首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The ATP synthase complex is a critical enzyme in the energetic pathways of cells because it is the enzyme complex that produces the majority of cellular ATP. It has been shown to be involved in several cardiac phenotypes including heart failure and preconditioning, a cellular protective mechanism. Understanding the regulation of this enzyme is important in understanding the mechanisms behind these important phenomena. Recently there have been several post-translational modifications (PTM) reported for various subunits of this enzyme complex, opening up the possibility of differential regulation by these PTMs. Here we discuss the known PTMs in the heart and other mammalian tissues and their implication to function and regulation of the ATP synthase.  相似文献   

3.
Je JH  Lee TH  Kim DH  Cho YH  Lee JH  Kim SC  Lee SK  Lee J  Lee MG 《Proteomics》2008,8(12):2384-2393
ROS are produced in dendritic cells (DCs) during antigen presentation in contact hypersensitivity (CHS). As a result, ROS cause a number of nonenzymatic protein modifications, including carbonylation, which is the most widely used marker of oxidative stress. 2,4,6-Trinitrobenzene sulfonic acid (TNBS) is a well-characterized contact allergen that results in the formation of ROS. However, proteins that are carbonylated in DCs in response to TNBS have not been identified. To study ROS-dependent protein carbonylation in response to TNBS, we used the well-established mouse DC line, XS-106. We focused on the effects of TNBS on oxidation by examining selected oxidative markers. We identified TNBS-induced ROS and myeloperoxidase (MPO) proteins and demonstrated that the increase in ROS resulted in IL-12 production. The increase in oxidation was further confirmed by an oxidation-dependent increase in protein modifications, such as carbonylation. In fact, TNBS strongly induced carbonylation of mitochondrial adenosine triphosphate (ATP) synthase in XS-106 DCs, as determined by MALDI-TOF analysis and 2-D Western blotting. ROS production and protein carbonylation were confirmed in human monocyte-derived DCs (Mo-DCs). Furthermore, glutathione (GSH) decreased ROS and protein carbonylation in Mo-DCs. Carbonylation of ATP synthase in DCs may contribute to the pathophysiology of CHS.  相似文献   

4.
5.
The structure and regulation of theTrypanosoma brucei mitochondrial ATP synthase is reviewed. This enzyme complex which catalyzes the synthesis and hydrolysis of ATP within the mitochondrion is a multisubunit complex which is regulated in several ways. Several lines of evidence have shown that the ATP synthase is regulated through the life cycle ofTrypanosoma brucei. The enzyme complex is present at maximal levels in the procyclic form where mitochondrial activity is the highest and cytochromes and Kreb's cycle components are present. The levels of the ATP synthase are decreased in the bloodstream forms where the levels of the mitochondrial cytochromes are absent or substantially decreased. In recent preliminary work we have shown the presence of an ATP synthase inhibitor peptide which may indicate an additional level of complexity to the regulation.  相似文献   

6.
Escherichia coli ATP synthase has eight subunits and functions through transmission of conformational changes between subunits. Defective mutation at Gly-149 was suppressed by the second mutations at the outer surface of the subunit, indicating that the defect by the first mutation was suppressed by the second mutation through long range conformation transmission. Extensive mutant/pseudorevertant studies revealed that / and / subunits interactions are important for the energy coupling between catalysis and H+ translocation. In addition, long range interaction between amino and carboxyl terminal regions of the subunit has a critical role(s) for energy coupling. These results suggest that the dynamic conformation change and its transmission are essential for ATP synthase.  相似文献   

