of 99 were mainly present in stroma lamellae and 38 of these polypeptides were exclusively present in stroma lamellae. In a functional photosystem II preparation, 61 individual polypeptides could be distinguished. Most of these polypeptides were present in both grana and stroma lamellae, but 22 of them were more pronounced in grana than in stroma lamellae. 9 polypeptides of photosystem II were distinctly different in grana and stroma lamellae, and these differences may connect closely with the functional differences of photosystem II in the two types of thylakoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号