首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The recent crystallographic structure at 3.0 Å resolution of PSII from Thermosynechococcus elongatus has revealed a cavity in the protein which connects the membrane phase to the binding pocket of the secondary plastoquinone QB. The cavity may serve as a quinone diffusion pathway. By fluorescence methods, electron transfer at the donor and acceptor sides was investigated in the same membrane-free PSII core particle preparation from T. elongatus prior to and after crystallization; PSII membrane fragments from spinach were studied as a reference. The data suggest selective enrichment of those PSII centers in the crystal that are intact with respect to O2 evolution at the manganese-calcium complex of water oxidation and with respect to the integrity of the quinone binding site. One and more functional quinone molecules (per PSII monomer) besides of QA and QB were found in the crystallized PSII. We propose that the extra quinones are located in the QB cavity and serve as a PSII intrinsic pool of electron acceptors.  相似文献   

2.
Doris Godde  Monika Hefer 《Planta》1994,193(2):290-299
The function of photosystem II (PSII) and the turnover of its D1 reaction-center protein were studied in spinach (Spinacia oleracea L.) plants set under mineral stress. The mineral deficiencies were induced either by supplying the plants with an acidic nutrient solution or by strongly reducing the supply of magnesium alone or together with sulfur. After exposure for 8–10 weeks to the different media, the plants were characterized by a loss of chlorophyll and an increase in starch content, indicating a disturbance in the allocation of assimilates. Depending on the severity of the mineral deficiencies the plants lost their ability to adapt even to moderate iradiances of 400 mol photons·m–2·s–1 and became photoinhibited, as indicated by the decrease in Fv/Fm (the ratio of yield of variable fluorescence to yield of maximal fluorescence when all reaction centers are closed). The loss of PSII function was induced by changes on the acceptor side of PSII. Fast fluorescence decay showed a loss of PSII centers with bound QB, the secondary quinone acceptor of PSII, and a fast reoxidation kinetic of q a - , the primary quinone acceptor of PSII, in the photoinactivated plants. No appreciable change could be observed in the amount of PSII centers with unbound QB and in QB-nonreducing PSII centers. Immunological studies showed that the contents of the D1 and D2 proteins of the PSII reaction center and of the 33-kDa protein of the water-splitting complex were diminished in the photoinhibited plants, and the occurrance of a new polypetide of 14 kDa that reacted with an antibody against the C-termius of the D1 protein. As shown by pulse-labelling experiments with [14C]leucine both degradation and synthesis of the D1 protein were enhanced in the mineral-deficient plants when compared to non-deficient plants. A stimulation of D1-protein turnover was also observed in pH 3-grown plants, which were not inhibited at growth-light conditions. Obviously, stimulation of D1-protein turnover prevented photoinhibition in these plants. However, in the Mg- and Mg/S-deficient plants even a further stimulation of D1-protein turnover could not counteract the increased rate of photoinactivation.Abbreviations amp(f,m,s) amplitude of the fast, (medium and slow) exponential component of fluorescence decay - Fm yield of maximum fluorescenc when all reaction centers are closed - Fo yield of intrinsic fluorescence at open PSII reaction centers in the dark - Fv yield of variable fluorescence, (difference between Fm and Fo) - LHC light-harvesting complex - PFD photon flux density - QA primary quinone acceptor of PSII - QB secondary quinone acceptor of PSII Dedicated to Professor Dr. Dres. hc. Achim Trebst on the occasion of his 65th birthdayThis work was supported by grants from the BMFT and the Ministerium für Umwelt, Raumordnung and Landwirtschaft, Nordrhein-Westfalen. The authors thank H. Wietoska and M. Bronzel for skilful technical assistance.  相似文献   

