共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Blas Moreno-Beltrán Antonio Díaz-Quintana Katiuska González-Arzola Adrián Velázquez-Campoy Miguel A. De la Rosa Irene Díaz-Moreno 《BBA》2014
In plants, channeling of cytochrome c molecules between complexes III and IV has been purported to shuttle electrons within the supercomplexes instead of carrying electrons by random diffusion across the intermembrane bulk phase. However, the mode plant cytochrome c behaves inside a supercomplex such as the respirasome, formed by complexes I, III and IV, remains obscure from a structural point of view. Here, we report ab-initio Brownian dynamics calculations and nuclear magnetic resonance-driven docking computations showing two binding sites for plant cytochrome c at the head soluble domain of plant cytochrome c1, namely a non-productive (or distal) site with a long heme-to-heme distance and a functional (or proximal) site with the two heme groups close enough as to allow electron transfer. As inferred from isothermal titration calorimetry experiments, the two binding sites exhibit different equilibrium dissociation constants, for both reduced and oxidized species, that are all within the micromolar range, thus revealing the transient nature of such a respiratory complex. Although the docking of cytochrome c at the distal site occurs at the interface between cytochrome c1 and the Rieske subunit, it is fully compatible with the complex III structure. In our model, the extra distal site in complex III could indeed facilitate the functional cytochrome c channeling towards complex IV by building a “floating boat bridge” of cytochrome c molecules (between complexes III and IV) in plant respirasome. 相似文献
3.
A rapid separation of the ten nuclearly-encoded subunits of mitochondrial cytochrome c oxidase, and ten out of the eleven subunits of cytochrome bc1, was achieved using a short, 50 mm C18-reversed-phase column. The short column decreased the elution time 4–7 fold while maintaining the same resolution quality. Elution was similar to a previously published protocol, i.e., a water/acetonitrile elution gradient containing trifluoroacetic acid. Isolated subunits were identified by MALDI-TOF. The rapidity of the described method makes it extremely useful for determining the subunit composition of isolated mitochondrial complexes. The method can be used for both analytical and micro-preparative purposes. 相似文献
4.
Anders C. Raffalt 《Journal of inorganic biochemistry》2009,103(5):717-722
We report kinetic data for the two-step electron transfer (ET) oxidation and reduction of the two-domain di-heme redox protein Pseudomonas stutzeri cytochrome (cyt) c4 by [Co(bipy)3]2+/3+ (bipy = 2,2′-bipyridine). Following earlier reports, the data accord with both bi- and tri-exponential kinetics. A complete kinetic scheme includes both “cooperative” intermolecular ET between each heme group and the external reaction partner, and intramolecular ET between the two heme groups. A new data analysis scheme shows unequivocally that two-ET oxidation and reduction of P. stutzeri cyt c4 is entirely dominated by intermolecular ET between the heme groups and the external reaction partner in the ms time range, with virtually no contribution from intramolecular interheme ET in this time range. This is in striking contrast to two-ET electrochemical oxidation or reduction of P. stutzeri cyt c4 for which fast, ms to sub-ms intramolecular interheme ET is a crucial step. The rate constant dependence on the solvent viscosity has disclosed strong coupling to both a (set of) frictionally damped solvent/protein nuclear modes and intramolecular friction-less “ballistic” modes, indicative of notable protein structural mobility in the overall two-ET process. We suggest that conformational protein mobility blocks intramolecular interheme ET in bulk homogeneous solution but triggers opening of this gated ET channel in the electrochemical environment or in the membrane environment of natural respiratory cyt c4 function. 相似文献
5.
Multiheme cytochromes c have been found in a number of sulfate- and metal ion-reducing bacteria. Geobacter sulfurreducens is one of a family of microorganisms that oxidize organic compounds, with Fe(III) oxide as the terminal electron acceptor. A triheme 9.6 kDa cytochrome c7 from G. sulfurreducens is a part of the metal ion reduction pathway. We cloned the gene for cytochrome c7 and expressed it in Escherichiacoli together with the cytochrome c maturation gene cluster, ccmABCDEFGH, on a separate plasmid. We designed two constructs, with and without an N-terminal His-tag. The untagged version provided a good yield (up to 6 mg/l of aerobic culture) of the fully matured protein, with all three hemes attached, while the N-terminal His-tag appeared to be detrimental for proper heme incorporation. The recombinant protein (untagged) is properly folded, it has the same molecular weight and displays the same absorption spectra, both in reduced and in oxidized forms, as the protein isolated from G. sulfurreducens and it is capable of reducing metal ions in vitro. The shape parameters for the recombinant cytochrome c7 determined by small angle X-ray scattering are in good agreement with the ones calculated from a homologous cytochrome c7 of known structure. 相似文献
6.
