首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AMP-activated protein kinase (AMPK), a known regulator of cellular and systemic energy balance, is now recognized to control cell division, cell polarity and cell migration, all of which depend on the actin cytoskeleton. Here we report the effects of A769662, a pharmacological activator of AMPK, on cytoskeletal organization and signalling in epithelial Madin-Darby canine kidney (MDCK) cells. We show that AMPK activation induced shortening or radiation of stress fibers, uncoupling from paxillin and predominance of cortical F-actin. In parallel, Rho-kinase downstream targets, namely myosin regulatory light chain and cofilin, were phosphorylated. These effects resembled the morphological changes in MDCK cells exposed to hyperosmotic shock, which led to Ca2+-dependent AMPK activation via calmodulin-dependent protein kinase kinase-β(CaMKKβ), a known upstream kinase of AMPK. Indeed, hypertonicity-induced AMPK activation was markedly reduced by the STO-609 CaMKKβ inhibitor, as was the increase in MLC and cofilin phosphorylation. We suggest that AMPK links osmotic stress to the reorganization of the actin cytoskeleton.  相似文献   

2.
3.
Reports on the role of AMP-activated protein kinase (AMPK) in thrombin-mediated activation of endothelial nitric-oxide synthase (eNOS) in endothelial cells have been conflicting. Previously, we have shown that under culture conditions that allow reduction of ATP-levels after stimulation, activation of AMPK contributes to eNOS phosphorylation and activation in endothelial cells after treatment with thrombin. In this paper we examined the signaling pathways mediating phosphorylation and activation of eNOS after stimulation of cultured human umbilical vein endothelial cells (HUVEC) with histamine and the role of LKB1-AMPK in the signaling. In Morgan's medium 199 intracellular ATP was lowered by treatment with histamine or the ionophore A23187 while in medium RMPI 1640 ATP was unchanged after identical treatment. In medium 199 inhibition of Ca+ 2/CaM kinase kinase (CaMKK) by STO-609 only partially inhibited AMPK phosphorylation but after gene silencing of LKB1 with siRNA there was a total inhibition of AMPK phosphorylation by STO-609 after treatment with either histamine or thrombin, demonstrating phosphorylation of AMPK by both upstream kinases, LKB1 and CaMKK. Downregulation of AMPK with siRNA partially inhibited eNOS phosphorylation caused by histamine in cells maintained in medium 199. Downregulation of LKB1 by siRNA inhibited both phosphorylation and activity of eNOS and addition of the AMPK inhibitor Compound C had no further effect on eNOS phosphorylation. When experiments were carried out in medium 1640, STO-609 totally prevented the phosphorylation of AMPK without affecting eNOS phosphorylation. AMPKα2 downregulation resulted in a loss of the integrity of the endothelial monolayer and increased expression of GRP78, indicative of endoplasmic reticular (ER) stress. Downregulation of AMPKα1 had no such effect. The results show that culture conditions affect endothelial signal transduction pathways after histamine stimulation. Under conditions where intracellular ATP is lowered by histamine, AMPK is activated by both LKB1 and CaMKK and, in turn, mediates eNOS phosphorylation in an LKB1 dependent manner. Both AMPKα1 and − α2 are involved in the signaling. Under conditions where intracellular ATP is unchanged after histamine treatment, CaMKK alone activates AMPK and eNOS is phosphorylated and activated independent of AMPK.  相似文献   

4.
The highly conserved target of rapamycin (TOR) Ser/Thr kinase promotes protein synthesis under favorable growth conditions in all eukaryotes. Downregulation of TOR signaling in the model unicellular green alga Chlamydomonas reinhardtii has recently revealed a link between control of protein synthesis, endoplasmic reticulum (ER) stress and the reversible modification of the BiP chaperone by phosphorylation. Inhibition of protein synthesis by rapamycin or cycloheximide resulted in the phosphorylation of BiP on threonine residues while ER stress induced by tunicamycin or heat shock caused the fast dephosphorylation of the protein. Regulation of BiP function by phosphorylation/dephosphorylation events was proposed in early studies in mammalian cells although no connection to TOR signaling has been established so far. Here I will discuss about the coordinated regulation of BiP modification by TOR and ER stress signals in Chlamydomonas.  相似文献   