3.
Phosphatidylglycerol (PG), containing the unique fatty acid Δ3, trans-16:1-hexadecenoic acid, is a minor but ubiquitous lipid component of thylakoid membranes of chloroplasts and cyanobacteria. We investigated its role in electron transfers and structural organization of Photosystem II (PSII) by treating Arabidopsis thaliana thylakoids with phospholipase A2 to decrease the PG content. Phospholipase A2 treatment of thylakoids (a) inhibited electron transfer from the primary quinone acceptor QA to the secondary quinone acceptor QB, (b) retarded electron transfer from the manganese cluster to the redox-active tyrosine Z, (c) decreased the extent of flash-induced oxidation of tyrosine Z and dark-stable tyrosine D in parallel, and (d) inhibited PSII reaction centres such that electron flow to silicomolybdate in continuous light was inhibited. In addition, phospholipase A2 treatment of thylakoids caused the partial dissociation of (a) PSII supercomplexes into PSII dimers that do not have the complete light-harvesting complex of PSII (LHCII); (b) PSII dimers into monomers; and (c) trimers of LHCII into monomers. Thus, removal of PG by phospholipase A2 brings about profound structural changes in PSII, leading to inhibition/retardation of electron transfer on the donor side, in the reaction centre, and on the acceptor side. Our results broaden the simple view of the predominant effect being on the QB-binding site.  相似文献   

4.
Peroxynitrite is a strong oxidant that has been proposed to form in chloroplasts. The interaction between peroxynitrite and photosystem II (PSII) has been investigated to determine whether this oxidant could be a hazard for PSII. Peroxynitrite is shown to inhibit oxygen evolution in PSII membranes in a dose-dependent manner. Analyses by PAM fluorimetry and EPR spectroscopy have demonstrated that the inhibition target of peroxynitrite is on the PSII acceptor side. In the presence of the herbicide DCMU, the chlorophyll (Chl) a fluorescence induction curve is inhibited by peroxynitrite, but the slow phase of the Chl a fluorescence decay does not change. EPR studies demonstrate that the Signal IIslow and Signal IIfast of peroxynitrite-treated Tris-washed PSII membranes are induced at room temperature, implying that the redox active tyrosines YZ and YD of PSII are not significantly nitrated. A featureless EPR signal with a g value of approximately 2.0043 ± 0.0003 and a line width of 10 ± 1 G is induced under continuous illumination in the presence of peroxynitrite. This new EPR signal corresponds with the semireduced plastoquinone QA in the absence of magnetic interaction with the non-heme Fe2+. We conclude that peroxynitrite impairs PSII electron transport in the QAFe2+ niche.  相似文献   

5.
The high light sensitivity of three submerged aquatic freshwater plant species, Egeria densa, Elodea nuttallii and Myriophyllum heterophyllum, which have been cultivated at a photosynthetically active radiation (PAR, 400-700 nm) of 70 μmol photons m−2 s−1, was studied by means of chlorophyll fluorescence and pigment analyses. Exposure of plants to 100, 300, 600 and 1000 μmol photons m−2 s−1 PAR for up to 360 min induced a strong reduction of the Fv/Fm ratio, indicating a pronounced inactivation of PSII even at the lowest PAR applied. These changes were accompanied by a reduction of the chlorophyll content to about 60-70% of control values at the highest PAR. Rapidly inducible photoprotective mechanisms were not affected, as derived from the rapid generation of pH-dependent energy dissipation under these conditions. At PAR higher than 100 μmol photons m−2 s−1, however, the primary quinone acceptor of photosystem II, QA, was reduced to about 80% and the effective quantum yield of photosystem II, ΦPSII, dropped to values of about 10%, indicating a high reduction state of the photosynthetic electron transport chain. These data support the notion that the three aquatic macrophytes have a very low capacity for the acclimation to higher light intensities.  相似文献   