Min Sang Fei Ma Jie Xie Xiao-Bo Chen Ke-Bin Wang Xiao-Chun Qin Wen-Da Wang Jing-Quan Zhao Liang-Bi Li Jian-Ping Zhang Ting-Yun Kuang 《Biophysical chemistry》2010
Electron paramagnetic resonance (EPR) spectroscopy was used to detect the light-induced formation of singlet oxygen (1O2*) in the intact and the Rieske-depleted cytochrome b6f complexes (Cyt b6f) from Bryopsis corticulans, as well as in the isolated Rieske Fe–S protein. It is shown that, under white-light illumination and aerobic conditions, chlorophyll a (Chl a) bound in the intact Cyt b6f can be bleached by light-induced 1O2*, and that the 1O2* production can be promoted by D2O or scavenged by extraneous antioxidants such as l-histidine, ascorbate, β-carotene and glutathione. Under similar experimental conditions, 1O2* was also detected in the Rieske-depleted Cyt b6f complex, but not in the isolated Rieske Fe–S protein. The results prove that Chl a cofactor, rather than Rieske Fe–S protein, is the specific site of 1O2* formation, a conclusion which draws further support from the generation of 1O2* with selective excitation of Chl a using monocolor red light. 相似文献
7.
Catarina M. Paquete Patrícia M. Pereira Teresa Catarino David. L. Turner Ricardo O. Louro 《BBA》2007,1767(2):178-188
Type I cytochrome c3 is a key protein in the bioenergetic metabolism of Desulfovibrio spp., mediating electron transfer between periplasmic hydrogenase and multihaem cytochromes associated with membrane bound complexes, such as type II cytochrome c3. This work presents the NMR assignment of the haem substituents in type I cytochrome c3 isolated from Desulfovibrio africanus and the thermodynamic and kinetic characterisation of type I and type II cytochromes c3 belonging to the same organism. It is shown that the redox properties of the two proteins allow electrons to be transferred between them in the physiologically relevant direction with the release of energised protons close to the membrane where they can be used by the ATP synthase. 相似文献
8.
The transient electron transfer (ET) interactions between cytochrome c1 of the bc1-complex from Paracoccus denitrificans and its physiological redox partners cytochrome c552 and cytochrome c550 have been characterized functionally by stopped-flow spectroscopy. Two different soluble fragments of cytochrome c1 were generated and used together with a soluble cytochrome c552 module as a model system for interprotein ET reactions. Both c1 fragments lack the membrane anchor; the c1 core fragment (c1CF) consists of only the hydrophilic heme-carrying domain, whereas the c1 acidic fragment (c1AF) additionally contains the acidic domain unique to P. denitrificans. In order to determine the ionic strength dependencies of the ET rate constants, an optimized stopped-flow protocol was developed to overcome problems of spectral overlap, heme autoxidation and the prevalent non-pseudo first order conditions. Cytochrome c1 reveals fast bimolecular rate constants (107 to 108 M− 1 s− 1) for the ET reaction with its physiological substrates c552 and c550, thus approaching the limit of a diffusion-controlled process, with 2 to 3 effective charges of opposite sign contributing to these interactions. No direct involvement of the N-terminal acidic c1-domain in electrostatically attracting its substrates could be detected. However, a slight preference for cytochrome c550 over c552 reacting with cyochrome c1 was found and attributed to the different functions of both cytochromes in the respiratory chain of P. denitrificans. 相似文献
9.