5.
Summary Mitochondrial creatine kinase (CK) purified from canine myocardium showed a single protein band on SDS-PAGE and was free of MMCK. Its amino acid composition was different than MMCK or BBCK and did not react to antiserum to MMCK or BBCK. Using purified mitochondrial, MM and BBCK, the velocity of reaction (V) was estimated for creatine phosphate (CP), creatine (C), adenosine triphosphate (ATP) and adenosine diphosphate (ADP) over a wide range of concentrations including those at Vmax. The values for Km (mM/L) derived from Lineweaver-Burke plots are shown: The affinity of mitochondrial CK for C is much greater than MMCK which is compatible with the energy shuttle hypothesis, namely ATP is converted by mitochondrial CK to CP, and then diffuses to the myofibril for conversion to ATP for utilization.  相似文献   

6.
Recently, it was reported that the product of Birt-Hogg-Dubé syndrome gene (folliculin, FLCN) is directly phosphorylated by 5′-AMP-activated protein kinase (AMPK). In this study, we identified serine 62 (Ser62) as a phosphorylation site in FLCN and generated an anti-phospho-Ser62-FLCN antibody. Our analysis suggests that Ser62 phosphorylation is indirectly up-regulated by AMPK and that another residue is directly phosphorylated by AMPK. By binding with FLCN-interacting proteins (FNIP1 and FNIP2/FNIPL), Ser62 phosphorylation is increased. A phospho-mimic mutation at Ser62 enhanced the formation of the FLCN-AMPK complex. These results suggest that function(s) of FLCN-AMPK-FNIP complex is regulated by Ser62 phosphorylation.

Structured summary

MINT-7298145, MINT-7298166: Flcn (uniprotkb:Q76JQ2) physically interacts (MI:0915) with AMPK alpha 1 (uniprotkb:P54645) by anti tag coimmunoprecipitation (MI:0007)MINT-7298267: AMPK alpha 1 (uniprotkb:Q13131) phosphorylates (MI:0217) tsc2 (uniprotkb:P49816) by protein kinase assay (MI:0424)MINT-7298182: FNIP1 (uniprotkb:Q8TF40) physically interacts (MI:0915) with Flcn (uniprotkb:Q76JQ2) by anti tag coimmunoprecipitation (MI:0007)MINT-7298132: AMPK alpha 1 (uniprotkb:Q13131) phosphorylates (MI:0217) Flcn (uniprotkb:Q76JQ2) by protein kinase assay (MI:0424)MINT-7298229: FNIPL (uniprotkb:Q9P278) physically interacts (MI:0915) with Flcn (uniprotkb:Q76JQ2) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

7.
Interleukin-38 (IL-38), recently recognized as a cytokine with anti-inflammatory properties that mitigate type 2 diabetes, has been associated with indicators of insulin resistance and nonalcoholic fatty liver disease (NAFLD). This study investigated the impact of IL-38 on hepatic lipid metabolism and endoplasmic reticulum (ER) stress. We assessed protein expression levels using Western blot analysis, while monodansylcadaverine staining was employed to detect autophagosomes in hepatocytes. Oil red O staining was utilized to examine lipid deposition. The study revealed elevated serum IL-38 levels in high-fat diet (HFD)-fed mice and IL-38 secretion from mouse keratinocytes. IL-38 treatment attenuated lipogenic lipid accumulation and ER stress markers in hepatocytes exposed to palmitate. Furthermore, IL-38 treatment increased AMP-activated protein kinase (AMPK) phosphorylation and autophagy. The effects of IL-38 on lipogenic lipid deposition and ER stress were nullified in cultured hepatocytes by suppressing AMPK through small interfering (si) RNA or 3-methyladenine (3MA). In animal studies, IL-38 administration mitigated hepatic steatosis by suppressing the expression of lipogenic proteins and ER stress markers while reversing AMPK phosphorylation and autophagy markers in the livers of HFD-fed mice. Additionally, AMPK siRNA, but not 3MA, mitigated IL-38-enhanced fatty acid oxidation in hepatocytes. In summary, IL-38 alleviates hepatic steatosis through AMPK/autophagy signaling-dependent attenuation of ER stress and enhancement of fatty acid oxidation via the AMPK pathway, suggesting a therapeutic strategy for treating NAFLD.  相似文献   