6.
The nature of Cu2+ inhibition of photosystem II (PSII) photochemistry in pea (Pisum sativum L.) thylakoids was investigated monitoring Hill activity and light emission properties of photosystem II. In Cu2+-inhibited thylakoids, diphenyl carbazide addition does not relieve the loss of Hill activity. The maximum yield of fluorescence induction restored by hydroxylamine in Tris-inactivated thylakoids is markedly reduced by Cu2+. This suggests that Cu2+ does not act on the donor side of PSII but on the reaction center of PSII or on components beyond. Thermoluminescence and delayed luminescence studies show that charge recombination between the positively charged intermediate in water oxidation cycle (S2) and negatively charged primary quinone acceptor of pSII (QA) is largely unaffected by Cu2+. The S2QB charge recombination, however, is drastically inhibited which parallels the loss of Hill activity. This indicates that Cu2+ inhibits photosystem II photochemistry primarily affecting the function of the secondary quinone electron acceptor, QB. We suggest that Cu2+ does not block electron flow between the primary and secondary quinone acceptor but modifies the QB site in such a way that it becomes unsuitable for further photosystem II photochemistry.  相似文献   

7.
Understanding the mechanisms of electron transfer (ET) in photosynthetic reaction centers (RCs) may inspire novel catalysts for sunlight-driven fuel production. The electron exit pathway of type II RCs comprises two quinone molecules working in series and in between a non-heme iron atom with a carboxyl ligand (bicarbonate in photosystem II (PSII), glutamate in bacterial RCs). For decades, the functional role of the iron has remained enigmatic. We tracked the iron site using microsecond-resolution x-ray absorption spectroscopy after laser-flash excitation of PSII. After formation of the reduced primary quinone, QA, the x-ray spectral changes revealed a transition (t½ ≈ 150 μs) from a bidentate to a monodentate coordination of the bicarbonate at the Fe(II) (carboxylate shift), which reverted concomitantly with the slower ET to the secondary quinone QB. A redox change of the iron during the ET was excluded. Density-functional theory calculations corroborated the carboxylate shift both in PSII and bacterial RCs and disclosed underlying changes in electronic configuration. We propose that the iron-carboxyl complex facilitates the first interquinone ET by optimizing charge distribution and hydrogen bonding within the QAFeQB triad for high yield QB reduction. Formation of a specific priming intermediate by nuclear rearrangements, setting the stage for subsequent ET, may be a common motif in reactions of biological redox cofactors.  相似文献   

8.
Succinate:quinone oxidoreductase (SQR) from Bacillus subtilis consists of two hydrophilic protein subunits comprising succinate dehydrogenase, and a di-heme membrane anchor protein harboring two putative quinone binding sites, Qp and Qd. In this work we have used spectroelectrochemistry to study the electronic communication between purified SQR and a surface modified gold capillary electrode. In the presence of two soluble quinone mediators the midpoint potentials of both hemes were revealed essentially as previously determined by conventional redox titration (heme bH, Em = + 65 mV, heme bL, Em = − 95 mV). In the absence of mediators the enzyme still communicated with the electrode, albeit with a reproducible hysteresis, resulting in the reduction of both hemes occurring approximately at the midpoint potential of heme bL, and with a pronounced delay of reoxidation. When the specific inhibitor 2-n-heptyl-4 hydroxyquinoline N-oxide (HQNO), which binds to Qd in B. subtilis SQR, was added together with the two quinone mediators, rapid reductive titration was still possible which can be envisioned as an electron transfer occurring via the HQNO insensitive Qp site. In contrast, the subsequent oxidative titration was severely hampered in the presence of HQNO, in fact it completely resembled the unmediated reaction. If mediators communicate with Qp or Qd, either event is followed by very rapid electron redistribution within the enzyme. Taken together, this strongly suggests that the accessibility of Qp depended on the redox state of the hemes. When both hemes were reduced, and Qd was blocked by HQNO, quinone-mediated communication via the Qp site was no longer possible, revealing a redox-dependent conformational change in the membrane anchor domain.  相似文献   