(1) Oxidant-induced reduction of cytochrome b6 is completely dependent on a reduced component within the isolated cytochrome b6-f complex. This component can be reduced by dithionite or by NADH/N-methylphenazonium methosulfate. It is a 2H+/2e− carrier with a midpoint potential of 100 mV at pH 7.0, which is very similar to the midpoint potential of the plastoquinone pool in chloroplasts. (2) Oxidant-induced reduction of cytochrome b6 is stimulated by plastoquinol-1 as well as by plastoquinol-9. The midpoint potential of the transient reduction of cytochrome b6, however, was not shifted by added plastoquinol. (3) Quinone analysis of the purified cytochrome b6-f complex revealed about one plastoquinone per cytochrome f. The endogenous quinone is heterogeneous, a form more polar than plastoquinone-A, probably plastoquinone-C, dominating, This is different from the thylakoid membrane where plastoquinone-A is the main quinone. (4) The endogenous quinone can be extracted from the lyophilized cytochrome b6-f complex by acetone, but not by hydrocarbon solvents. Oxidant-induced reduction of cytochrome b6 was observed in the lyophilized and hexane-extracted complex, but was lost in the acetone-extracted complex. Reconstitution was achieved either with plastoquinol-1 or plastoquinol-9, suggesting that a plastoquinol molecule is involved in oxidant-induced reduction of cytochrome b6. 相似文献
10.
The characterisation of individual centres in multihaem proteins is difficult due to the similarities in the redox and spectroscopic properties of the centres. NMR has been used successfully to distinguish redox centres and allow the determination of the microscopic thermodynamic parameters in several multihaem cytochromes c3 isolated from different sulphate-reducing bacteria. In this article we show that it is also possible to discriminate the kinetic properties of individual centres in multihaem proteins, if the complete microscopic thermodynamic characterisation is available and the system displays fast intramolecular equilibration in the time scale of the kinetic experiment. The deconvolution of the kinetic traces using a model of thermodynamic control provides a reference rate constant for each haem that does not depend on driving force and can be related to structural factors. The thermodynamic characterisation of three tetrahaem cytochromes and their kinetics of reduction by sodium dithionite are reported in this paper. Thermodynamic and kinetic data were fitted simultaneously to a model to obtain microscopic reduction potentials, haem-haem and haem-proton interacting potentials, and reference rate constants for the haems. The kinetic information obtained for these cytochromes and recently published data for other multihaem cytochromes is discussed with respect to the structural factors that determine the reference rates. The accessibility for the reducing agent seems to play an important role in controlling the kinetic rates, although is clearly not the only factor. 相似文献
11.
It is well known that efficient functioning of photosynthetic (PET) and respiratory electron transport (RET) in cyanobacteria requires the presence of either cytochrome c6 (Cytc6) or plastocyanin (PC). By contrast, the interaction of an additional redox carrier, cytochrome cM (CytcM), with either PET or RET is still under discussion. Here, we focus on the (putative) role of CytcM in cyanobacterial respiration. It is demonstrated that genes encoding the main terminal oxidase (cytochrome c oxidase, COX) and cytochrome cM are found in all 44 totally or partially sequenced cyanobacteria (except one strain). In order to check whether CytcM can act as electron donor to COX, we investigated the intermolecular electron transfer kinetics between CytcM and the soluble CuA domain (i.e. the donor binding and electron entry site) of subunit II of COX. Both proteins from Synechocystis PCC6803 were expressed heterologously in E. coli. The forward and the reverse electron transfer reactions were studied yielding apparent bimolecular rate constants of (2.4 ± 0.1) × 105 M− 1 s− 1 and (9.6 ± 0.4) × 103 M− 1 s− 1 (5 mM phosphate buffer, pH 7, 50 mM KCl). A comparative analysis with Cytc6 and PC demonstrates that CytcM functions as electron donor to CuA as efficiently as Cytc6 but more efficient than PC. Furthermore, we demonstrate the association of CytcM with the cytoplasmic and thylakoid membrane fractions by immunobloting and discuss the potential role of CytcM as electron donor for COX under stress conditions. 相似文献
12.