7.
Marie Lapaille  Emilie Perez  Claire Remacle 《BBA》2010,1797(8):1533-1539
Mitochondrial F1FO ATP synthase (Complex V) catalyses ATP synthesis from ADP and inorganic phosphate using the proton-motive force generated by the substrate-driven electron transfer chain. In this work, we investigated the impact of the loss of activity of the mitochondrial enzyme in a photosynthetic organism. In this purpose, we inactivated by RNA interference the expression of the ATP2 gene, coding for the catalytic subunit β, in the green alga Chlamydomonas reinhardtii. We demonstrate that in the absence of β subunit, complex V is not assembled, respiratory rate is decreased by half and ATP synthesis coupled to the respiratory activity is fully impaired. Lack of ATP synthase also affects the morphology of mitochondria which are deprived of cristae. We also show that mutants are obligate phototrophs and that rearrangements of the photosynthetic apparatus occur in the chloroplast as a response to ATP synthase deficiency in mitochondria. Altogether, our results contribute to the understanding of the yet poorly studied bioenergetic interactions between organelles in photosynthetic organisms.  相似文献   

8.
The ATP synthase is known to play important roles in ATP generation and proton translocation within mitochondria. Here, we now provide evidence showing the presence of functional ecto‐ATP synthase on the neuronal surface. Immunoblotting revealed that the α, β subunits of ATP synthase F1 portion are present in isolated fractions of plasma membrane and biotin‐labelled surface protein from primary cultured neurons; the surface distribution of α, β subunits was also confirmed by immunofluorescence staining. Moreover, α and β subunits were also found in fractions of plasma membrane and lipid rafts isolated from rat brain, and flow cytometry analysis showed α subunits on the surface of acutely isolated brain cells. Activity assays showed that the extracellular ATP generation of cultured neurons could be compromised by α, β subunit antibodies and ATP synthase inhibitors. pHi (intracellular pH) analysis demonstrated that at low extracellular pH, α or β subunit antibodies decreased pHi of primary cultured neurons. Therefore, ATP synthase on the surface of neurons may be involved in the machineries of extracellular ATP generation and pHi homoeostasis.  相似文献   

9.
The mitochondrial F1Fo ATP synthase of the parasite Trypanosoma brucei has been previously studied in detail. This unusual enzyme switches direction in functionality during the life cycle of the parasite, acting as an ATP synthase in the insect stages, and as an ATPase to generate mitochondrial membrane potential in the mammalian bloodstream stages. Whereas the trypanosome F1 moiety is relatively highly conserved in structure and composition, the Fo subcomplex and the peripheral stalk have been shown to be more variable. Interestingly, a core subunit of the latter, the normally conserved subunit b, has been resistant to identification by sequence alignment or biochemical methods. Here, we identified a 17 kDa mitochondrial protein of the inner membrane, Tb927.8.3070, that is essential for normal growth, efficient oxidative phosphorylation, and membrane potential maintenance. Pull-down experiments and native PAGE analysis indicated that the protein is both associated with the F1Fo ATP synthase and integral to its assembly. In addition, its knockdown reduced the levels of Fo subunits, but not those of F1, and disturbed the cell cycle. Finally, analysis of structural homology using the HHpred algorithm showed that this protein has structural similarities to Fo subunit b of other species, indicating that this subunit may be a highly diverged form of the elusive subunit b.  相似文献   

10.
《Developmental cell》2022,57(3):361-372.e5
  1. Download : Download high-res image (176KB)
  2. Download : Download full-size image
  相似文献   

11.
Drug-resistant tuberculosis (TB) poses a significant challenge to the successful treatment and control of TB worldwide. Resistance to anti-TB drugs has existed since the beginning of the chemotherapy era. New insights into the resistant mechanisms of anti-TB drugs have been provided. Better understanding of drug resistance mechanisms helps in the development of new tools for the rapid diagnosis of drug-resistant TB. There is also a pressing need in the development of new drugs with novel targets to improve the current treatment of TB and to prevent the emergence of drug resistance in Mycobacterium tuberculosis. This review summarizes the anti-TB drug resistance mechanisms, furnishes some possible novel drug targets in the development of new agents for TB therapy and discusses the usefulness using known targets to develop new anti-TB drugs. Whole genome sequencing is currently an advanced technology to uncover drug resistance mechanisms in M. tuberculosis. However, further research is required to unravel the significance of some newly discovered gene mutations in their contribution to drug resistance.  相似文献   