8.
The endogenous phosphorylation of human erythrocyte cytosolic proteins is markedly increased when the crude cytosol, prior to incubation in the presence of [y-32P] ATP, is submitted to DEAE-cellulose chromatography. Some proteins, including 22 and 23 kDa proteins, are preferentially phosphorylated by cytosolic casein kinase CS, whereas other proteins, including 42 kDa protein, are preferentially phosphorylated by casein kinase CTS. The CS-catalyzed phosphorylation is strongly inhibited by physiological ionic strength (150 mM KCl or NaCl) and by physiological levels (3 mM) of 2,3-bisphosphoglycerate, while CTS-catalyzed phosphorylation is unaffected. The very poor endogenous phosphorylation of these proteins in the crude cytosol may be due to the presence of other cytosolic inhibitors which are removed by DEAE-cellulose chromatography.  相似文献   

9.
Activation of 5′-AMP-activated protein kinase (AMPK) is believed to be the mechanism by which the pharmaceuticals, metformin and phenformin, exert their beneficial effects for treatment of type 2 diabetes. These biguanide drugs elevate 5′-AMP, which allosterically activates AMPK and promotes phosphorylation on Thr172 of AMPK catalytic α subunits. Although kinases phosphorylating this site have been identified, phosphatases that dephosphorylate it are unknown. The aim of this study is to identify protein phosphatase(s) that dephosphorylate AMPKα-Thr172 within cells. Our initial data indicated that members of the protein phosphatase ce:sup>/ce:sup>/Mn2+-dependent (PPM) family and not those of the PPP family of protein serine/threonine phosphatases may be directly or indirectly inhibited by phenformin. Using antibodies raised to individual Ppm phosphatases that facilitated the assessment of their activities, phenformin stimulation of cells was found to decrease the ce:sup>/ce:sup>/Mn2+-dependent protein serine/threonine phosphatase activity of Ppm1E and Ppm1F, but not that attributable to other PPM family members, including Ppm1A/PP2Cα. Depletion of Ppm1E, but not Ppm1A, using lentiviral-mediated stable gene silencing, increased AMPKα-Thr172 phosphorylation approximately three fold in HEK293 cells. In addition, incubation of cells with low concentrations of phenformin and depletion of Ppm1E increased AMPK phosphorylation synergistically. Ppm1E and the closely related Ppm1F interact weakly with AMPK and assays with lysates of cells stably depleted of Ppm1F suggests that this phosphatase contributes to dephosphorylation of AMPK. The data indicate that Ppm1E and probably PpM1F are in cellulo AMPK phosphatases and that Ppm1E is a potential anti-diabetic drug target.  相似文献   

10.
The kinetics of myosin regulatory light chain (MLC) phosphorylation by recombinant AMP-activated protein kinase (AMPK) were compared with commercial AMPK from rat liver and smooth muscle myosin light chain kinase (smMLCK). With identical amounts of activity units, initial rates of phosphorylation of MLC were at least 100-fold less with recombinant AMPK compared to smMLCK, whereas with rat liver AMPK significant phosphorylation was seen. In Madin-Darby Canine Kidney cells, AMPK activation led to an increase in MLC phosphorylation, which was decreased by a Rho kinase inhibitor without affecting AMPK activation. Therefore, MLC phosphorylation during energy deprivation does not result from direct phosphorylation by AMPK.

Structured summary

MINT-6800264: smMLCK (uniprotkb:P11799) phosphorylates (MI:0217) MLC (uniprotkb:P08590) by protein kinase assay (MI:0424)
MINT-6800252: AMPK (uniprotkb:Q13131) phosphorylates (MI:0217) ACC2 (uniprotkb:000763) by protein kinase assay (MI:0424)
  相似文献   