Cliff MJ Craven CJ Marston JP Hounslow AM Clarke AR Waltho JP 《Journal of molecular biology》2009,385(1):266-318
The organisation of the structure present in the chemically denatured N-terminal domain of phosphoglycerate kinase (N-PGK) has been determined by paramagnetic relaxation enhancements (PREs) to define the conformational landscape accessible to the domain. Below 2.0 M guanidine hydrochloride (GuHCl), a species of N-PGK (denoted Ib) is detected, distinct from those previously characterised by kinetic experiments [folded (F), kinetic intermediate (Ik) and denatured (D)]. The transition to Ib is never completed at equilibrium, because F predominates below 1.0 M GuHCl. Therefore, the ability of PREs to report on transient or low population species has been exploited to characterise Ib. Five single cysteine variants of N-PGK were labelled with the nitroxide electron spin-label MTSL [(1-oxyl-2,2,5,5-tetramethyl-3-pyrroline-3-methyl)methanesulfonate] and the denaturant dependences of the relaxation properties of the amide NMR signals between 1.2 and 3.6 M GuHCl were determined. Significant PREs for Ib were obtained, but these were distributed almost uniformly throughout the sequence. Furthermore, the PREs indicate that no specific short tertiary contacts persist. The data indicate a collapsed state with no coherent three-dimensional structure, but with a restricted radius beyond which the protein chain rarely reaches. The NMR characteristics of Ib indicate that it forms from the fully denatured state within 100 μs, and therefore a rapid collapse is the initial stage of folding of N-PGK from its chemically denatured state. By extrapolation, Ib is the predominant form of the denatured state under native conditions, and the non-specifically collapsed structure implies that many non-native contacts and chain reversals form early in protein folding and must be broken prior to attaining the native state topology. 相似文献
13.
Hydroxy-naphthoquinones are competitive inhibitors of the cytochrome bc1 complex that bind to the ubiquinol oxidation site between cytochrome b and the iron-sulfur protein and presumably mimic a transition state in the ubiquinol oxidation reaction catalyzed by the enzyme. The parameters that affect efficacy of binding of these inhibitors to the bc1 complex are not well understood. Atovaquone®, a hydroxy-naphthoquinone, has been used therapeutically to treat Pneumocystis carinii and Plasmodium infections. As the pathogens have developed resistance to this drug, it is important to understand the molecular basis of the drug resistance and to develop new drugs that can circumvent the drug resistance. We previously developed the yeast and bovine bc1 complexes as surrogates to model the interaction of atovaquone with the bc1 complexes of the target pathogens and human host. As a first step to identify new cytochrome bc1 complex inhibitors with therapeutic potential and to better understand the determinants of inhibitor binding, we have screened a library of 2-hydroxy-naphthoquinones with aromatic, cyclic, and non-cyclic alkyl side-chain substitutions at carbon-3 on the hydroxy-quinone ring. We found a group of compounds with alkyl side-chains that effectively inhibit the yeast bc1 complex. Molecular modeling of these into the crystal structure of the yeast cytochrome bc1 complex provides structural and quantitative explanations for their binding efficacy to the target enzyme. In addition we also identified a 2-hydroxy-naphthoquinone with a branched side-chain that has potential for development as an anti-fungal and anti-parasitic therapeutic. 相似文献
14.
The availability of the three dimensional structure of mitochondrial enzyme, obtained by X-ray crystallography, allowed a significant progress in the understanding of the structure-function relation of the cytochrome bc1 complex. Most of the structural information obtained has been confirmed by molecular genetic studies of the bacterial complex. Despite its small size and simple subunit composition, high quality crystals of the bacterial complex have been difficult to obtain and so far, only low resolution structural data has been reported. The low quality crystal observed is likely associated in part with the low activity and stability of the purified complex. To mitigate this problem, we recently engineered a mutant [S287R(cytb)/V135S(ISP)] from Rhodobacter sphaeroides to produce a highly active and more stable cytochrome bc1 complex. The purified mutant complex shows a 40% increase in electron transfer activity as compared to that of the wild type enzyme. Differential scanning calorimetric study shows that the mutant is more stable than the wild type complex as indicated by a 4.3 °C increase in the thermo-denaturation temperature. Crystals formed from this mutant complex, in the presence of stigmatellin, diffract X-rays up to 2.9 Å resolution. 相似文献
15.