9.
The PsbP protein is an extrinsic subunit of photosystem II (PSII) specifically found in land plants and green algae. Using PsbP-RNAi tobacco, we have investigated effects of PsbP knockdown on protein supercomplex organization within the thylakoid membranes and photosynthetic properties of PSII. In PsbP-RNAi leaves, PSII dimers binding the extrinsic PsbO protein could be formed, while the light-harvesting complex II (LHCII)-PSII supercomplexes were severely decreased. Furthermore, LHCII and major PSII subunits were significantly dephosphorylated. Electron microscopic analysis showed that thylakoid grana stacking in PsbP-RNAi chloroplast was largely disordered and appeared similar to the stromally-exposed or marginal regions of wild-type thylakoids. Knockdown of PsbP modified both the donor and acceptor sides of PSII; In addition to the lower water-splitting activity, the primary quinone QA in PSII was significantly reduced even when the photosystem I reaction center (P700) was noticeably oxidized, and thermoluminescence studies suggested the stabilization of the charged pair, S2/QA. These data indicate that assembly and/or maintenance of the functional MnCa cluster is perturbed in absence of PsbP, which impairs accumulation of final active forms of PSII supercomplexes.  相似文献   

10.
Alhagi sparsifolia Shap. is exposed to a high-irradiance environment as the main vegetation found in the forelands of the Taklamakan Desert. We investigated chlorophyll a fluorescence emission of A. sparsifolia seedlings grown under ambient (HL) and shade (LL) conditions. Our results indicated that the fluorescence intensity in the leaves was significantly higher for LL-grown plants than that under HL. High values of the maximum quantum yield of PSII for primary photochemistry (φPo) and the quantum yield that an electron moves further than QA - (φEo) in the plants under LL conditions suggested that the electron flow from QA - (primary quinone electron acceptors of PSII) to QB (secondary quinone acceptor of PSII) or QB - was enhanced at LL compared to natural HL conditions. The efficiency/probability with which an electron from the intersystem electron carriers was transferred to reduce end electron acceptors at the PSI acceptor side and the quantum yield for the reduction of end electron acceptors at the PSI acceptor side were opposite to φPo, and φEo. Thus, we concluded that the electron transport on the donor side of PSII was blocked under LL conditions, while acceptor side was inhibited at the HL conditions. The PSII activity of electron transport in the plants grown in shade was enhanced, while the energy transport from PSII to PSI was blocked compared to the plants grown at HL conditions. Furthermore, PSII activity under HL was seriously affected in midday, while the plants grown in shade enhanced their energy transport.  相似文献   

11.
《BBA》2019,1860(12):148082
Redox titration using fluorescence measurements of photosystem II (PSII) has long shown that impairment of the water-oxidizing Mn4CaO5 cluster upshifts the redox potential (Em) of the primary quinone electron acceptor QA by more than 100 mV, which has been proposed as a photoprotection mechanism of PSII. However, the molecular mechanism of this long-distance interaction between the Mn4CaO5 cluster and QA in PSII remains unresolved. In this study, we reinvestigated the effect of depletion of the Mn4CaO5 cluster on Em(QA/QA) using Fourier transform infrared (FTIR) spectroelectrochemistry, which can directly monitor the redox state of QA at an intended potential. Light-induced FTIR difference measurements at a series of electrode potentials for intact and Mn-depleted PSII preparations from spinach and Thermosynechococcus elongatus showed that depletion of the Mn4CaO5 cluster hardly affected the Em(QA/QA) values. In contrast, fluorescence spectroelectrochemical measurement using the same PSII sample, electrochemical cell, and redox mediators reproduced a large upshift of apparent Em upon Mn depletion, whereas a smaller shift was observed when weaker visible light was used for fluorescence excitation. Thus, the possibility was suggested that the measuring light for fluorescence disturbed the titration curve in Mn-depleted PSII, in contrast to no interference of infrared light with the PSII reactions in FTIR measurements. From these results, it was concluded that the Mn4CaO5 cluster does not directly regulate Em(QA/QA) to control the redox reactions on the electron acceptor side of PSII.  相似文献   

