首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
2.
3.
4.
5.
6.
Advanced glycation end products (AGEs) are involved in bone quality deterioration in diabetes mellitus. We previously showed that AGE2 or AGE3 inhibited osteoblastic differentiation and mineralization of mouse stromal ST2 cells, and also induced apoptosis and decreased cell growth. Although quality management for synthesized proteins in endoplasmic reticulum (ER) is crucial for the maturation of osteoblasts, the effects of AGEs on ER stress in osteoblast lineage are unknown. We thus examined roles of ER stress in AGE2- or AGE3-induced suppression of osteoblastogenesis of ST2 cells. An ER stress inducer, thapsigargin (TG), induced osteoblastic differentiation of ST2 cells by increasing the levels of Osterix, type 1 collagen (Col1), alkaline phosphatase (ALP) and osteocalcin (OCN) mRNA. AGE2 or AGE3 suppressed the levels of ER stress sensors such as IRE1α, ATF6 and OASIS, while they increased the levels of PERK and its downstream molecules, ATF4. A reduction in PERK level by siRNA did not affect the AGEs-induced suppression of the levels of Osterix, Col1 and OCN mRNA. In conclusion, AGEs inhibited the osteoblastic differentiation of stromal cells by suppressing ER stress sensors and accumulating abnormal proteins in the cells. This process might accelerate AGEs-induced suppression of bone formation found in diabetes mellitus.  相似文献   

7.
8.
Jang WG  Kim EJ  Koh JT 《BMB reports》2011,44(11):735-740
Tunicamycin, an endoplasmic reticulum (ER) stress inducer, specifically inhibits N-glycosylation. The cyclic AMP (cAMP) response element-binding protein H (CREBH) was previously shown to be regulated by UPR-dependent proteolytic cleavage in the liver. On the other hand, the role of CREBH in other tissues is unknown. In the present study, tunicamycin increased the level of CREBH activation (cleavage) as well as mRNA expression in osteoblast cells. Adenoviral (Ad) overexpression of CREBH suppressed BMP2-induced expression of alkaline phosphatase (ALP) and osteocalcin (OC). Interestingly, the BMP2-induced OASIS (structurally similar to CREBH, a positive regulator of osteoblast differentiation) expression was also inhibited by CREBH overexpression. In addition, inhibition of CREBH expression using siRNA reversed the tunicamycin-suppressed ALP and OC expression. These results suggest that CREBH inhibited osteoblast differentiation via suppressing BMP2-induced ALP, OC and OASIS expression in mouse calvarial derived osteoblasts.  相似文献   

9.
10.
11.
12.
13.
ATF3 negatively regulates adiponectin receptor 1 expression   总被引:1,自引:0,他引:1  
Adiponectin is an adipocyte-derived hormone that has antidiabetic and antiatherogenic effects through two membrane receptors, adiponectin receptor 1 (AdipoR1) and adiponectin receptor 2 (AdipoR2). Although it has been reported that the expression of AdipoR1 and AdipoR2 is regulated under physiological and pathophysiological states, their regulation is largely unknown. Previously, we demonstrated that endoplasmic reticulum (ER) stress or obesity-inducible ATF3 negatively regulates the expression of adiponectin and AdipoR2. Here, we investigated the regulation of another adiponectin receptor, AdipoR1 by ATF3, to determine if ATF3 may contribute to impairment of adiponectin signaling by repressing the expression of both adiponectin and adiponectin receptors. We found that treatment with thapsigargin, a stimulator of ATF3 expression as an inducer of ER stress, decreased AdipoR1 expression in insulin-sensitive cells (HepG2, C2C12) and insulin secreting cells (MIN6N8). Furthermore, overexpression of lentivirus carrying-ATF3 decreased AdipoR1 expression in those cells, demonstrating that ATF3 downregulates AdipoR1 expression. Next, we investigated the effects of ATF3 on human AdipoR1 promoter activity and identified an ATF3-responsive region in the promoter. Both thapsigargin treatment and ATF3 expression repressed AdipoR1 promoter activity. Transfection studies using mutant constructs containing 5′-deletions in the human AdipoR1 promoter revealed that putative ATF/CRE site is located between the −248 and −224, TGACGCGG. Chromatin immunoprecipitation assay demonstrated that ATF3 directly binds to human AdipoR1 promoter spanning from −248 to −224. Finally, deletion of the putative ATF/CRE site abrogated ATF3-mediated transrepression of the AdipoR1 promoter. Importantly, ATF3 expression was increased in hyperglycemia or TNF-α-treated C2C12 cells in which AdipoR1 expression was decreased, suggesting that ATF3 may contribute to downregulation of AdipoR1 by hyperglycemia and TNF-α. Collectively, these results demonstrate that ATF3 negatively regulates human AdipoR1 expression via binding to an ATF3-responsive region in the promoter, which plays an important role in attenuation of adiponectin signaling and induction of insulin resistance.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号