Jody M. MasonDerek S. Bendall Christopher J. HoweJonathan A.R. Worrall 《Biochimica et Biophysica Acta - Proteins and Proteomics》2012,1824(2):311-318
Cytochrome c6A is a eukaryotic member of the Class I cytochrome c family possessing a high structural homology with photosynthetic cytochrome c6 from cyanobacteria, but structurally and functionally distinct through the presence of a disulfide bond and a heme mid-point redox potential of + 71 mV (vs normal hydrogen electrode). The disulfide bond is part of a loop insertion peptide that forms a cap-like structure on top of the core α-helical fold. We have investigated the contribution of the disulfide bond to thermodynamic stability and (un)folding kinetics in cytochrome c6A from Arabidopsis thaliana by making comparison with a photosynthetic cytochrome c6 from Phormidium laminosum and through a mutant in which the Cys residues have been replaced with Ser residues (C67/73S). We find that the disulfide bond makes a significant contribution to overall stability in both the ferric and ferrous heme states. Both cytochromes c6A and c6 fold rapidly at neutral pH through an on-pathway intermediate. The unfolding rate for the C67/73S variant is significantly increased indicating that the formation of this region occurs late in the folding pathway. We conclude that the disulfide bridge in cytochrome c6A acts as a conformational restraint in both the folding intermediate and native state of the protein and that it likely serves a structural rather than a previously proposed catalytic role. 相似文献
16.
A.L. Ducluzeau 《BBA》2008,1777(9):1140-1146
Heliobacteria have a Rieske/cytochrome b complex composed of a Rieske protein, a cytochrome b6, a subunit IV and a di-heme cytochrome c. The overall structure of the complex seems close to the b6f complex from cyanobacteria and chloroplasts to the exception of the di-heme cytochrome. We show here by biochemical and biophysical studies that a heme ci is covalently attached to the Rieske/cytochrome b complex from Heliobacteria. We studied the EPR signature of this heme in two different species, Heliobacterium modesticaldum and Heliobacillus mobilis. In contrast to the case of b6f complex, a strong axial ligand to the heme is present, most probably a protonatable amino acid residue. 相似文献
17.
18.
- 1.
- 1. The ascorbate reducibility of cytochrome c (beef or horse heart) in its complexes with cytochrome c oxidase (beef heart) and cytochrome c peroxidase (yeast) has been studied. 相似文献
19.
Frederik A.J. Rotsaert 《BBA》2008,1777(3):239-249
We have examined the pre-steady-state kinetics and thermodynamic properties of the b hemes in variants of the yeast cytochrome bc1 complex that have mutations in the quinone reductase site (center N). Trp-30 is a highly conserved residue, forming a hydrogen bond with the propionate on the high potential b heme (bH heme). The substitution by a cysteine (W30C) lowers the redox potential of the heme and an apparent consequence is a lower rate of electron transfer between quinol and heme at center N. Leu-198 is also in close proximity to the bH heme and a L198F mutation alters the spectral properties of the heme but has only minor effects on its redox properties or the electron transfer kinetics at center N. Substitution of Met-221 by glutamine or glutamate results in the loss of a hydrophobic interaction that stabilizes the quinone ligands. Ser-20 and Gln-22 form a hydrogen-bonding network that includes His-202, one of the carbonyl groups of the ubiquinone ring, and an active-site water. A S20T mutation has long-range structural effects on center P and thermodynamic effects on both b hemes. The other mutations (M221E, M221Q, Q22E and Q22T) do not affect the ubiquinol oxidation kinetics at center P, but do modify the electron transfer reactions at center N to various extents. The pre-steady reduction kinetics suggest that these mutations alter the binding of quinone ligands at center N, possibly by widening the binding pocket and thus increasing the distance between the substrate and the bH heme. These results show that one can distinguish between the contribution of structural and thermodynamic factors to center N function. 相似文献
20.
Following different reports on the stoichiometry and configuration of NO binding to mammalian and bacterial reduced cytochrome c oxidase aa3 (CcO), we investigated NO binding and dynamics in the active site of beef heart CcO as a function of NO concentration, using ultrafast transient absorption and EPR spectroscopy. We find that in the physiological range only one NO molecule binds to heme a3, and time-resolved experiments indicate that even transient binding to CuB does not occur. Only at very high (∼ 2 mM) concentrations a second NO is accommodated in the active site, although in a different configuration than previously observed for CcO from Paracoccus denitrificans [E. Pilet, W. Nitschke, F. Rappaport, T. Soulimane, J.-C. Lambry, U. Liebl and M.H. Vos. Biochemistry 43 (2004) 14118-14127], where we proposed that a second NO does bind to CuB. In addition, in the bacterial enzyme two NO molecules can bind already at NO concentrations of ∼ 1 μM. The unexpected differences highlighted in this study may relate to differences in the physiological relevance of the CcO-NO interactions in both species. 相似文献