12.
13.
In leaves of an atrazine-resistant mutant ofSenecio vulgaris the quantum efficiency of CO2 assimilation was reduced by 21% compared to the atrazine-susceptible wild type, and at a light level twice that required to saturate photosynthesis in the wild type the CO2 fixation rate in the mutant was decreased by 15%. In leaves at steady-state photosynthesis there was a measurable increase in the reduction state of the photosystem II (PSII) primary quinone acceptor,Q A. Although this would lead to a decreased rate of PSII electron transport and may thus explain the decrease in quantum efficiency, this cannot account for the fall in the maximum rate of CO2 fixation. The atrazine-resistant mutant showed an appreciably longer photosynthetic induction time which indicates an effect on carbon metabolism; however, the response of CO2-fixation rate to intercellular CO2 concentration revealed no differences in carboxylation efficiency. There were also no differences in the ability to perform a State 1–State 2 transition between the atrazine-resistant and susceptible biotypes and no difference in the profiles of phosphorylated thylakoid polypeptides. It is concluded that the alteration of the redox equilibrium between PSII quinone electron acceptors in the atrazine-resistant biotype limits appreciably the photosynthetic efficiency in non-saturating light. Additionally, there is a further, as yet unidentified, limitation which decreases photosynthesis in the resistant mutant under light-saturating conditions.Abbreviations and symbols DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - F max maximum fluorescence emission - F o2 minimal fluorescence emission upon exposure to saturating light flash - F v variable fluorescence emission - F v2 variable fluorescence emission upon exposure to saturating light flash - kDa kilodalton - PSI, II photosystems I, II - Q A primary quinone acceptor of PSH - Q B secondary quinone acceptor of PSII - RuBP ribulose-1,5-bisphosphate  相似文献   

14.
Inhibition of electron transport and damage to the protein subunits by ultraviolet-B (UV-B, 280–320 nm) radiation have been studied in isolated reaction centers of the non-sulfur purple bacterium Rhodobacter sphaeroides R26. UV-B irradiation results in the inhibition of charge separation as detected by the loss of the initial amplitude of absorbance change at 430 nm reflecting the formation of the P+(QAQB) state. In addition to this effect, the charge recombination accelerates and the damping of the semiquinone oscillation increases in the UV-B irradiated reaction centers. A further effect of UV-B is a 2 fold increase in the half- inhibitory concentration of o-phenanthroline. Some damage to the protein subunits of the RC is also observed as a consequence of UV-B irradiation. This effect is manifested as loss of the L, M and H subunits on Coomassie stained gels, but not accompanied with specific degradation products. The damaging effects of UV-B radiation enhanced in reaction centers where the quinone was semireduced (QB ) during UV-B irradiation, but decreased in reaction centers which lacked quinone at the QB binding site. In comparison with Photosystem II of green plant photosynthesis, the bacterial reaction center shows about 40 times lower sensitivity to UV-B radiation concerning the activity loss and 10 times lower sensitivity concerning the extent of reaction center protein damage. It is concluded that the main effect of UV-B radiation in the purple bacterial reaction center occurs at the QAQB quinone acceptor complex by decreasing the binding affinity of QB and shifting the electron equilibration from QAQB to QA QB. The inhibitory effect is likely to be caused by modification of the protein environment around the QB binding pocket and mediated by the semiquinone form of QB. The UV-resistance of the bacterial reaction center compared to Photosystem II indicates that either the QAQB acceptor complex, which is present in both types of reaction centers with similar structure and function, is much less susceptible to UV damage in purple bacteria, or, more likely, that Photosystem II contains UV-B targets which are more sensitive than its quinone complex.Abbreviations Bchl bacteriochlorophyll - P Bchl dimer - QA primary quinone electron acceptor - QB secondary quinone electron acceptor - RC reaction center - UV-B ultraviolet-B  相似文献   