11.
AMP-activated protein kinase (AMPK) acts as a cellular energy sensor: it responds to an increase in AMP concentration ([AMP]) or the AMP-to-ATP ratio (AMP/ATP). Metformin and phenformin, which are biguanides, have been reported to increase AMPK activity without increasing AMP/ATP. This study tests the hypothesis that these biguanides increase AMPK activity in the heart by increasing cytosolic [AMP]. Groups of isolated rat hearts (n = 5-7 each) were perfused with Krebs-Henseleit buffer with or without 0.2 mM phenformin or 10 mM metformin, and (31)P-NMR-measured phosphocreatine, ATP, and intracellular pH were used to calculate cytosolic [AMP]. At various times, hearts were freeze-clamped and assayed for AMPK activity, phosphorylation of Thr(172) on AMPK-alpha, and phosphorylation of Ser(79) on acetyl-CoA carboxylase, an AMPK target. In hearts treated with phenformin for 18 min and then perfused for 20 min with Krebs-Henseleit buffer, [AMP] began to increase at 26 min and AMPK activity was elevated at 36 min. In hearts treated with metformin, [AMP] was increased at 50 min and AMPK activity, phosphorylated AMPK, and phosphorylated acetyl-CoA carboxylase were elevated at 61 min. In metformin-treated hearts, HPLC-measured total AMP content and total AMP/ATP did not increase. In summary, phenformin and metformin increase AMPK activity and phosphorylation in the isolated heart. The increase in AMPK activity was always preceded by and correlated with increased cytosolic [AMP]. Total AMP content and total AMP/ATP did not change. Cytosolic [AMP] reported metabolically active AMP, which triggered increased AMPK activity, but measures of total AMP did not.  相似文献   

12.
The relation between CaM kinase II activity and high Ca2+-mediated stress responses was studied in cultured vascular smooth muscle cells. Treatment with ionomycin (1 M) for 5 min caused a significant loss of CaM kinase II activity in whole cell homegenates and prominent vesiculation of the endoplasmic reticulum (ER). Similar losses of CaM kinase II activity were observed in the soluble lysate as assessed by activity measurements and Western blotting. Examination of the post-lysate particulate fraction showed that the loss of CaM kinase II from the soluble lysate was accompanied by a redistribution of CaM kinase II to this fraction. The ionomycin-mediated response was limited to this concentration (1 M); lower concentrations of ionomycin as well as stimulation with angiotensin II (1 M) or ATP (100 M) did not cause a shift in CaM kinase II distribution. Treatment with neither the CaM kinase II inhibitor KN-93 nor the phosphatase inhibitor okadaic acid altered the ionomycin-induced redistribution indicating that CaM kinase II activation and/or phosphorylation was not part of the mechanism. The response, however, was eliminated when the cells were treated in Ca2+-free medium. Washout of ionomycin led to only a partial restoration of the kinase activity in the soluble fraction after 10 min. Immunofluorescence microscopy of resting cells indicated colocalization of antibodies to CaM kinase II and an ER protein marker. ER vesiculation induced by ionomycin coincided with a parallel redistribution of CaM kinase II and ER marker proteins. These data link ionomycin-induced ER restructuring to a progressive redistribution of CaM kinase II protein to an insoluble particulate fraction and loss of cellular CaM kinase II activity. We propose that redistribution of CaM kinase II and loss of cellular activity are components of a common Ca2+-overload induced cellular stress response in cells.  相似文献   

13.
Recombinant muscle GYS1 (glycogen synthase 1) and recombinant liver GYS2 were phosphorylated by recombinant AMPK (AMP-activated protein kinase) in a time-dependent manner and to a similar stoichiometry. The phosphorylation site in GYS2 was identified as Ser7, which lies in a favourable consensus for phosphorylation by AMPK. Phosphorylation of GYS1 or GYS2 by AMPK led to enzyme inactivation by decreasing the affinity for both UDP-Glc (UDP-glucose) [assayed in the absence of Glc-6-P (glucose-6-phosphate)] and Glc-6-P (assayed at low UDP-Glc concentrations). Incubation of freshly isolated rat hepatocytes with the pharmacological AMPK activators AICA riboside (5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside) or A769662 led to persistent GYS inactivation and Ser7 phosphorylation, whereas inactivation by glucagon treatment was transient. In hepatocytes from mice harbouring a liver-specific deletion of the AMPK catalytic α1/α2 subunits, GYS2 inactivation by AICA riboside and A769662 was blunted, whereas inactivation by glucagon was unaffected. The results suggest that GYS inactivation by AMPK activators in hepatocytes is due to GYS2 Ser7 phosphorylation.  相似文献   