12.
13.
Weber J  Senior AE 《FEBS letters》2003,545(1):61-70
Topical questions in ATP synthase research are: (1) how do protons cause subunit rotation and how does rotation generate ATP synthesis from ADP+Pi? (2) How does hydrolysis of ATP generate subunit rotation and how does rotation bring about uphill transport of protons? The finding that ATP synthase is not just an enzyme but rather a unique nanomotor is attracting a diverse group of researchers keen to find answers. Here we review the most recent work on rapidly developing areas within the field and present proposals for enzymatic and mechanoenzymatic mechanisms.  相似文献   

14.
Using DTT-modulated thylakoid membranes we studied tight nucleotide binding and ATP content in bound nucleotides and in the reaction mixture during [14C] ADP photophosphorylation. The increasing light intensity caused an increase in the rate of [14C] ADP incorporation and a decrease in the steady-state level of tightly bound nucleotides. Within the light intensity range from 11 to 710 w m–2, ATP content in bound nucleotides was larger than that in nucleotides of the reaction mixture; the most prominent difference was observed at low degrees of ADP phosphorylation. The increasing light intensity was accompanied by a significant increase of the relative ATP content in tightly bound nucleotides. The ratio between substrates and products formed at the tight nucleotide binding site during photophosphorylation was suggested to depend on the light-induced proton gradient across the thylakoid membrane.Abbreviations AdN adenine nucleotide - Chl chlorophyll - DTT dithiothreitol - FCCP carbonylcianide p-trifluoromethoxyphenilhydrazone - Pi inorganic orthophosphate - PMS phenazine methosulfate - TLC thin-layer chromatography - Tricine N-[tris(hydroxymethyl)methyl] glycine  相似文献   

15.
The importance of the second transmembrane span of subunit a of the ATP synthase from Escherichia coli has been established by two approaches. First, biochemical analysis of five cysteine-substitution mutants, four of which were previously constructed for labeling experiments, revealed that only D119C, found within the second transmembrane span, was deleterious to ATP synthase function. This mutant had a greatly reduced growth yield, indicating inefficient ATP synthesis, but it retained a significant level of ATP-driven proton translocation and sensitivity to N,N(')-dicyclohexyl-carbodiimide, indicating more robust function in the direction of ATP hydrolysis. Second, the entire second transmembrane span was probed by alanine-insertion mutagenesis at six different positions, from residues 98 to 122. Insertions at the central four positions from residues 107 to 117 resulted in the inability to grow on succinate minimal medium, although normal levels of membrane-bound ATPase activity and significant levels of subunit a were detected. Double mutants were constructed with a mutation that permits cross-linking to the b subunit. Cross-linked products in the mutant K74C/114iA were seen, indicating no major disruption of the a-b interface due to the insertion at 114. Analysis of the K74C/110iA double mutant indicated that K74C is a partial suppressor of 110iA. In summary, the results support a model in which the amino-terminal, cytoplasmic end of the second transmembrane span has close contact with subunit b, while the carboxy-terminal, periplasmic end is important for proton translocation.  相似文献   

16.
From a human-leukocyte cDNA library, we cloned cDNA encoding a novel protein, which has a significant homology with the b subunit of ATP synthase (proton-transporting ATPase, F1F0-ATPase; EC3.6.1.34) derived from Anabaena sp. strain PCC 7120. The cDNA has an open reading frame of 1314 nucleotides corresponding to 438 amino acids. The coding sequence was 37.9% identical over 57 amino acid with b subunit of ATP synthase. The 34-amino-acid region of the predicted peptide sequence displays a coiled-coil motif that could form a complex with some other protein(s). We designated this novel gene as ATP-BL because of its homology to the b subunit of ATP synthase. The ATP-BL locus was mapped by fluorescence in situ hybridization (FISH) and radiation hybrid mapping to the q24 region of chromosome 16.  相似文献   