15.
Photochemical efficiencies of photosystem I (PSI) and photosystem II (PSII) were studied in dry thalli of the lichen Hypogymnia physodes and during their re-hydration. In dry thalli, PSII reaction centers are photochemically inactive, as evidenced by the absence of variable chlorophyll (Chl) fluorescence, whereas the primary electron donor of PSI, P700, exhibits irreversible oxidation under continuous light. Upon application of multiple- and, particularly, single-turnover pulses in dry lichen, P700 oxidation partially reversed, which indicated recombination between P700+ and the reduced acceptor FX of PSI. Re-wetting of air-dried H. physodes initiated the gradual restoration of reversible light-induced redox reactions in both PSII and PSI, but the recovery was faster in PSI. Two slow components of P700+ reduction occurred after irradiation of partially and completely hydrated thalli with strong white light. In contrast, no slow component was found in the kinetics of re-oxidation of QA, the reduced primary acceptor of PSII, after exposure of such thalli to white light. This finding indicated the inability of PSII in H. physodes to provide the reduction of the plastoquinone pool to significant levels. It is concluded that slow alternative electron transport routes may contribute to the energetics of photosynthesis to a larger extent in H. physodes than in higher plants.Abbreviations A0 and A1 Primary acceptor chlorophyll and secondary electron acceptor phylloquinone - Chl a Chlorophyll a - Fm Maximal level of chlorophyll fluorescence when all PSII centers are closed - Fo Minimal level of fluorescence when all PSII centers are open after dark adaptation - FR Far-red - Fv Variable fluorescence (=FmFo) - FX, FA, and FB Iron–sulfur centers - MT pulse Multiple-turnover pulse - PS Photosystem - P700 Reaction center chlorophyll of PSI - QA Primary quinone acceptor of PSII - QB Secondary quinone acceptor of PSII - ST pulse Single-turnover pulse  相似文献   

16.
d-Galactosamine (d-GalN) induces reactive oxygen species (ROS) generation and cell death in cultured hepatocytes. The aim of the study was to evaluate the cytoprotective properties of N-acetylcysteine (NAC), coenzyme Q10 (Q10) and the superoxide dismutase (SOD) mimetic against the mitochondrial dysfunction and cell death in d-GalN-treated hepatocytes. Hepatocytes were isolated from liver resections. NAC (0.5 mM), Q10 (30 μM) or MnTBAP (Mn(III)tetrakis(4-benzoic acid) porphyrin chloride (1 mg/mL) were co-administered with d-GalN (40 mM) in hepatocytes. Cell death, oxidative stress, mitochondrial transmembrane potential (MTP), ATP, mitochondrial oxidized/reduced glutathione (GSH) and Q10 ratios, electronic transport chain (ETC) activity, and nuclear- and mitochondria-encoded expression of complex I subunits were determined in hepatocytes. d-GalN induced a transient increase of mitochondrial hyperpolarization and oxidative stress, followed by an increase of oxidized/reduced GSH and Q10 ratios, mitochondrial dysfunction and cell death in hepatocytes. The cytoprotective properties of NAC supplementation were related to a reduction of ROS generation and oxidized/reduced GSH and Q10 ratios, and a recovery of mitochondrial complexes I + III and II + III activities and cellular ATP content. The co-administration of Q10 or MnTBAP recovered oxidized/reduced GSH ratio, and reduced ROS generation, ETC dysfunction and cell death induced by d-GalN. The cytoprotective properties of studied antioxidants were related to an increase of the protein expression of nuclear- and mitochondrial-encoded subunits of complex I. In conclusion, the co-administration of NAC, Q10 and MnTBAP enhanced the expression of complex I subunits, and reduced ROS production, oxidized/reduced GSH ratio, mitochondrial dysfunction and cell death induced by d-GalN in cultured hepatocytes.  相似文献   

17.
The action of the environmental toxic Pb2+ on photosynthetic electron transport was studied in thylakoid membranes isolated from spinach leaves. Fluorescence and thermoluminescence techniques were performed in order to determine the mode of Pb2+ action in photosystem II (PSII). The invariance of fluorescence characteristics of chlorophyll a (Chl a) and magnesium tetraphenylporphyrin (MgTPP), a molecule structurally analogous to Chl a, in the presence of Pb2+ confirms that Pb cation does not interact directly with chlorophyll molecules in PSII. The results show that Pb interacts with the water oxidation complex thus perturbing charge recombination between the quinone acceptors of PSII and the S2 state of the Mn4Ca cluster. Electron transfer between the quinone acceptors QA and QB is also greatly retarded in the presence of Pb2+. This is proposed to be owing to a transmembrane modification of the acceptor side of the photosystem.  相似文献   