14.
The stathmin (STMN) family of tubulin-binding phosphoproteins are critical regulators of interphase microtubule dynamics and organization in a broad range of cellular processes. c-Jun N-terminal kinase (JNK) signalling to STMN family proteins has been implicated specifically in neuronal maturation, degeneration and cell stress responses more broadly. Previously, we characterized mechanisms underlying JNK phosphorylation of STMN at proline-flanked serine residues (Ser25 and Ser38) that are conserved across STMN-like proteins. In this study, we demonstrated using in vitro kinase assays and alanine replacement of serine residues that JNK phosphorylated the STMN-like domain (SLD) of SCG10 on Ser73, consistent with our previous finding that STMN Ser38 was the primary JNK target site. In addition, we confirmed that a JNK binding motif (41KKKDLSL47) that facilitates JNK targeting of STMN is conserved in SCG10. In contrast, SCLIP was phosphorylated by JNK primarily on Ser60 which corresponds to Ser25 on STMN. Moreover, although the JNK-binding motif identified in STMN and SCG10 was not conserved in SCLIP, JNK phosphorylation of SCLIP was inhibited by a substrate competitive peptide (TI-JIP) highlighting kinase-substrate interaction as required for JNK targeting. Thus, STMN and SCG10 are similarly targeted by JNK but there are clear differences in JNK recognition and phosphorylation of the closely related family member, SCLIP.  相似文献   

15.
Salicylate (SAL) has been recently implicated in the antidiabetic effect in humans. We assessed whether 5′-AMP-activated protein kinase (AMPK) in skeletal muscle is involved in the effect of SAL on glucose homeostasis. Rat fast-twitch epitrochlearis and slow-twitch soleus muscles were incubated in buffer containing SAL. Intracellular concentrations of SAL increased rapidly (<5 min) in both skeletal muscles, and the Thr172 phosphorylation of the α subunit of AMPK increased in a dose- and time-dependent manner. SAL increased both AMPKα1 and AMPKα2 activities. These increases in enzyme activity were accompanied by an increase in the activity of 3-O-methyl-d-glucose transport, and decreases in ATP, phosphocreatine, and glycogen contents. SAL did not change the phosphorylation of insulin receptor signaling including insulin receptor substrate 1, Akt, and p70 ribosomal protein S6 kinase. These results suggest that SAL may be transported into skeletal muscle and may stimulate AMPK and glucose transport via energy deprivation in multiple muscle types. Skeletal muscle AMPK might be part of the mechanism responsible for the metabolic improvement induced by SAL.  相似文献   

16.
We previously reported that OsERG1 and OsERG3 encode rice small C2-domain proteins with different biochemical properties in Ca2+- and phospholipid-binding assays. Os-ERG1 exhibited Ca2+-dependent phospholipid binding, which was not observed with OsERG3. In the present study, we show that both OsERG1 and OsERG3 proteins exhibit oligomerization properties as determined by native polyacrylamide gel electrophoresis (PAGE) and glutaraldehyde cross-linking experiments. Furthermore, in vitro phosphorylation assays reveal the phosphorylation of OsERG1 and OsERG3 by a rice calcium-dependent protein kinase, OsCDPK5. Our mutation analysis on putative serine phosphorylation sites shows that the first serine (Ser) at position 41 of OsERG1 may be an essential residue for phosphorylation by OsCDPK5. Mutation of Ser41 to alanine (OsERG1S41A) and aspartate (OsERG1S41D) abolishes the ability of OsERG1 to bind phospholipids regardless of the presence or absence of Ca2+ ions. In addition, unlike the OsERG1 wild-type form, the mutant OsERG1 (S41A)::smGFP construct lost the ability to translocate from the cytosol to the plasma membrane in response to calcium ions or fungal elicitor. These results indicate that Ser41 may be essential for the function of OsERG1.  相似文献   

17.
Specific outcomes upon activation of the c-Jun N-terminal kinase (JNK) pathway critically depend on the intensity and duration of signal transmission. Dual-specificity phosphatases (DUSPs) play a very important role in these events by modulating the extent of JNK phosphorylation and activation and thus regulating cellular responses to stress. M3/6 (DUSP8) is one of the dual-specificity protein phosphatases with distinct specificity towards JNK. It has been shown that M3/6 itself is phosphorylated by JNK upon stimulation with arsenite, but the role of this phosphorylation has not been investigated. In this study, we mapped JNK-induced phosphorylation sites on M3/6 using mass spectrometry. Phosphorylated residues Ser 515, Thr 518 and Ser 520 were identified and site-directed mutagenesis was employed to investigate their role. Upon arsenite stimulation, M3/6 mutated at these sites exhibited decreased phosphorylation compared to the wild-type protein. No difference was observed in terms of the enzyme's in vitro phosphatase activity, its substrate specificity towards JNK isoforms, its interactions with JNK and the scaffold family of JNK-interacting proteins (JIPs), its stability or its subcellular localization. Interestingly, expression of M3/6 phosphorylation mutants delayed the time-course of JNK phosphorylation and activation by arsenite. We propose that phosphorylation of the M3/6 phosphatase by JNK in response to stress stimuli results in attenuation of phosphatase activity and acceleration of JNK activation.  相似文献   