17.
How biological systems make ATP has intrigued many scientists for well over half the 20th century, and because of the importance and complexity of the problem it seems likely to continue to be a source of fascination to both senior and younger investigators well into the 21st century. Scientific battles fought to unravel the vast secrets by which ATP synthases work have been fierce, and great victories have been short-lived, tempered with the realization that more structures are needed, additional subunits remain to be conquered, and that during ATP synthesis, not one, but several subunits may undergo either significant conformational changes, repositioning, or perhaps even physical rotation similar to bacterial flagella(1,2). In this introductory article, the author briefly summarizes our current knowledge about the complex substructure of ATP synthases, what we have learned from X-ray crystallography of the F1 unit, and current evidence for subunit movements.  相似文献   

18.
Ilka Wittig 《BBA》2009,1787(6):672-680
Mitochondrial ATP synthase is mostly isolated in monomeric form, but in the inner mitochondrial membrane it seems to dimerize and to form higher oligomeric structures from dimeric building blocks. Following a period of electron microscopic single particle analyses that revealed an angular orientation of the membrane parts of monomeric ATP synthases in the dimeric structures, and after extensive studies of the monomer-monomer interface, the focus now shifts to the potentially dynamic state of the oligomeric structures, their potential involvement in metabolic regulation of mitochondria and cells, and to newly identified interactions like physical associations of complexes IV and V. Similarly, larger structures like respiratory strings that have been postulated to form from individual respiratory complexes and their supercomplexes, the respirasomes, come into the focus. Progress by structural investigations is paralleled by insights into the functional roles of respirasomes including substrate channelling and stabilization of individual complexes. Cardiolipin was found to be important for the structural stability of respirasomes which in turn is required to maintain cells and tissues in a healthy state. Defects in cardiolipin remodeling cause devastating diseases like Barth syndrome. Novel species-specific roles of respirasomes for the stability of respiratory complexes have been identified, and potential additional roles may be deduced from newly observed interactions of respirasomes with components of the protein import machinery and with the ADP/ATP translocator.  相似文献   

19.
The mitochondrial F1-ATPase inhibitor protein, IF1, inhibits the hydrolytic, but not the synthetic activity of the F-ATP synthase, and requires the hydrolysis of ATP to form the inhibited complex. In this complex, the α-helical inhibitory region of the bound IF1 occupies a deep cleft in one of the three catalytic interfaces of the enzyme. Its N-terminal region penetrates into the central aqueous cavity of the enzyme and interacts with the γ-subunit in the enzyme''s rotor. The intricacy of forming this complex and the binding mode of the inhibitor endow IF1 with high specificity. This property has been exploited in the development of a highly selective affinity procedure for purifying the intact F-ATP synthase complex from mitochondria in a single chromatographic step by using inhibitor proteins with a C-terminal affinity tag. The inhibited complex was recovered with residues 1–60 of bovine IF1 with a C-terminal green fluorescent protein followed by a His-tag, and the active enzyme with the same inhibitor with a C-terminal glutathione-S-transferase domain. The wide applicability of the procedure has been demonstrated by purifying the enzyme complex from bovine, ovine, porcine and yeast mitochondria. The subunit compositions of these complexes have been characterized. The catalytic properties of the bovine enzyme have been studied in detail. Its hydrolytic activity is sensitive to inhibition by oligomycin, and the enzyme is capable of synthesizing ATP in vesicles in which the proton-motive force is generated from light by bacteriorhodopsin. The coupled enzyme has been compared by limited trypsinolysis with uncoupled enzyme prepared by affinity chromatography. In the uncoupled enzyme, subunits of the enzyme''s stator are degraded more rapidly than in the coupled enzyme, indicating that uncoupling involves significant structural changes in the stator region.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号