18.
Han Bao  Yanan Ren  Jingquan Zhao 《BBA》2010,1797(3):339-346
The correlation between the reduction of QA and the oxidation of TyrZ or Car/ChlZ/Cytb559 in spinach PSII enriched membranes induced by visible light at 10 K is studied by using electron paramagnetic resonance spectroscopy. Similar g = 1.95-1.86 QA-•EPR signals are observed in both Mn-depleted and intact samples, and both signals are long lived at low temperatures. The presence of PPBQ significantly diminished the light induced EPR signals from QA-•, Car+•/Chl+• and oxidized Cytb559, while enhancing the amplitude of the S1TyrZ• EPR signal in the intact PSII sample. The quantification and stability of the g = 1.95-1.86 EPR signal and signals arising from the oxidized TyrZ and the side-path electron donors, respectively, indicate that the EPR-detectable g = 1.95-1.86 QA-• signal is only correlated to reaction centers undergoing oxidation of the side-path electron donors (Car/ChlZ/Cytb559), but not of TyrZ. These results imply that two types of QA-• probably exist in the intact PSII sample. The structural difference and possible function of the two types of QA are discussed.  相似文献   

19.
A prolonged (20 h) dark incubation of Chlorella pyrenoidosa algae at 37°C resulted in a twofold rise of the slowly rising phase (10–15 min), sF v, in the kinetics of variable chlorophyll fluorescence, F v (F v = F mF 0) in diuron-treated cells. This effect suggests the accumulation of inactive photosystem II (PSII) complexes with low efficiency of primary quinone acceptor of electron of PSII (QA) reduction. The presence of methylamine (MA), a thylakoid membrane uncoupler, or N, N-dicyclohexylcarbodiimide, an inhibitor of ATPase, precluded the accumulation of inactive PSII complexes. When salicylhydroxamate promoted the reduction of the plastoquinone (PQ) pool, exogenous ATP accelerated the accumulation of inactive complexes. Dark PQ oxidation in the presence of nonmetabolized glucose analog, 2-deoxy-D-glucose, lowered the content of inactive PSII complexes, and NaF, an inhibitor of chloroplast phosphatases, retarded this process. These data are considered as evidence for a mechanism regulating the content of inactive PSII complexes in the process of redox-dependent phosphorylation of D1- and/or D2-proteins of PSII.  相似文献   

20.
Lumenal extrinsic proteins PsbO, PsbP, and PsbQ of photosystem II (PSII) protect the catalytic cluster Mn4CaO5 of oxygen-evolving complex (OEC) from the bulk solution and from soluble compounds in the surrounding medium. Extraction of PsbP and PsbQ proteins by NaCl-washing together with chelator EGTA is followed also by the depletion of Ca2+ cation from OEC. In this study, the effects of PsbP and PsbQ proteins, as well as Ca2+ extraction from OEC on the kinetics of the reduced primary electron acceptor (QA ?) oxidation, have been studied by fluorescence decay kinetics measurements in PSII membrane fragments. We found that in addition to the impairment of OEC, removal of PsbP and PsbQ significantly slows the rate of electron transfer from QA ? to the secondary quinone acceptor QB. Electron transfer from QA ? to QB in photosystem II membranes with an occupied QB site was slowed down by a factor of 8. However, addition of EGTA or CaCl2 to NaCl-washed PSII did not change the kinetics of fluorescence decay. Moreover, the kinetics of QA ? oxidation by QB in Ca-depleted PSII membranes obtained by treatment with citrate buffer at pH 3.0 (such treatment keeps all extrinsic proteins in PSII but extracts Ca2+ from OEC) was not changed. The results obtained indicate that the effect of NaCl-washing on the QA ? to QB electron transport is due to PsbP and PsbQ extrinsic proteins extraction, but not due to Ca2+ depletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号