18.
The current study presents that ascofuranone isolated from a phytopathogenic fungus, Ascochyta viciae, has antitumor activity against various transplantable tumors and a considerable hypolipidemic activity. AMP-activated protein kinase (AMPK) plays a critical role in cellular glucose and lipid homeostasis. We found that ascofuranone improves ER stress-induced insulin resistance by activating AMPK through the LKB1 pathway. In L6 myotube cells, ascofuranone treatment increased the phosphorylation of the Thr-172 residue of the AMPKα subunit and the Ser-79 subunit of acetyl-CoA carboxylase (ACC) and cellular glucose uptake. Ascofuranone-induced phosphorylation of AMPK and ACC was not increased in A549 cells lacking LKB1. Interestingly, ascofuranone treatment also improved insulin signaling impaired by ER stress in L6 myotube cells. These effects were all reversed by pretreatment with Compound C, an AMPK inhibitor or with adenoviral-mediated dominant-negative AMPKα2. Taken together, these results indicated that ascofuranone-mediated enhancement of glucose uptake and reduction of impaired insulin sensitivity in L6 cells is predominantly accomplished by activating AMPK, thereby mediating beneficial effects in type 2 diabetes and insulin resistance.  相似文献   

19.
Vascular endothelial growth factor (VEGF) is an important regulator of endothelial cell function. VEGF stimulates NO production, proposed to be a result of phosphorylation and activation of endothelial NO synthase (eNOS) at Ser1177. Phosphorylation of eNOS at this site also occurs after activation of AMP-activated protein kinase (AMPK) in cultured endothelial cells. We therefore determined whether AMPK mediates VEGF-stimulated NO synthesis in endothelial cells. VEGF caused a rapid, dose-dependent stimulation of AMPK activity, with a concomitant increase in phosphorylation of eNOS at Ser1177. Infection of endothelial cells with an adenovirus expressing a dominant negative mutant AMPK partially inhibited both VEGF-stimulated eNOS Ser1177 phosphorylation and NO production. VEGF-stimulated AMPK activity was completely inhibited by the Ca(2+)/calmodulin-dependent protein kinase kinase inhibitor, STO-609. Stimulation of AMPK via Ca(2+)/calmodulin-dependent protein kinase kinase represents a novel signalling mechanism utilised by VEGF in endothelial cells that contributes to eNOS phosphorylation and NO production.  相似文献   

20.
The AMP-activated protein kinase (AMPK) is a heterotrimeric serine/threonine protein kinase important for the responses to metabolic stress. It consists of a catalytic alpha subunit and two non-catalytic subunits, beta and gamma, and is regulated both by the allosteric action of AMP and by phosphorylation of the alpha and beta subunits catalyzed by AMPKK(s) and autophosphorylation. The Thr172 site on the alpha subunit has been previously characterized as an activating phosphorylation site. Using bacterially expressed AMPK alpha1 subunit proteins, we have explored the role of Thr172-directed AMPKKs in alpha subunit regulation. Recombinant alpha1 subunit proteins, representing the N-terminus, have been expressed as maltose binding protein (MBP) 6x His fusion proteins and purified to homogeneity by Ni(2+) chromatography. Both wild-type alpha1(1-312) and alpha1(1-312)T172D are inactive when expressed in bacteria, but the former can be fully phosphorylated (1 mol/mol) on Thr172 and activated by a surrogate AMPKK, CaMKKbeta. The corresponding AMPKalpha1(1-392), an alpha construct containing its autoinhibitory sequence, can be similarly phosphorylated, but it remains inactive. In an insulinoma cell line, either low glucose or 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) treatment leads to activation and T172 phosphorylation of endogenous AMPK. Under the same conditions of cell incubation, we have identified an AMPKK activity that both phosphorylates and activates the recombinant alpha1(1-312), but this Thr172-directed AMPKK activity is unaltered by low glucose or AICAR, indicating that it is constitutively active.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号